// Copyright 2011 Google Inc. All Rights Reserved. // // Use of this source code is governed by a BSD-style license // that can be found in the COPYING file in the root of the source // tree. An additional intellectual property rights grant can be found // in the file PATENTS. All contributing project authors may // be found in the AUTHORS file in the root of the source tree. // ----------------------------------------------------------------------------- // // WebPPicture utils: colorspace conversion, crop, ... // // Author: Skal (pascal.massimino@gmail.com) #include #include #include #include "./vp8enci.h" #include "../utils/alpha_processing.h" #include "../utils/random.h" #include "../utils/rescaler.h" #include "../utils/utils.h" #include "../dsp/dsp.h" #include "../dsp/yuv.h" #if defined(__cplusplus) || defined(c_plusplus) extern "C" { #endif // Uncomment to disable gamma-compression during RGB->U/V averaging #define USE_GAMMA_COMPRESSION #define HALVE(x) (((x) + 1) >> 1) #define IS_YUV_CSP(csp, YUV_CSP) (((csp) & WEBP_CSP_UV_MASK) == (YUV_CSP)) static const union { uint32_t argb; uint8_t bytes[4]; } test_endian = { 0xff000000u }; #define ALPHA_IS_LAST (test_endian.bytes[3] == 0xff) static WEBP_INLINE uint32_t MakeARGB32(int r, int g, int b) { return (0xff000000u | (r << 16) | (g << 8) | b); } //------------------------------------------------------------------------------ // WebPPicture //------------------------------------------------------------------------------ int WebPPictureAlloc(WebPPicture* picture) { if (picture != NULL) { const WebPEncCSP uv_csp = picture->colorspace & WEBP_CSP_UV_MASK; const int has_alpha = picture->colorspace & WEBP_CSP_ALPHA_BIT; const int width = picture->width; const int height = picture->height; if (!picture->use_argb) { const int y_stride = width; const int uv_width = HALVE(width); const int uv_height = HALVE(height); const int uv_stride = uv_width; int uv0_stride = 0; int a_width, a_stride; uint64_t y_size, uv_size, uv0_size, a_size, total_size; uint8_t* mem; // U/V switch (uv_csp) { case WEBP_YUV420: break; #ifdef WEBP_EXPERIMENTAL_FEATURES case WEBP_YUV400: // for now, we'll just reset the U/V samples break; case WEBP_YUV422: uv0_stride = uv_width; break; case WEBP_YUV444: uv0_stride = width; break; #endif default: return 0; } uv0_size = height * uv0_stride; // alpha a_width = has_alpha ? width : 0; a_stride = a_width; y_size = (uint64_t)y_stride * height; uv_size = (uint64_t)uv_stride * uv_height; a_size = (uint64_t)a_stride * height; total_size = y_size + a_size + 2 * uv_size + 2 * uv0_size; // Security and validation checks if (width <= 0 || height <= 0 || // luma/alpha param error uv_width < 0 || uv_height < 0) { // u/v param error return 0; } // Clear previous buffer and allocate a new one. WebPPictureFree(picture); // erase previous buffer mem = (uint8_t*)WebPSafeMalloc(total_size, sizeof(*mem)); if (mem == NULL) return 0; // From now on, we're in the clear, we can no longer fail... picture->memory_ = (void*)mem; picture->y_stride = y_stride; picture->uv_stride = uv_stride; picture->a_stride = a_stride; picture->uv0_stride = uv0_stride; // TODO(skal): we could align the y/u/v planes and adjust stride. picture->y = mem; mem += y_size; picture->u = mem; mem += uv_size; picture->v = mem; mem += uv_size; if (a_size) { picture->a = mem; mem += a_size; } if (uv0_size) { picture->u0 = mem; mem += uv0_size; picture->v0 = mem; mem += uv0_size; } (void)mem; // makes the static analyzer happy } else { void* memory; const uint64_t argb_size = (uint64_t)width * height; if (width <= 0 || height <= 0) { return 0; } // Clear previous buffer and allocate a new one. WebPPictureFree(picture); // erase previous buffer memory = WebPSafeMalloc(argb_size, sizeof(*picture->argb)); if (memory == NULL) return 0; // TODO(skal): align plane to cache line? picture->memory_argb_ = memory; picture->argb = (uint32_t*)memory; picture->argb_stride = width; } } return 1; } // Remove reference to the ARGB buffer (doesn't free anything). static void PictureResetARGB(WebPPicture* const picture) { picture->memory_argb_ = NULL; picture->argb = NULL; picture->argb_stride = 0; } // Remove reference to the YUVA buffer (doesn't free anything). static void PictureResetYUVA(WebPPicture* const picture) { picture->memory_ = NULL; picture->y = picture->u = picture->v = picture->a = NULL; picture->u0 = picture->v0 = NULL; picture->y_stride = picture->uv_stride = 0; picture->a_stride = 0; picture->uv0_stride = 0; } // Grab the 'specs' (writer, *opaque, width, height...) from 'src' and copy them // into 'dst'. Mark 'dst' as not owning any memory. static void WebPPictureGrabSpecs(const WebPPicture* const src, WebPPicture* const dst) { assert(src != NULL && dst != NULL); *dst = *src; PictureResetYUVA(dst); PictureResetARGB(dst); } // Allocate a new argb buffer, discarding any existing one and preserving // the other YUV(A) buffer. static int PictureAllocARGB(WebPPicture* const picture) { WebPPicture tmp; free(picture->memory_argb_); PictureResetARGB(picture); picture->use_argb = 1; WebPPictureGrabSpecs(picture, &tmp); if (!WebPPictureAlloc(&tmp)) { return WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY); } picture->memory_argb_ = tmp.memory_argb_; picture->argb = tmp.argb; picture->argb_stride = tmp.argb_stride; return 1; } // Release memory owned by 'picture' (both YUV and ARGB buffers). void WebPPictureFree(WebPPicture* picture) { if (picture != NULL) { free(picture->memory_); free(picture->memory_argb_); PictureResetYUVA(picture); PictureResetARGB(picture); } } //------------------------------------------------------------------------------ // Picture copying // Not worth moving to dsp/enc.c (only used here). static void CopyPlane(const uint8_t* src, int src_stride, uint8_t* dst, int dst_stride, int width, int height) { while (height-- > 0) { memcpy(dst, src, width); src += src_stride; dst += dst_stride; } } // Adjust top-left corner to chroma sample position. static void SnapTopLeftPosition(const WebPPicture* const pic, int* const left, int* const top) { if (!pic->use_argb) { const int is_yuv422 = IS_YUV_CSP(pic->colorspace, WEBP_YUV422); if (IS_YUV_CSP(pic->colorspace, WEBP_YUV420) || is_yuv422) { *left &= ~1; if (!is_yuv422) *top &= ~1; } } } // Adjust top-left corner and verify that the sub-rectangle is valid. static int AdjustAndCheckRectangle(const WebPPicture* const pic, int* const left, int* const top, int width, int height) { SnapTopLeftPosition(pic, left, top); if ((*left) < 0 || (*top) < 0) return 0; if (width <= 0 || height <= 0) return 0; if ((*left) + width > pic->width) return 0; if ((*top) + height > pic->height) return 0; return 1; } int WebPPictureCopy(const WebPPicture* src, WebPPicture* dst) { if (src == NULL || dst == NULL) return 0; if (src == dst) return 1; WebPPictureGrabSpecs(src, dst); if (!WebPPictureAlloc(dst)) return 0; if (!src->use_argb) { CopyPlane(src->y, src->y_stride, dst->y, dst->y_stride, dst->width, dst->height); CopyPlane(src->u, src->uv_stride, dst->u, dst->uv_stride, HALVE(dst->width), HALVE(dst->height)); CopyPlane(src->v, src->uv_stride, dst->v, dst->uv_stride, HALVE(dst->width), HALVE(dst->height)); if (dst->a != NULL) { CopyPlane(src->a, src->a_stride, dst->a, dst->a_stride, dst->width, dst->height); } #ifdef WEBP_EXPERIMENTAL_FEATURES if (dst->u0 != NULL) { int uv0_width = src->width; if (IS_YUV_CSP(dst->colorspace, WEBP_YUV422)) { uv0_width = HALVE(uv0_width); } CopyPlane(src->u0, src->uv0_stride, dst->u0, dst->uv0_stride, uv0_width, dst->height); CopyPlane(src->v0, src->uv0_stride, dst->v0, dst->uv0_stride, uv0_width, dst->height); } #endif } else { CopyPlane((const uint8_t*)src->argb, 4 * src->argb_stride, (uint8_t*)dst->argb, 4 * dst->argb_stride, 4 * dst->width, dst->height); } return 