
 
WebP container specification - Working Draft (V0.1 Date 09/26)

Terminology
Basics
Single-image WebP files

Chunks layout
Images without special layout
Images with special layout

Assembling the canvas from tiles and animation
Bitstream chunk(s) (VP8)
VP8X chunk (special layout)
LOOP chunk (global animation parameters)
FRM chunk (per-frame animation parameters)
TILE chunks (tile parameters)
ICCP chunk (color profile)
META chunk (compressed XMP metadata)
Other chunks

 

WebP container specification - Working Draft (V0.1 Date 09/26)
WebP is a still image format that uses the VP8 key frame encoding (and, possibly, other codecs in the 
future) to compress image data in a lossy way. The VP8 encoding should make it more efficient than 
currently used formats. It is optimized for fast image transfer over the network (e.g., for WWW sites). 
However, it also aims for feature parity (like Color profile, XMP Metadata, Animation etc) with other 
formats. This document describes the structure of such a file.
 
The first version of WebP handled only the basic use-case - a file having a single image (being one 
VP8 key frame) with no metadata. However, the use of a RIFF container allowed to extend it. This 
document extends it by additionally introducing support for:

● Metadata and color profiles. We specify chunks that can contain this information, like can 
other popular formats.

● Tiling. A single VP8 frame has an inherent limitation for width or height of 2^14 pixels and 
a 512kB limit on the size of first compressed partition. To support larger images, we support 
images that are composed of multiple tiles, each encoded as a separate VP8 frame. All tiles 
form logically a single image - they have common metadata, color profile etc. Tiling may also 
improve efficiency for larger images - grass can be encoded differently than sky.

● Animation. An image may have pauses between frames, making it an animation.
 
Files not using these new features are backward compatible with the original format. Using these 
features will produce files that are not compatible with older programs.
 

Terminology
A WebP file contains either a still image (i.e. an encoded matrix of pixels) or an animation (see below) 
with, possibly, a color profile, metadata etc. In case we need to refer only to the matrix of pixels, we 



will call is the canvas of the image.
 
The canvas of an image is built from one or multiple tiles. Each tile is a separately encoded VP8 key 
frame (other codec are possible in the future). Building an image from several tiles allows to overcome 
the size limitations of a single VP8 frame. Tiling is supposed to be an internal detail of the file - they 
are not supposed to be exposed to the user.
 

Basics
This section introduces basic terms used throughout the document.
 
Code reading WebP files will be referred to as readers, while code writing them will be referred as 
writers.
 
A 16-bit, little-endian, unsigned integer will be denoted as uint16.
A 32-bit, little-endian, unsigned integer will be denoted as uint32.
 
The basic element of a RIFF file is a chunk. It consist of:

● 4 ASCII characters that will be called the chunk tag.
● uint32 with the size of the chunk content (that will be denoted as ckSize).
● ckSize bytes of content.
● If ckSize is odd, a single padding byte that SHOULD be 0.

A chunk with a tag “ABCD” will be also called a chunk of type “ABCD”. Note that, in this 
specification, all chunk tag characters are in file order, not in byte order of an uint32 of any particular 
architecture.

Note that the padding MUST be also added to the last chunk of the file.

A list of chunks is a concatenation of multiple chunks. We will call the first chunk as having 
position 0, the second as position 1 etc. By chunk with index 0 among “ABCD” we will mean the first 
chunk among the chunks of type “ABCD” in the list, the chunk with index 1 among “ABCD” is the 
second such chunk, etc.

 

A WebP file MUST begin with a single chunk with a tag “RIFF”. All other defined chunks are 
within this chunk. It SHOULD NOT contain anything after it.

The maximum size of RIFF's ckSize is 2^32 – 10 bytes (i.e. the size of the whole file is at most 4GiB 
– 2 bytes).

Note: some RIFF libraries are said to have bugs when handling files larger than 1GiB or 2GiB. If 
you are using an existing library, check that it handles large files correctly.

The first four bytes of the RIFF chunk contents (i.e. bytes 8-11 of the file) MUST be the ASCII 
string “WEBP”. They are followed by a list of chunks. Note that as the size of any chunk is even, the 
size of the RIFF chunk is also even.

