// Copyright 2014 Google Inc. All Rights Reserved. // // Use of this source code is governed by a BSD-style license // that can be found in the COPYING file in the root of the source // tree. An additional intellectual property rights grant can be found // in the file PATENTS. All contributing project authors may // be found in the AUTHORS file in the root of the source tree. // ----------------------------------------------------------------------------- // // WebPPicture utils for colorspace conversion // // Author: Skal (pascal.massimino@gmail.com) #include #include #include #include "./vp8enci.h" #include "../utils/random.h" #include "../utils/utils.h" #include "../dsp/yuv.h" // Uncomment to disable gamma-compression during RGB->U/V averaging #define USE_GAMMA_COMPRESSION // If defined, use table to compute x / alpha. #define USE_INVERSE_ALPHA_TABLE static const union { uint32_t argb; uint8_t bytes[4]; } test_endian = { 0xff000000u }; #define ALPHA_IS_LAST (test_endian.bytes[3] == 0xff) //------------------------------------------------------------------------------ // Detection of non-trivial transparency // Returns true if alpha[] has non-0xff values. static int CheckNonOpaque(const uint8_t* alpha, int width, int height, int x_step, int y_step) { if (alpha == NULL) return 0; while (height-- > 0) { int x; for (x = 0; x < width * x_step; x += x_step) { if (alpha[x] != 0xff) return 1; // TODO(skal): check 4/8 bytes at a time. } alpha += y_step; } return 0; } // Checking for the presence of non-opaque alpha. int WebPPictureHasTransparency(const WebPPicture* picture) { if (picture == NULL) return 0; if (!picture->use_argb) { return CheckNonOpaque(picture->a, picture->width, picture->height, 1, picture->a_stride); } else { int x, y; const uint32_t* argb = picture->argb; if (argb == NULL) return 0; for (y = 0; y < picture->height; ++y) { for (x = 0; x < picture->width; ++x) { if (argb[x] < 0xff000000u) return 1; // test any alpha values != 0xff } argb += picture->argb_stride; } } return 0; } //------------------------------------------------------------------------------ // Code for gamma correction #if defined(USE_GAMMA_COMPRESSION) // gamma-compensates loss of resolution during chroma subsampling #define kGamma 0.80 // for now we use a different gamma value than kGammaF #define kGammaFix 12 // fixed-point precision for linear values #define kGammaScale ((1 << kGammaFix) - 1) #define kGammaTabFix 7 // fixed-point fractional bits precision #define kGammaTabScale (1 << kGammaTabFix) #define kGammaTabRounder (kGammaTabScale >> 1) #define kGammaTabSize (1 << (kGammaFix - kGammaTabFix)) static int kLinearToGammaTab[kGammaTabSize + 1]; static uint16_t kGammaToLinearTab[256]; static int kGammaTablesOk = 0; static void InitGammaTables(void) { if (!kGammaTablesOk) { int v; const double scale = (double)(1 << kGammaTabFix) / kGammaScale; const double norm = 1. / 255.; for (v = 0; v <= 255; ++v) { kGammaToLinearTab[v] = (uint16_t)(pow(norm * v, kGamma) * kGammaScale + .5); } for (v = 0; v <= kGammaTabSize; ++v) { kLinearToGammaTab[v] = (int)(255. * pow(scale * v, 1. / kGamma) + .5); } kGammaTablesOk = 1; } } static WEBP_INLINE uint32_t GammaToLinear(uint8_t v) { return kGammaToLinearTab[v]; } static WEBP_INLINE int Interpolate(int v) { const int tab_pos = v >> (kGammaTabFix + 2); // integer part const int x = v & ((kGammaTabScale << 2) - 1); // fractional part const int v0 = kLinearToGammaTab[tab_pos]; const int v1 = kLinearToGammaTab[tab_pos + 1]; const int y = v1 * x + v0 * ((kGammaTabScale << 2) - x); // interpolate assert(tab_pos + 1 < kGammaTabSize + 1); return y; } // Convert a linear value 'v' to YUV_FIX+2 fixed-point precision // U/V value, suitable for RGBToU/V calls. static WEBP_INLINE int LinearToGamma(uint32_t base_value, int shift) { const int y = Interpolate(base_value << shift); // final uplifted value return (y + kGammaTabRounder) >> kGammaTabFix; // descale } #else static void InitGammaTables(void) {} static WEBP_INLINE uint32_t GammaToLinear(uint8_t v) { return v; } static WEBP_INLINE int LinearToGamma(uint32_t base_value, int shift) { return (int)(base_value << shift); } #endif // USE_GAMMA_COMPRESSION //------------------------------------------------------------------------------ // RGB -> YUV conversion static int RGBToY(int r, int g, int b, VP8Random* const rg) { return (rg == NULL) ? VP8RGBToY(r, g, b, YUV_HALF) : VP8RGBToY(r, g, b, VP8RandomBits(rg, YUV_FIX)); } static int RGBToU(int r, int g, int b, VP8Random* const rg) { return (rg == NULL) ? VP8RGBToU(r, g, b, YUV_HALF << 2) : VP8RGBToU(r, g, b, VP8RandomBits(rg, YUV_FIX + 2)); } static int RGBToV(int r, int g, int b, VP8Random* const rg) { return (rg == NULL) ? VP8RGBToV(r, g, b, YUV_HALF << 2) : VP8RGBToV(r, g, b, VP8RandomBits(rg, YUV_FIX + 2)); } //------------------------------------------------------------------------------ // Smart RGB->YUV conversion static const int kNumIterations = 6; static const int kMinDimensionIterativeConversion = 4; // We use a-priori a different precision for storing RGB and Y/W components // We could use YFIX=0 and only uint8_t for fixed_y_t, but it produces some // banding sometimes. Better use extra precision. // TODO(skal): cleanup once TFIX/YFIX values are fixed. typedef int16_t fixed_t; // signed type with extra TFIX precision for UV typedef uint16_t fixed_y_t; // unsigned type with extra YFIX precision for W #define TFIX 2 // fixed-point precision of RGB #define YFIX 2 // fixed point precision for Y/W #define THALF ((1 << TFIX) >> 1) #define MAX_Y_T ((256 << YFIX) - 1) #define TROUNDER (1 << (YUV_FIX + TFIX - 1)) #if defined(USE_GAMMA_COMPRESSION) // float variant of gamma-correction // We use tables of different size and precision, along with a 'real-world' // Gamma value close to ~2. #define kGammaF 2.2 static float kGammaToLinearTabF[MAX_Y_T + 1]; // size scales with Y_FIX static float kLinearToGammaTabF[kGammaTabSize + 2]; static int kGammaTablesFOk = 0; static void InitGammaTablesF(void) { if (!kGammaTablesFOk) { int v; const double norm = 1. / MAX_Y_T; const double scale = 1. / kGammaTabSize; for (v = 0; v <= MAX_Y_T; ++v) { kGammaToLinearTabF[v] = (float)pow(norm * v, kGammaF); } for (v = 0; v <= kGammaTabSize; ++v) { kLinearToGammaTabF[v] = (float)(MAX_Y_T * pow(scale * v, 1. / kGammaF)); } // to prevent small rounding errors to cause read-overflow: kLinearToGammaTabF[kGammaTabSize + 1] = kLinearToGammaTabF[kGammaTabSize]; kGammaTablesFOk = 1; } } static WEBP_INLINE float GammaToLinearF(int v) { return kGammaToLinearTabF[v]; } static WEBP_INLINE int LinearToGammaF(float value) { const float v = value * kGammaTabSize; const int tab_pos = (int)v; const float x = v - (float)tab_pos; // fractional part const float v0 = kLinearToGammaTabF[tab_pos + 0]; const float v1 = kLinearToGammaTabF[tab_pos + 1]; const float y = v1 * x + v0 * (1.f - x); // interpolate return (int)(y + .5); } #else static void InitGammaTablesF(void) {} static WEBP_INLINE float GammaToLinearF(int v) { const float norm = 1.f / MAX_Y_T; return norm * v; } static WEBP_INLINE int LinearToGammaF(float value) { return (int)(MAX_Y_T * value + .5); } #endif // USE_GAMMA_COMPRESSION //------------------------------------------------------------------------------ // precision: YFIX -> TFIX static WEBP_INLINE int FixedYToW(int v) { return v; } static WEBP_INLINE int FixedWToY(int v) { return v; } static uint8_t clip_8b(fixed_t v) { return (!