The content of the chunks in that list will be described in the following sections.

 

Note: RIFF has a convention that all-uppercase chunks are standard chunks that apply to any 
RIFF file format, while chunks specific for a file format are all-lowercase. WebP doesn’t follow this 



convention.

 

 

Single-image WebP files
First, we will describe a subset of WebP files – files containing only one image (later, we will use it 

to define multi-image files - file having several different images).

Chunks layout
This section describes what chunks and in what order may appear in a single-image WebP file. The 
content of these chunks will be described in subsequent sections.
 
The first chunk inside the RIFF chunk MUST be with a tag of “VP8 ” (note the space as the last 
character) or “VP8X”. Other tags for the first chunk MAY be introduced by future specifications if we 
add new codecs. This tag of the first chunk determines which of the two possible layouts is used.
 
Rationale: we fix the possible tags of the first chunk so that it is possible to introduce other codecs, to 
keep the “WEBP” signature at the beginning of RIFF chunk, while still being able to check the codec 
used by the image by inspecting the byte stream at a fixed position.
 
The two possible layouts will be called images without special layout and images with special layout.

Images without special layout
If the first subchunk of RIFF has the tag “VP8 ”, the file contains an image without special layout. 
 
This layout SHOULD be used if the image doesn’t require advanced features: color profiles, XMP 
metadata, animation or tiling. Files with this layout are smaller and supported by older software. 
 
Such images consist of:

● A “VP8 ” chunk with the bitstream of the single tile.
.
 
Example: An example layout of such a file looks as follows:
RIFF/WEBP
+- VP8 (bitstream of the single tile of the image)

Images with special layout
If the first subchunk of RIFF has the tag “VP8X” (other tags may be introduced by future 
specifications, if new codecs are added), the file contains an image with special layout.
 
Note: older readers are not supporting images with special layout and will fail for images having them.
 
Such an image consists:

● A “VP8X” chunk with information about features used in this file.
● An optional “ICCP” chunk with color profile.
● An optional “LOOP” chunk with animation control data.



● Data for all the frames.
● An optional “META” chunk with XMP metadata.
● Some other chunks may be defined by future specifications and placed anywhere in the file.

 
As will be described in the “VP8X” chunk description, by checking a flag one can distinguish animated 
and non-animated images. A non-animated image has exactly one frame. An animated one may have 
multiple frames. Data for each frame consists of:

● An optional “FRM ” (note the space as the last character) chunk with animation frame 
metadata. It MUST be present in animated images at the beginning of data for that frame. It 
MUST NOT be present in non-animated images.

● An optional “TILE” chunk with tile position metadata. It MUST be present at the beginning of 
data of image that’s represented as multiple tile images.

● A “VP8 ” chunk with the bitstream of the tile.
 
All chunks MUST be placed in the same order as listed above (except for unknown chunks, that MAY 
appear anywhere). If a chunk appears in a wrong place, the file is invalid, but readers MAY parse the 
file ignoring the chunks that come too late.
 
Rationale: setting the order of chunks should allow to quickly stop the search for e.g., the ICCP if it 
is not present in the file. The rule of ignoring late chunks should make programs that needs to do a full 
search give the same results as the ones stopping early.
 
 
 
Example: An example layout of a non-animated, tiled image may look as follows:
RIFF/WEBP
+- VP8X (descriptions of features used)
+- ICCP (color profile)
+- TILE (First tile parameters)
+- VP8 (bitstream - first tile)
+- TILE (Second tile parameters)
+- VP8 (bitstream - second tile)
+- TILE (third tile parameters)
+- VP8 (bitstream - third tile)
+- TILE (fourth tile parameters)
+- VP8 (bitstream - fourth tile)
+- META (XMP metadata)
 
Example: An example layout of an animated image may look as follows:
RIFF/WEBP
+- VP8X (descriptions of features used)
+- LOOP (animation control parameters)
+- FRM (first animation frame parameters)
+- VP8 (bitstream - first image frame)
+- FRM (second animation frame parameters)
+- VP8 (bitstream - second image frame)
+- META(XMP metadata)
 
 



Assembling the canvas from tiles and animation
Contents of the chunks will be described in details in subsequent section. Here, we provide an overview 
how they are used to assemble the canvas. The notation VP8X.canvasWidth means the field in 
the “VP8X” described as canvasWidth.
 