(v & ~0xff)) ? (uint8_t)v : (v < 0) ? 0u : 255u; } static fixed_y_t clip_y(int y) { return (!(y & ~MAX_Y_T)) ? (fixed_y_t)y : (y < 0) ? 0 : MAX_Y_T; } // precision: TFIX -> YFIX static fixed_y_t clip_fixed_t(fixed_t v) { const int y = FixedWToY(v); const fixed_y_t w = clip_y(y); return w; } //------------------------------------------------------------------------------ static int RGBToGray(int r, int g, int b) { const int luma = 19595 * r + 38470 * g + 7471 * b + YUV_HALF; return (luma >> YUV_FIX); } static float RGBToGrayF(float r, float g, float b) { return 0.299f * r + 0.587f * g + 0.114f * b; } static int ScaleDown(int a, int b, int c, int d) { const float A = GammaToLinearF(a); const float B = GammaToLinearF(b); const float C = GammaToLinearF(c); const float D = GammaToLinearF(d); return LinearToGammaF(0.25f * (A + B + C + D)); } static WEBP_INLINE void UpdateW(const fixed_y_t* src, fixed_y_t* dst, int len) { while (len-- > 0) { const float R = GammaToLinearF(src[0]); const float G = GammaToLinearF(src[1]); const float B = GammaToLinearF(src[2]); const float Y = RGBToGrayF(R, G, B); *dst++ = (fixed_y_t)LinearToGammaF(Y); src += 3; } } static WEBP_INLINE void UpdateChroma(const fixed_y_t* src1, const fixed_y_t* src2, fixed_t* dst, fixed_y_t* tmp, int len) { while (len--> 0) { const int r = ScaleDown(src1[0], src1[3], src2[0], src2[3]); const int g = ScaleDown(src1[1], src1[4], src2[1], src2[4]); const int b = ScaleDown(src1[2], src1[5], src2[2], src2[5]); const int W = RGBToGray(r, g, b); dst[0] = (fixed_t)FixedYToW(r - W); dst[1] = (fixed_t)FixedYToW(g - W); dst[2] = (fixed_t)FixedYToW(b - W); dst += 3; src1 += 6; src2 += 6; if (tmp != NULL) { tmp[0] = tmp[1] = clip_y((int)(W + .5)); tmp += 2; } } } //------------------------------------------------------------------------------ static WEBP_INLINE int Filter(const fixed_t* const A, const fixed_t* const B, int rightwise) { int v; if (!rightwise) { v = (A[0] * 9 + A[-3] * 3 + B[0] * 3 + B[-3]); } else { v = (A[0] * 9 + A[+3] * 3 + B[0] * 3 + B[+3]); } return (v + 8) >> 4; } static WEBP_INLINE int Filter2(int A, int B) { return (A * 3 + B + 2) >> 2; } //------------------------------------------------------------------------------ // 8bit -> YFIX static WEBP_INLINE fixed_y_t UpLift(uint8_t a) { return ((fixed_y_t)a << YFIX) | (1 << (YFIX - 1)); } static void ImportOneRow(const uint8_t* const r_ptr, const uint8_t* const g_ptr, const uint8_t* const b_ptr, int step, int pic_width, fixed_y_t* const dst) { int i; for (i = 0; i < pic_width; ++i) { const int off = i * step; dst[3 * i + 0] = UpLift(r_ptr[off]); dst[3 * i + 1] = UpLift(g_ptr[off]); dst[3 * i + 2] = UpLift(b_ptr[off]); } if (pic_width & 1) { // replicate rightmost pixel memcpy(dst + 3 * pic_width, dst + 3 * (pic_width - 1), 3 * sizeof(*dst)); } } static void InterpolateTwoRows(const fixed_y_t* const best_y, const fixed_t* const prev_uv, const fixed_t* const cur_uv, const fixed_t* const next_uv, int w, fixed_y_t* const out1, fixed_y_t* const out2) { int i, k; { // special boundary case for i==0 const int W0 = FixedYToW(best_y[0]); const int W1 = FixedYToW(best_y[w]); for (k = 0; k <= 2; ++k) { out1[k] = clip_fixed_t(Filter2(cur_uv[k], prev_uv[k]) + W0); out2[k] = clip_fixed_t(Filter2(cur_uv[k], next_uv[k]) + W1); } } for (i = 1; i < w - 1; ++i) { const int W0 = FixedYToW(best_y[i + 0]); const int W1 = FixedYToW(best_y[i + w]); const int off = 3 * (i >> 1); for (k = 0; k <= 2; ++k) { const int tmp0 = Filter(cur_uv + off + k, prev_uv + off + k, i & 1); const int tmp1 = Filter(cur_uv + off + k, next_uv + off + k, i & 1); out1[3 * i + k] = clip_fixed_t(tmp0 + W0); out2[3 * i + k] = clip_fixed_t(tmp1 + W1); } } { // special boundary case for i == w - 1 const int W0 = FixedYToW(best_y[i + 0]); const int W1 = FixedYToW(best_y[i + w]); const int off = 3 * (i >> 1); for (k = 0; k <= 2; ++k) { out1[3 * i + k] = clip_fixed_t(Filter2(cur_uv[off + k], prev_uv[off + k]) + W0); out2[3 * i + k] = clip_fixed_t(Filter2(cur_uv[off + k], next_uv[off + k]) + W1); } } } static WEBP_INLINE uint8_t ConvertRGBToY(int r, int g, int b) { const int luma = 16839 * r + 33059 * g + 6420 * b + TROUNDER; return clip_8b(16 + (luma >> (YUV_FIX + TFIX))); } static WEBP_INLINE uint8_t ConvertRGBToU(int r, int g, int b) { const int u = -9719 * r - 19081 * g + 28800 * b + TROUNDER; return clip_8b(128 + (u >> (YUV_FIX + TFIX))); } static WEBP_INLINE uint8_t ConvertRGBToV(int r, int g, int b) { const int v = +28800 * r - 24116 * g - 4684 * b + TROUNDER; return clip_8b(128 + (v >> (YUV_FIX + TFIX))); } static int ConvertWRGBToYUV(const fixed_y_t* const best_y, const fixed_t* const best_uv, WebPPicture* const picture) { int i, j; const int w = (picture->width + 1) & ~1; const int h = (picture->height + 1) & ~1; const int uv_w = w >> 1; const int uv_h = h >> 1; for (j = 0; j < picture->height; ++j) { for (i = 0; i < picture->width; ++i) { const int off = 3 * ((i >> 1) + (j >> 1) * uv_w); const int off2 = i + j * picture->y_stride; const int W = FixedYToW(best_y[i + j * w]); const int r = best_uv[off + 0] + W; const int g = best_uv[off + 1] + W; const int b = best_uv[off + 2] + W; picture->y[off2] = ConvertRGBToY(r, g, b); } } for (j = 0; j < uv_h; ++j) { uint8_t* const dst_u = picture->u + j * picture->uv_stride; uint8_t* const dst_v = picture->v + j * picture->uv_stride; for (i = 0; i < uv_w; ++i) { const int off = 3 * (i + j * uv_w); const int r = best_uv[off + 0]; const int g = best_uv[off + 1]; const int b = best_uv[off + 2]; dst_u[i] = ConvertRGBToU(r, g, b); dst_v[i] = ConvertRGBToV(r, g, b); } } return 1; } //------------------------------------------------------------------------------ // Main function #define SAFE_ALLOC(W, H, T) ((T*)WebPSafeMalloc((W) * (H), sizeof(T))) static int PreprocessARGB(const uint8_t* const r_ptr, const uint8_t* const g_ptr, const uint8_t* const b_ptr, int step, int rgb_stride, WebPPicture* const picture) { // we expand the right/bottom border if needed const int w = (picture->width + 1) & ~1; const int h = (picture->height + 1) & ~1; const int uv_w = w >> 1; const int uv_h = h >> 1; int i, j, iter; // TODO(skal): allocate one big memory chunk. But for now, it's easier // for valgrind debugging to have several chunks. fixed_y_t* const tmp_buffer = SAFE_ALLOC(w * 3, 2, fixed_y_t); // scratch fixed_y_t* const best_y = SAFE_ALLOC(w, h, fixed_y_t); fixed_y_t* const target_y = SAFE_ALLOC(w, h, fixed_y_t); fixed_y_t* const best_rgb_y = SAFE_ALLOC(w, 2, fixed_y_t); fixed_t* const best_uv = SAFE_ALLOC(uv_w * 3, uv_h, fixed_t); fixed_t* const target_uv = SAFE_ALLOC(uv_w * 3, uv_h, fixed_t); fixed_t* const best_rgb_uv = SAFE_ALLOC(uv_w * 3, 1, fixed_t); int ok; if (best_y == NULL || best_uv == NULL || target_y == NULL || target_uv == NULL || best_rgb_y == NULL || best_rgb_uv == NULL || tmp_buffer == NULL) { ok = WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY); goto End; } assert(picture->width >= kMinDimensionIterativeConversion); assert(picture->height >= kMinDimensionIterativeConversion); // Import RGB samples to W/RGB representation. for (j = 0; j < picture->height; j += 2) { const int is_last_row = (j == picture->height - 1); fixed_y_t* const src1 = tmp_buffer; fixed_y_t* const src2 = tmp_buffer + 3 * w; const int off1 = j * rgb_stride; const int off2 = off1 + rgb_stride; const