Decoding a non-animated canvas MUST be equivalent to the following pseudo-code:

● assert not VP8X.flags.haveAnimation
● canvas ← new black image of size VP8X.canvasWidth x VP8X.canvasHeight.
● tile_params.tileCanvasX = tile_params.tileCanvasY = 0
● for chunk in data_for_all_frames:

○ if chunk.tag == “TILE”:
■ assert No other TILE chunk after the last “VP8 ” chunk
■ tile_params = chunk

○ if chunk.tag == “VP8 ”:
■render image in chunk in canvas with top-left corner in 
(tile_params.tileCanvasX, tile_params.tileCanvasY) using the isometry in 
VP8X.flags.rotationAndSymmetry.

■ tile_params.tileCanvasX = tile_params.tileCanvasY = 0
○ Ignore unknown chunks

● canvas contains the decoded canvas.
 
Decoding an animated canvas MUST be equivalent to the following pseudo-code:

● assert VP8X.flags.haveAnimation
● canvas ← new black image of size VP8X.canvasWidth x VP8X.canvasHeight.
● if LOOP.loopCount==0:

○ LOOP.loopCount=∞
● current_FRM ← nil
● for LOOP.loop = 0, …, LOOP.loopCount-1

○ assert First chunk in data_for_all_frames is a FRM
○ for chunk in data_for_all_frames:

■ if chunk.tag == “FRM ”:
● if current_FRM != nil:

○ Show the contents of canvas for 
current_FRM.frameDuration*10ms.

● current_FRM = chunk
■ if chunk.tag == “VP8 ”:

● assert tile_params.tileCanvasX >= current_FRM.frameX
● assert tile_params.tileCanvasY >= current_FRM.frameY
● assert tile_params.tileCanvasX + chunk.tileWidth >= 

current_FRM.frameX + current_FRM.frameWidth
● assert tile_params.tileCanvasY + chunk.tileHeight >= 

current_FRM.frameX + current_FRM.frameHeight
●render image in chunk in canvas with top-left corner in 

(tile_params.tileCanvasX, tile_params.tileCanvasY) using the isometry 
in VP8X.flags.rotationAndSymmetry.

● tile_params.tileCanvasX = tile_params.tileCanvasY = 0
■ Ignore unknown chunks



● canvas contains the decoded canvas.
 
As described earlier, if an assert related to chunk ordering fails, the reader MAY ignore the badly-ordered 
chunks instead of failing to decode the file. 
 

Bitstream chunk(s) (VP8)
These chunks contain compressed image data. Currently, the only allowed bitstream is VP8 and 
uses “VP8 ” (note the space as the last character) as its tag. We will refer to all chunks with this tag 
as bitstream chunks. As described earlier, images without special layout have a single bitstream chunk 
as the first subchunk of RIFF, while images with special layout may contain several of them - one for 
each tile.
 
The content of a “VP8 ” chunk MUST be one VP8 key frame (with optional padding – see below). 
The current draft of a VP8 specification can be found at http://tools.ietf.org/html/draft-bankoski-vp8-
bitstream-04. Note that the VP8 frame header contains the VP8 frame width and height. It is assumed 
to be the width and height of the tile.
 
The VP8 specification specifies how to decode the image into Y’CbCr format. To convert to RGB, 
Rec. 601 SHOULD be used.
 
For compatibility with older readers, if the size of the frame is odd, writers SHOULD append a padding 
byte (preferably 0) inside the chunk contents, making the chunk’s ckSize even. Newer readers MUST 
support odd-sized tile chunks.

VP8X chunk (special layout)
As described earlier, a chunk with tag “VP8X”, is the first chunk of images with special layout. It is 
used to enable advanced features of WebP.
 