int uv_off = (j >> 1) * 3 * uv_w; fixed_y_t* const dst_y = best_y + j * w; // prepare two rows of input ImportOneRow(r_ptr + off1, g_ptr + off1, b_ptr + off1, step, picture->width, src1); if (!is_last_row) { ImportOneRow(r_ptr + off2, g_ptr + off2, b_ptr + off2, step, picture->width, src2); } else { memcpy(src2, src1, 3 * w * sizeof(*src2)); } UpdateW(src1, target_y + (j + 0) * w, w); UpdateW(src2, target_y + (j + 1) * w, w); UpdateChroma(src1, src2, target_uv + uv_off, dst_y, uv_w); memcpy(best_uv + uv_off, target_uv + uv_off, 3 * uv_w * sizeof(*best_uv)); memcpy(dst_y + w, dst_y, w * sizeof(*dst_y)); } // Iterate and resolve clipping conflicts. for (iter = 0; iter < kNumIterations; ++iter) { int k; const fixed_t* cur_uv = best_uv; const fixed_t* prev_uv = best_uv; for (j = 0; j < h; j += 2) { fixed_y_t* const src1 = tmp_buffer; fixed_y_t* const src2 = tmp_buffer + 3 * w; { const fixed_t* const next_uv = cur_uv + ((j < h - 2) ? 3 * uv_w : 0); InterpolateTwoRows(best_y + j * w, prev_uv, cur_uv, next_uv, w, src1, src2); prev_uv = cur_uv; cur_uv = next_uv; } UpdateW(src1, best_rgb_y + 0 * w, w); UpdateW(src2, best_rgb_y + 1 * w, w); UpdateChroma(src1, src2, best_rgb_uv, NULL, uv_w); // update two rows of Y and one row of RGB for (i = 0; i < 2 * w; ++i) { const int off = i + j * w; const int diff_y = target_y[off] - best_rgb_y[i]; const int new_y = (int)best_y[off] + diff_y; best_y[off] = clip_y(new_y); } for (i = 0; i < uv_w; ++i) { const int off = 3 * (i + (j >> 1) * uv_w); int W; for (k = 0; k <= 2; ++k) { const int diff_uv = (int)target_uv[off + k] - best_rgb_uv[3 * i + k]; best_uv[off + k] += diff_uv; } W = RGBToGray(best_uv[off + 0], best_uv[off + 1], best_uv[off + 2]); for (k = 0; k <= 2; ++k) { best_uv[off + k] -= W; } } } // TODO(skal): add early-termination criterion } // final reconstruction ok = ConvertWRGBToYUV(best_y, best_uv, picture); End: WebPSafeFree(best_y); WebPSafeFree(best_uv); WebPSafeFree(target_y); WebPSafeFree(target_uv); WebPSafeFree(best_rgb_y); WebPSafeFree(best_rgb_uv); WebPSafeFree(tmp_buffer); return ok; } #undef SAFE_ALLOC //------------------------------------------------------------------------------ // "Fast" regular RGB->YUV #define SUM4(ptr, step) LinearToGamma( \ GammaToLinear((ptr)[0]) + \ GammaToLinear((ptr)[(step)]) + \ GammaToLinear((ptr)[rgb_stride]) + \ GammaToLinear((ptr)[rgb_stride + (step)]), 0) \ #define SUM2(ptr) \ LinearToGamma(GammaToLinear((ptr)[0]) + GammaToLinear((ptr)[rgb_stride]), 1) #define SUM2ALPHA(ptr) ((ptr)[0] + (ptr)[rgb_stride]) #define SUM4ALPHA(ptr) (SUM2ALPHA(ptr) + SUM2ALPHA((ptr) + 4)) #if defined(USE_INVERSE_ALPHA_TABLE) static const int kAlphaFix = 19; // Following table is (1 << kAlphaFix) / a. The (v * kInvAlpha[a]) >> kAlphaFix // formula is then equal to v / a in most (99.6%) cases. Note that this table // and constant are adjusted very tightly to fit 32b arithmetic. // In particular, they use the fact that the operands for 'v / a' are actually // derived as v = (a0.p0 + a1.p1 + a2.p2 + a3.p3) and a = a0 + a1 + a2 + a3 // with ai in [0..255] and pi in [0..1<> (kAlphaFix - 2)) #else #define DIVIDE_BY_ALPHA(sum, a) (4 * (sum) / (a)) #endif // USE_INVERSE_ALPHA_TABLE static WEBP_INLINE int LinearToGammaWeighted(const uint8_t* src, const uint8_t* a_ptr, uint32_t total_a, int step, int rgb_stride) { const uint32_t sum = a_ptr[0] * GammaToLinear(src[0]) + a_ptr[step] * GammaToLinear(src[step]) + a_ptr[rgb_stride] * GammaToLinear(src[rgb_stride]) + a_ptr[rgb_stride + step] * GammaToLinear(src[rgb_stride + step]); assert(total_a > 0 && total_a <= 4 * 0xff); #if defined(USE_INVERSE_ALPHA_TABLE) assert((uint64_t)sum * kInvAlpha[total_a] < ((uint64_t)1 << 32)); #endif