The content of the chunk is as follows: 

● uint32 flags. The following bits are currently used (with 0 being the least significant bit):
○ bit 0: haveTile: set if the image is represented by Tiles.
○ bit 1: haveAnimation: set if the file is an animation. Data in “LOOP” and “FRM ” 

chunks should be used to control the animation.
○ bit 2: haveIccp: set if the file contains a “ICCP” chunk with a color profile. If a file 

contains an “ICCP” chunk but this bit is not set, the error is flagged while constructing 
the Mux-Container.

○ bit 3: haveMetadat: set if the file contains a “META” chunk with a XMP metadata. 
If a file contains an “META” chunk but this bit is not set, the error is flagged while 
constructing the Mux-Container.

Future specification MAY define other bits in flags. Bits not defined by this specification 
MUST be preserved when modifying the file.

● uint32 canvasWidth: width of the canvas in pixels (after the optional rotation or symmetry - see 
below).

● uint32 canvasHeight: height of the canvas in pixels (after the optional rotation or symmetry - 
see below).

 

http://tools.ietf.org/html/draft-bankoski-vp8-bitstream-04
http://tools.ietf.org/html/draft-bankoski-vp8-bitstream-04
http://tools.ietf.org/html/draft-bankoski-vp8-bitstream-04
http://tools.ietf.org/html/draft-bankoski-vp8-bitstream-04
http://tools.ietf.org/html/draft-bankoski-vp8-bitstream-04
http://tools.ietf.org/html/draft-bankoski-vp8-bitstream-04
http://tools.ietf.org/html/draft-bankoski-vp8-bitstream-04
http://tools.ietf.org/html/draft-bankoski-vp8-bitstream-04
http://tools.ietf.org/html/draft-bankoski-vp8-bitstream-04
http://tools.ietf.org/html/draft-bankoski-vp8-bitstream-04
http://tools.ietf.org/html/draft-bankoski-vp8-bitstream-04
http://tools.ietf.org/html/draft-bankoski-vp8-bitstream-04
http://tools.ietf.org/html/draft-bankoski-vp8-bitstream-04
http://tools.ietf.org/html/draft-bankoski-vp8-bitstream-04
http://tools.ietf.org/html/draft-bankoski-vp8-bitstream-04
http://tools.ietf.org/html/draft-bankoski-vp8-bitstream-04
http://tools.ietf.org/html/draft-bankoski-vp8-bitstream-04
http://tools.ietf.org/html/draft-bankoski-vp8-bitstream-04
http://tools.ietf.org/html/draft-bankoski-vp8-bitstream-04


Future specifications MAY add more fields. If a chunk of larger size is found, programs MUST ignore 
the extra bytes but MUST preserve them when modifying the file.

LOOP chunk (global animation parameters)
For images that are animations, this chunk contains the global parameters of the animation.
 
This chunks MUST appear if the haveAnimation flag in chunk VP8X is set. If the haveAnimation flag 
is not set and this chunk is present, it MUST be ignored.
 
The content of the chunk is as follows: 

● uint16 loopCount For animations, the number of times to loop this animation. 0 means infinite.
Future specifications MAY add more fields. If a chunk of larger size is found, programs MUST ignore 
the extra bytes but MUST preserve them when modifying the file.
 

FRM chunk (per-frame animation parameters)
For images that are animations, these chunks contain the per-frame parameters of the animation.
 
The content of the chunk is as follows:

● uint32 frameX: x coordinate of the upper left corner of the frame. For images using the VP8 
codec, it MUST be divisible by 32. Other codecs MAY specify other constraints. Described in 
more details later.

● uint32 frameY: y coordinate of the upper left corner of the frame. For images using the VP8 
codec, it MUST be divisible by 32. Other codecs MAY specify other constraints. Described in 
more details later.

● uint32 frameWidth: width of the frame. For images using the VP8 codec, it MUST be divisible 
by 16 or such that frameX+frameWidth==canvasWidth. Other codecs MAY specify other 
constraints. Desribed in more details later.

● uint32 frameHeight: height. For images using the VP8 codec, it MUST be divisible by 16 or 
such that frameY+frameHeight==canvasHeight. Other codecs MAY specify other constraints. 
Desribed in more details later.

● uint16 frameDuration Time to wait before displaying the next tile, in 1ms unit.
.
 
Rationale: the requirement for corner coordinates to be divisible by 32 means that pixels on U and V 
planes are aligned to 16 byte boundary (even after a rotation), what may help with vector instructions 
on some architectures. Also, this makes the tiles also aligned to 16-pixel macroblock boundaries.

Rationale: the requirement for the width and height to be divisible by 16 or touching the edge of 
the canvas simplifies the handling of macroblocks that are on the edge of a tile - VP8 decoders can 
overwrite pixels outside the boundary in such a macroblock and this guarantees they won’t overwrite 
any data.

Future specifications MAY add more fields. If a chunk of larger size is found, programs MUST ignore 
the extra bytes but MUST preserve them when modifying the file.
 

TILE chunks (tile parameters)



This chunk contains information about a single tile and describes the bitstream chunk that proceeds it.
 
The content of such a chunk is as follows:

● uint32 tileCanvasX: x coordinate of the upper left corner of the tile. For VP8 tiles, it MUST be 
divisible by 32. Other codecs MAY specify other constraints.

● uint32 tileCanvasY: y coordinate of the upper left corner of the tile. For VP8 tiles, it MUST be 
divisible by 32. Other codecs MAY specify other constraints.

 
Future specifications MAY add more fields. If a chunk of larger size is found, programs MUST ignore 
the extra bytes but MUST preserve them when modifying the file.
 
As described earlier, the TILE chunk is followed by a VP8 data. From that chun, we can read the height 
and width of the tile, that we will denote by tileWidth and tileHeight. In the case of VP8, we have the 
following constraints:

● The width of a tile MUST be divisible by 16 or there MUST be tileCanvasX+tileWidth == 
canvasWidth.

● The height of a tile MUST be divisible by 16 or there MUST be tileCanvasY+tileHeight == 
canvasHeight.

 
 

ICCP chunk (color profile)
An optional “ICCP” chunk contains an ICC profile. There SHOULD be at most one such chunk.
The first byte of the chunk is the compression type. Two values are currently defined: a value of 
0 means no compression, while a value of 1 means deflate/inflate compression. It is followed by a 
compressed or non-compressed ICC profile - see www.color.org for specifications.
 
The color profile can be a v2 or v4 profile. If this chunk is missing, sRGB SHOULD be assumed.
 
 

META chunk (compressed XMP metadata)
Such a chunk (if present) contains XMP metadata. There SHOULD be at most one such chunk. If 
there are more such chunks, readers SHOULD ignore all except the first one. The first byte specifies 
compression type. Two values are currently defined: a value of 0 means no compression, while a 
value of 1 means deflate/inflate compression. It is followed by a compressed or non-compressed XMP 
metadata packet.
 
 
XMP packets are XML text specified in http://www.adobe.com/content/dam/Adobe/en/devnet/xmp/
pdfs/XMPSpecificationPart1.pdf. The chunk tag is different from the one specified by Adobe for WAV 
and AVI (also RIFF formats) because we have the options of compression.
 
Additional guidance about handling metadata can be found at: http://www.metadataworkinggroup.org/
pdf/mwg_guidance.pdf . Note that the sections of the document about reconciliation of EXIF, XMP 
and IPTC-IIM don't apply to WebP, as WebP supports only XMP, thus no reconciliation is necessary.
 
 