return LinearToGamma(DIVIDE_BY_ALPHA(sum, total_a), 0); } static WEBP_INLINE void ConvertRowToY(const uint8_t* const r_ptr, const uint8_t* const g_ptr, const uint8_t* const b_ptr, int step, uint8_t* const dst_y, int width, VP8Random* const rg) { int i, j; for (i = 0, j = 0; i < width; ++i, j += step) { dst_y[i] = RGBToY(r_ptr[j], g_ptr[j], b_ptr[j], rg); } } static WEBP_INLINE void ConvertRowsToUVWithAlpha(const uint8_t* const r_ptr, const uint8_t* const g_ptr, const uint8_t* const b_ptr, const uint8_t* const a_ptr, int rgb_stride, uint8_t* const dst_u, uint8_t* const dst_v, int width, VP8Random* const rg) { int i, j; // we loop over 2x2 blocks and produce one U/V value for each. for (i = 0, j = 0; i < (width >> 1); ++i, j += 2 * sizeof(uint32_t)) { const uint32_t a = SUM4ALPHA(a_ptr + j); int r, g, b; if (a == 4 * 0xff || a == 0) { r = SUM4(r_ptr + j, 4); g = SUM4(g_ptr + j, 4); b = SUM4(b_ptr + j, 4); } else { r = LinearToGammaWeighted(r_ptr + j, a_ptr + j, a, 4, rgb_stride); g = LinearToGammaWeighted(g_ptr + j, a_ptr + j, a, 4, rgb_stride); b = LinearToGammaWeighted(b_ptr + j, a_ptr + j, a, 4, rgb_stride); } dst_u[i] = RGBToU(r, g, b, rg); dst_v[i] = RGBToV(r, g, b, rg); } if (width & 1) { const uint32_t a = 2u * SUM2ALPHA(a_ptr + j); int r, g, b; if (a == 4 * 0xff || a == 0) { r = SUM2(r_ptr + j); g = SUM2(g_ptr + j); b = SUM2(b_ptr + j); } else { r = LinearToGammaWeighted(r_ptr + j, a_ptr + j, a, 0, rgb_stride); g = LinearToGammaWeighted(g_ptr + j, a_ptr + j, a, 0, rgb_stride); b = LinearToGammaWeighted(b_ptr + j, a_ptr + j, a, 0, rgb_stride); } dst_u[i] = RGBToU(r, g, b, rg); dst_v[i] = RGBToV(r, g, b, rg); } } static WEBP_INLINE void ConvertRowsToUV(const uint8_t* const r_ptr, const uint8_t* const g_ptr, const uint8_t* const b_ptr, int step, int rgb_stride, uint8_t* const dst_u, uint8_t* const dst_v, int width, VP8Random* const rg) { int i, j; for (i = 0, j = 0; i < (width >> 1); ++i, j += 2 * step) { const int r = SUM4(r_ptr + j, step); const int g = SUM4(g_ptr + j, step); const int b = SUM4(b_ptr + j, step); dst_u[i] = RGBToU(r, g, b, rg); dst_v[i] = RGBToV(r, g, b, rg); } if (width & 1) { const int r = SUM2(r_ptr + j); const int g = SUM2(g_ptr + j); const int b = SUM2(b_ptr + j); dst_u[i] = RGBToU(r, g, b, rg); dst_v[i] = RGBToV(r, g, b, rg); } } static int ImportYUVAFromRGBA(const uint8_t* const r_ptr, const uint8_t* const g_ptr, const uint8_t* const b_ptr, const uint8_t* const a_ptr, int step, // bytes per pixel int rgb_stride, // bytes per scanline float dithering, int use_iterative_conversion, WebPPicture* const picture) { int y; const int width = picture->width; const int height = picture->height; const int has_alpha = CheckNonOpaque(a_ptr, width, height, step, rgb_stride); picture->colorspace = has_alpha ? WEBP_YUV420A : WEBP_YUV420; picture->use_argb = 0; // disable smart conversion if source is too small (overkill). if (width < kMinDimensionIterativeConversion || height < kMinDimensionIterativeConversion) { use_iterative_conversion = 0; } if (!WebPPictureAllocYUVA(picture, width, height)) { return 0; } if (has_alpha) { WebPInitAlphaProcessing(); assert(step == 4); #if defined(USE_INVERSE_ALPHA_TABLE) assert(kAlphaFix + kGammaFix <= 31); #endif } if (use_iterative_conversion) { InitGammaTablesF(); if (!PreprocessARGB(r_ptr, g_ptr, b_ptr, step, rgb_stride, picture)) { return 0; } if (has_alpha) { WebPExtractAlpha(a_ptr, rgb_stride, width, height, picture->a, picture->a_stride); } } else { uint8_t* dst_y = picture->y; uint8_t* dst_u = picture->u; uint8_t* dst_v = picture->v; uint8_t* dst_a = picture->a; VP8Random base_rg; VP8Random* rg = NULL; if (dithering > 0.) { VP8InitRandom(&base_rg, dithering); rg = &base_rg; } InitGammaTables(); // Downsample Y/U/V planes, two rows at a time for (y = 0; y < (height >> 1); ++y) { int rows_have_alpha = has_alpha; const int off1 = (2 * y + 0) * rgb_stride; const int off2 = (2 * y + 1) * rgb_stride; ConvertRowToY(r_ptr + off1, g_ptr + off1, b_ptr + off1, step, dst_y, width, rg); ConvertRowToY(r_ptr + off2, g_ptr + off2, b_ptr + off2, step, dst_y + picture->y_stride, width, rg); dst_y += 2 * picture->y_stride; if (has_alpha) { rows_have_alpha &= !WebPExtractAlpha(a_ptr + off1, rgb_stride, width, 2, dst_a, picture->a_stride); dst_a += 2 * picture->a_stride; } if (!rows_have_alpha) { ConvertRowsToUV(r_ptr + off1, g_ptr + off1, b_ptr + off1, step, rgb_stride, dst_u, dst_v, width, rg); } else { ConvertRowsToUVWithAlpha(r_ptr + off1, g_ptr + off1, b_ptr + off1, a_ptr + off1, rgb_stride, dst_u, dst_v, width, rg); } dst_u += picture->uv_stride; dst_v += picture->uv_stride; } if (height & 1) { // extra last row const int off = 2 * y * rgb_stride; int row_has_alpha = has_alpha; ConvertRowToY(r_ptr + off, g_ptr + off, b_ptr + off, step, dst_y, width, rg); if (row_has_alpha) { row_has_alpha &= !WebPExtractAlpha(a_ptr + off, 0, width, 1, dst_a, 0); } if (!row_has_alpha) { ConvertRowsToUV(r_ptr + off, g_ptr + off, b_ptr + off, step, 0, dst_u, dst_v, width, rg); } else { ConvertRowsToUVWithAlpha(r_ptr + off, g_ptr + off, b_ptr + off, a_ptr + off, 0, dst_u, dst_v, width, rg); } } } return 1; } #undef SUM4 #undef SUM2 #undef SUM4ALPHA #undef SUM2ALPHA //------------------------------------------------------------------------------ // call for ARGB->YUVA conversion static int PictureARGBToYUVA(WebPPicture* picture, WebPEncCSP colorspace, float dithering, int use_iterative_conversion) { if (picture == NULL) return 0; if (picture->argb == NULL) { return WebPEncodingSetError(picture, VP8_ENC_ERROR_NULL_PARAMETER); } else if ((colorspace & WEBP_CSP_UV_MASK) != WEBP_YUV420) { return WebPEncodingSetError(picture, VP8_ENC_ERROR_INVALID_CONFIGURATION); } else { const uint8_t* const argb = (const uint8_t*)picture->argb; const uint8_t* const r = ALPHA_IS_LAST ? argb + 2 : argb + 1; const uint8_t* const g = ALPHA_IS_LAST ? argb + 1 : argb + 2; const uint8_t* const b = ALPHA_IS_LAST ? argb + 0 : argb + 3; const uint8_t* const a = ALPHA_IS_LAST ? argb + 3 : argb + 0; picture->colorspace = WEBP_YUV420; return ImportYUVAFromRGBA(r, g, b, a, 4, 4 * picture->argb_stride, dithering, use_iterative_conversion, picture); } } int WebPPictureARGBToYUVADithered(WebPPicture* picture, WebPEncCSP colorspace, float dithering) { return PictureARGBToYUVA(picture, colorspace, dithering, 0); } int WebPPictureARGBToYUVA(WebPPicture* picture, WebPEncCSP colorspace) { return PictureARGBToYUVA(picture, colorspace, 0.f, 0); } int WebPPictureSmartARGBToYUVA(WebPPicture* picture) { return PictureARGBToYUVA(picture, WEBP_YUV420, 0.f, 1); } //------------------------------------------------------------------------------ // call for YUVA -> ARGB conversion int WebPPictureYUVAToARGB(WebPPicture* picture) { if (picture == NULL) return 0; if (picture->y == NULL || picture->u == NULL || picture->v == NULL) { return WebPEncodingSetError(picture, VP8_ENC_ERROR_NULL_PARAMETER); } if ((picture->colorspace & WEBP_CSP_ALPHA_BIT) && picture->a == NULL) { return WebPEncodingSetError(picture, VP8_ENC_ERROR_NULL_PARAMETER); } if ((picture->colorspace & WEBP_CSP_UV_MASK) != WEBP_YUV420) { return WebPEncodingSetError(picture, VP8_ENC_ERROR_INVALID_CONFIGURATION); } // Allocate a new argb buffer (discarding the previous one). if (!WebPPictureAllocARGB(picture, picture->width, picture->height)) return 0; picture->use_argb = 1; // Convert { int y; const int width = picture->width; const int height = picture->height; const int argb_stride = 4 * picture->argb_stride; uint8_t* dst = (uint8_t*)picture->argb; const uint8_t *cur_u = picture->u, *cur_v = picture->v, *cur_y = picture->y; WebPUpsampleLinePairFunc upsample = WebPGetLinePairConverter(ALPHA_IS_LAST); // First row, with replicated top samples. upsample(cur_y, NULL, cur_u, cur_v, cur_u, cur_v, dst, NULL, width); cur_y += picture->y_stride; dst += argb_stride; // Center rows. for (y = 1; y + 1 < height; y += 2) { const uint8_t* const top_u = cur_u; const uint8_t* const top_v = cur_v; cur_u += picture->uv_stride; cur_v += picture->uv_stride; upsample(cur_y, cur_y + picture->y_stride, top_u, top_v, cur_u, cur_v, dst, dst + argb_stride, width); cur_y += 2 * picture->y_stride; dst += 2 * argb_stride; } // Last row (if needed), with replicated bottom samples. if (height > 1 && !(height & 1)) { upsample(cur_y, NULL, cur_u, cur_v, cur_u, cur_v, dst, NULL, width); } // Insert alpha values if needed, in replacement for the default 0xff ones. if (picture->colorspace & WEBP_CSP_ALPHA_BIT) { for (y = 0; y < height; ++y) { uint32_t* const argb_dst = picture->argb + y * picture->argb_stride; const uint8_t* const src = picture->a + y * picture->a_stride; int x; for (x = 0; x < width; ++x) { argb_dst[x] = (argb_dst[x] & 0x00ffffffu) | ((uint32_t)src[x] << 24); } } } } return 1; } //------------------------------------------------------------------------------ // automatic import / conversion static int Import(WebPPicture* const picture, const uint8_t* const rgb, int rgb_stride, int step, int swap_rb, int import_alpha) { int y; const uint8_t* const r_ptr = rgb + (swap_rb ? 2 : 0); const uint8_t* const g_ptr = rgb + 1; const uint8_t* const b_ptr = rgb + (swap_rb ? 0 : 2); const uint8_t* const a_ptr = import_alpha ? rgb + 3 : NULL; const int width = picture->width; const int height = picture->height; if (!picture->use_argb) { return ImportYUVAFromRGBA(r_ptr, g_ptr, b_ptr, a_ptr, step, rgb_stride, 0.f /* no dithering */, 0, picture); } if (!WebPPictureAlloc(picture)) return 0; VP8EncDspARGBInit(); if (import_alpha) { assert(step == 4); for (y = 0; y < height; ++y) { uint32_t* const dst = &picture->argb[y * picture->argb_stride]; const int offset = y * rgb_stride; VP8PackARGB(a_ptr + offset, r_ptr + offset, g_ptr + offset, b_ptr + offset, width, dst); } } else { assert(step >= 3); for (y = 0; y < height; ++y) { uint32_t* const dst = &picture->argb[y * picture->argb_stride]; const int offset = y * rgb_stride; VP8PackRGB(r_ptr + offset, g_ptr + offset, b_ptr + offset, width, step, dst); } } return 1; } // Public API int WebPPictureImportRGB(WebPPicture* picture, const uint8_t* rgb, int rgb_stride) { return (picture != NULL) ? Import(picture, rgb, rgb_stride, 3, 0, 0) : 0; } int WebPPictureImportBGR(WebPPicture* picture, const uint8_t* rgb, int rgb_stride) { return (picture != NULL) ? Import(picture, rgb, rgb_stride, 3, 1, 0) : 0; } int WebPPictureImportRGBA(WebPPicture* picture, const uint8_t* rgba, int rgba_stride) { return (picture != NULL) ? Import(picture, rgba, rgba_stride, 4, 0, 1) : 0; } int WebPPictureImportBGRA(WebPPicture* picture, const uint8_t* rgba, int rgba_stride) { return (picture != NULL) ? Import(picture, rgba, rgba_stride, 4, 1, 1) : 0; } int WebPPictureImportRGBX(WebPPicture* picture, const uint8_t* rgba, int rgba_stride) { return (picture != NULL) ? Import(picture, rgba, rgba_stride, 4, 0, 0) : 0; } int WebPPictureImportBGRX(WebPPicture* picture, const uint8_t* rgba, int rgba_stride) { return (picture != NULL) ? Import(picture, rgba, rgba_stride, 4, 1, 0) : 0; } //------------------------------------------------------------------------------