http://www.color.org
http://www.color.org
http://www.color.org
http://www.color.org
http://www.color.org
http://www.adobe.com/content/dam/Adobe/en/devnet/xmp/pdfs/XMPSpecificationPart1.pdf
http://www.adobe.com/content/dam/Adobe/en/devnet/xmp/pdfs/XMPSpecificationPart1.pdf
http://www.adobe.com/content/dam/Adobe/en/devnet/xmp/pdfs/XMPSpecificationPart1.pdf
http://www.adobe.com/content/dam/Adobe/en/devnet/xmp/pdfs/XMPSpecificationPart1.pdf
http://www.adobe.com/content/dam/Adobe/en/devnet/xmp/pdfs/XMPSpecificationPart1.pdf
http://www.adobe.com/content/dam/Adobe/en/devnet/xmp/pdfs/XMPSpecificationPart1.pdf
http://www.adobe.com/content/dam/Adobe/en/devnet/xmp/pdfs/XMPSpecificationPart1.pdf
http://www.adobe.com/content/dam/Adobe/en/devnet/xmp/pdfs/XMPSpecificationPart1.pdf
http://www.adobe.com/content/dam/Adobe/en/devnet/xmp/pdfs/XMPSpecificationPart1.pdf
http://www.adobe.com/content/dam/Adobe/en/devnet/xmp/pdfs/XMPSpecificationPart1.pdf
http://www.adobe.com/content/dam/Adobe/en/devnet/xmp/pdfs/XMPSpecificationPart1.pdf
http://www.adobe.com/content/dam/Adobe/en/devnet/xmp/pdfs/XMPSpecificationPart1.pdf
http://www.adobe.com/content/dam/Adobe/en/devnet/xmp/pdfs/XMPSpecificationPart1.pdf
http://www.adobe.com/content/dam/Adobe/en/devnet/xmp/pdfs/XMPSpecificationPart1.pdf
http://www.adobe.com/content/dam/Adobe/en/devnet/xmp/pdfs/XMPSpecificationPart1.pdf
http://www.adobe.com/content/dam/Adobe/en/devnet/xmp/pdfs/XMPSpecificationPart1.pdf
http://www.adobe.com/content/dam/Adobe/en/devnet/xmp/pdfs/XMPSpecificationPart1.pdf
http://www.adobe.com/content/dam/Adobe/en/devnet/xmp/pdfs/XMPSpecificationPart1.pdf
http://www.adobe.com/content/dam/Adobe/en/devnet/xmp/pdfs/XMPSpecificationPart1.pdf
http://www.adobe.com/content/dam/Adobe/en/devnet/xmp/pdfs/XMPSpecificationPart1.pdf
http://www.adobe.com/content/dam/Adobe/en/devnet/xmp/pdfs/XMPSpecificationPart1.pdf
http://www.adobe.com/content/dam/Adobe/en/devnet/xmp/pdfs/XMPSpecificationPart1.pdf
http://www.adobe.com/content/dam/Adobe/en/devnet/xmp/pdfs/XMPSpecificationPart1.pdf
http://www.adobe.com/content/dam/Adobe/en/devnet/xmp/pdfs/XMPSpecificationPart1.pdf
http://www.adobe.com/content/dam/Adobe/en/devnet/xmp/pdfs/XMPSpecificationPart1.pdf
http://www.adobe.com/content/dam/Adobe/en/devnet/xmp/pdfs/XMPSpecificationPart1.pdf
http://www.metadataworkinggroup.org/pdf/mwg_guidance.pdf
http://www.metadataworkinggroup.org/pdf/mwg_guidance.pdf
http://www.metadataworkinggroup.org/pdf/mwg_guidance.pdf
http://www.metadataworkinggroup.org/pdf/mwg_guidance.pdf
http://www.metadataworkinggroup.org/pdf/mwg_guidance.pdf
http://www.metadataworkinggroup.org/pdf/mwg_guidance.pdf
http://www.metadataworkinggroup.org/pdf/mwg_guidance.pdf
http://www.metadataworkinggroup.org/pdf/mwg_guidance.pdf
http://www.metadataworkinggroup.org/pdf/mwg_guidance.pdf
http://www.metadataworkinggroup.org/pdf/mwg_guidance.pdf
http://www.metadataworkinggroup.org/pdf/mwg_guidance.pdf
http://www.metadataworkinggroup.org/pdf/mwg_guidance.pdf
http://www.metadataworkinggroup.org/pdf/mwg_guidance.pdf
http://www.metadataworkinggroup.org/pdf/mwg_guidance.pdf
http://www.metadataworkinggroup.org/pdf/mwg_guidance.pdf
http://www.metadataworkinggroup.org/pdf/mwg_guidance.pdf
http://www.metadataworkinggroup.org/pdf/mwg_guidance.pdf


Other chunks
A file MAY contain other chunks, defined in some future specification. Such chunks MUST be 
ignored, but preserved. Writers SHOULD try to preserve them in the original order.