1; } int WebPPictureIsView(const WebPPicture* picture) { if (picture == NULL) return 0; if (picture->use_argb) { return (picture->memory_argb_ == NULL); } return (picture->memory_ == NULL); } int WebPPictureView(const WebPPicture* src, int left, int top, int width, int height, WebPPicture* dst) { if (src == NULL || dst == NULL) return 0; // verify rectangle position. if (!AdjustAndCheckRectangle(src, &left, &top, width, height)) return 0; if (src != dst) { // beware of aliasing! We don't want to leak 'memory_'. WebPPictureGrabSpecs(src, dst); } dst->width = width; dst->height = height; if (!src->use_argb) { dst->y = src->y + top * src->y_stride + left; dst->u = src->u + (top >> 1) * src->uv_stride + (left >> 1); dst->v = src->v + (top >> 1) * src->uv_stride + (left >> 1); dst->y_stride = src->y_stride; dst->uv_stride = src->uv_stride; if (src->a != NULL) { dst->a = src->a + top * src->a_stride + left; dst->a_stride = src->a_stride; } #ifdef WEBP_EXPERIMENTAL_FEATURES if (src->u0 != NULL) { const int left_pos = IS_YUV_CSP(dst->colorspace, WEBP_YUV422) ? (left >> 1) : left; dst->u0 = src->u0 + top * src->uv0_stride + left_pos; dst->v0 = src->v0 + top * src->uv0_stride + left_pos; dst->uv0_stride = src->uv0_stride; } #endif } else { dst->argb = src->argb + top * src->argb_stride + left; dst->argb_stride = src->argb_stride; } return 1; } //------------------------------------------------------------------------------ // Picture cropping int WebPPictureCrop(WebPPicture* pic, int left, int top, int width, int height) { WebPPicture tmp; if (pic == NULL) return 0; if (!AdjustAndCheckRectangle(pic, &left, &top, width, height)) return 0; WebPPictureGrabSpecs(pic, &tmp); tmp.width = width; tmp.height = height; if (!WebPPictureAlloc(&tmp)) return 0; if (!pic->use_argb) { const int y_offset = top * pic->y_stride + left; const int uv_offset = (top / 2) * pic->uv_stride + left / 2; CopyPlane(pic->y + y_offset, pic->y_stride, tmp.y, tmp.y_stride, width, height); CopyPlane(pic->u + uv_offset, pic->uv_stride, tmp.u, tmp.uv_stride, HALVE(width), HALVE(height)); CopyPlane(pic->v + uv_offset, pic->uv_stride, tmp.v, tmp.uv_stride, HALVE(width), HALVE(height)); if (tmp.a != NULL) { const int a_offset = top * pic->a_stride + left; CopyPlane(pic->a + a_offset, pic->a_stride, tmp.a, tmp.a_stride, width, height); } #ifdef WEBP_EXPERIMENTAL_FEATURES if (tmp.u0 != NULL) { int w = width; int left_pos = left; if (IS_YUV_CSP(tmp.colorspace, WEBP_YUV422)) { w = HALVE(w); left_pos = HALVE(left_pos); } CopyPlane(pic->u0 + top * pic->uv0_stride + left_pos, pic->uv0_stride, tmp.u0, tmp.uv0_stride, w, height); CopyPlane(pic->v0 + top * pic->uv0_stride + left_pos, pic->uv0_stride, tmp.v0, tmp.uv0_stride, w, height); } #endif } else { const uint8_t* const src = (const uint8_t*)(pic->argb + top * pic->argb_stride + left); CopyPlane(src, pic->argb_stride * 4, (uint8_t*)tmp.argb, tmp.argb_stride * 4, width * 4, height); } WebPPictureFree(pic); *pic = tmp; return 1; } //------------------------------------------------------------------------------ // Simple picture rescaler static void RescalePlane(const uint8_t* src, int src_width, int src_height, int src_stride, uint8_t* dst, int dst_width, int dst_height, int dst_stride, int32_t* const work, int num_channels) { WebPRescaler rescaler; int y = 0; WebPRescalerInit(&rescaler, src_width, src_height, dst, dst_width, dst_height, dst_stride, num_channels, src_width, dst_width, src_height, dst_height, work); memset(work, 0, 2 * dst_width * num_channels * sizeof(*work)); while (y < src_height) { y += WebPRescalerImport(&rescaler, src_height - y, src + y * src_stride, src_stride); WebPRescalerExport(&rescaler); } } static void AlphaMultiplyARGB(WebPPicture* const pic, int inverse) { uint32_t* ptr = pic->argb; int y; for (y = 0; y < pic->height; ++y) { WebPMultARGBRow(ptr, pic->width, inverse); ptr += pic->argb_stride; } } static void AlphaMultiplyY(WebPPicture* const pic, int inverse) { const uint8_t* ptr_a = pic->a; if (ptr_a != NULL) { uint8_t* ptr_y = pic->y; int y; for (y = 0; y < pic->height; ++y) { WebPMultRow(ptr_y, ptr_a, pic->width, inverse); ptr_y += pic->y_stride; ptr_a += pic->a_stride; } } } int WebPPictureRescale(WebPPicture* pic, int width, int height) { WebPPicture tmp; int prev_width, prev_height; int32_t* work; if (pic == NULL) return 0; prev_width = pic->width; prev_height = pic->height; // if width is unspecified, scale original proportionally to height ratio. if (width == 0) { width = (prev_width * height + prev_height / 2) / prev_height; } // if height is unspecified, scale original proportionally to width ratio. if (height == 0) { height = (prev_height * width + prev_width / 2) / prev_width; } // Check if the overall dimensions still make sense. if (width <= 0 || height <= 0) return 0; WebPPictureGrabSpecs(pic, &tmp); tmp.width = width; tmp.height = height; if (!WebPPictureAlloc(&tmp)) return 0; if (!pic->use_argb) { work = (int32_t*)WebPSafeMalloc(2ULL * width, sizeof(*work)); if (work == NULL) { WebPPictureFree(&tmp); return 0; } // If present, we need to rescale alpha first (for AlphaMultiplyY). if (pic->a != NULL) { RescalePlane(pic->a, prev_width, prev_height, pic->a_stride, tmp.a, width, height, tmp.a_stride, work, 1); } // We take transparency into account on the luma plane only. That's not // totally exact blending, but still is a good approximation. AlphaMultiplyY(pic, 0); RescalePlane(pic->y, prev_width, prev_height, pic->y_stride, tmp.y, width, height, tmp.y_stride, work, 1); AlphaMultiplyY(&tmp, 1); RescalePlane(pic->u, HALVE(prev_width), HALVE(prev_height), pic->uv_stride, tmp.u, HALVE(width), HALVE(height), tmp.uv_stride, work, 1); RescalePlane(pic->v, HALVE(prev_width), HALVE(prev_height), pic->uv_stride, tmp.v, HALVE(width), HALVE(height), tmp.uv_stride, work, 1); #ifdef WEBP_EXPERIMENTAL_FEATURES if (tmp.u0 != NULL) { const int s = IS_YUV_CSP(tmp.colorspace, WEBP_YUV422) ? 2 : 1; RescalePlane( pic->u0, (prev_width + s / 2) / s, prev_height, pic->uv0_stride, tmp.u0, (width + s / 2) / s, height, tmp.uv0_stride, work, 1); RescalePlane( pic->v0, (prev_width + s / 2) / s, prev_height, pic->uv0_stride, tmp.v0, (width + s / 2) / s, height, tmp.uv0_stride, work, 1); } #endif } else { work = (int32_t*)WebPSafeMalloc(2ULL * width * 4, sizeof(*work)); if (work == NULL) { WebPPictureFree(&tmp); return 0; } // In order to correctly interpolate colors, we need to apply the alpha // weighting first (black-matting), scale the RGB values, and remove // the premultiplication afterward (while preserving the alpha channel). AlphaMultiplyARGB(pic, 0); RescalePlane((const uint8_t*)pic->argb, prev_width, prev_height, pic->argb_stride * 4, (uint8_t*)tmp.argb, width, height, tmp.argb_stride * 4, work, 4); AlphaMultiplyARGB(&tmp, 1); } WebPPictureFree(pic); free(work); *pic = tmp; return 1; } //------------------------------------------------------------------------------ // WebPMemoryWriter: Write-to-memory void WebPMemoryWriterInit(WebPMemoryWriter* writer) { writer->mem = NULL; writer->size = 0; writer->max_size = 0; } int WebPMemoryWrite(const uint8_t* data, size_t data_size, const WebPPicture* picture) { WebPMemoryWriter* const w = (WebPMemoryWriter*)picture->custom_ptr; uint64_t next_size; if (w == NULL) { return 1; } next_size = (uint64_t)w->size + data_size; if (next_size > w->max_size) { uint8_t* new_mem; uint64_t next_max_size = 2ULL * w->max_size; if (next_max_size < next_size) next_max_size = next_size; if (next_max_size < 8192ULL) next_max_size = 8192ULL; new_mem = (uint8_t*)WebPSafeMalloc(next_max_size, 1); if (new_mem == NULL) { return 0; } if (w->size > 0) { memcpy(new_mem, w->mem, w->size); } free(w->mem); w->mem = new_mem; // down-cast is ok, thanks to WebPSafeMalloc w->max_size = (size_t)next_max_size; } if (data_size > 0) { memcpy(w->mem + w->size, data, data_size); w->size += data_size; } return 1; } //------------------------------------------------------------------------------ // Detection of non-trivial transparency // Returns true if alpha[] has non-0xff values. static int CheckNonOpaque(const uint8_t* alpha, int width, int height, int x_step, int y_step) { if (alpha == NULL) return 0; while (height-- > 0) { int x; for (x = 0; x < width * x_step; x += x_step) { if (alpha[x] != 0xff) return 1; // TODO(skal): check 4/8 bytes at a time. } alpha += y_step; } return 0; } // Checking for the presence of non-opaque alpha. int WebPPictureHasTransparency(const WebPPicture* picture) { if (picture == NULL) return 0; if (!picture->use_argb) { return CheckNonOpaque(picture->a, picture->width, picture->height, 1, picture->a_stride); } else { int x, y; const uint32_t* argb = picture->argb; if (argb == NULL) return 0; for (y = 0; y < picture->height; ++y) { for (x = 0; x < picture->width; ++x) { if (argb[x] < 0xff000000u) return 1; // test any alpha values != 0xff } argb += picture->argb_stride; } } return 0; } //------------------------------------------------------------------------------ // RGB -> YUV conversion static int RGBToY(int r, int g, int b, VP8Random* const rg) { return VP8RGBToY(r, g, b, VP8RandomBits(rg, YUV_FIX)); } static int RGBToU(int r, int g, int b, VP8Random* const rg) { return VP8RGBToU(r, g, b, VP8RandomBits(rg, YUV_FIX + 2)); } static int RGBToV(int r, int g, int b, VP8Random* const rg) { return VP8RGBToV(r, g, b, VP8RandomBits(rg, YUV_FIX + 2)); } //------------------------------------------------------------------------------ #if defined(USE_GAMMA_COMPRESSION) // gamma-compensates loss of resolution during chroma subsampling #define kGamma 0.80 #define kGammaFix 12 // fixed-point precision for linear values #define kGammaScale ((1 << kGammaFix) - 1) #define kGammaTabFix 7 // fixed-point fractional bits precision #define kGammaTabScale (1 << kGammaTabFix) #define kGammaTabRounder (kGammaTabScale >> 1) #define kGammaTabSize (1 << (kGammaFix - kGammaTabFix)) static int kLinearToGammaTab[kGammaTabSize + 1]; static uint16_t kGammaToLinearTab[256]; static int kGammaTablesOk = 0; static void InitGammaTables(void) { if (!kGammaTablesOk) { int v; const double scale = 1. / kGammaScale; for (v = 0; v <= 255; ++v) { kGammaToLinearTab[v] = (uint16_t)(pow(v / 255., kGamma) * kGammaScale + .5); } for (v = 0; v <= kGammaTabSize; ++v) { const double x = scale * (v << kGammaTabFix); kLinearToGammaTab[v] = (int)(pow(x, 1. / kGamma) * 255. + .5); } kGammaTablesOk = 1; } } static WEBP_INLINE uint32_t GammaToLinear(uint8_t v) { return kGammaToLinearTab[v]; } // Convert a linear value 'v' to YUV_FIX+2 fixed-point precision // U/V value, suitable for RGBToU/V calls. static WEBP_INLINE int LinearToGamma(uint32_t base_value, int shift) { const int v = base_value << shift; // final uplifted value const int tab_pos = v >> (kGammaTabFix + 2); // integer part const int x = v & ((kGammaTabScale << 2) - 1); // fractional part const int v0 = kLinearToGammaTab[tab_pos]; const int v1 = kLinearToGammaTab[tab_pos + 1]; const int y = v1 * x + v0 * ((kGammaTabScale << 2) - x); // interpolate return (y + kGammaTabRounder) >> kGammaTabFix; // descale } #else static void InitGammaTables(void) {} static WEBP_INLINE uint32_t GammaToLinear(uint8_t v) { return v; } static WEBP_INLINE int LinearToGamma(uint32_t base_value, int shift) { (void)shift; return v; } #endif // USE_GAMMA_COMPRESSION //------------------------------------------------------------------------------ #define SUM4(ptr) LinearToGamma( \ GammaToLinear((ptr)[0]) + \ GammaToLinear((ptr)[step]) + \ GammaToLinear((ptr)[rgb_stride]) + \ GammaToLinear((ptr)[rgb_stride + step]), 0) \ #define SUM2H(ptr) \ LinearToGamma(GammaToLinear((ptr)[0]) + GammaToLinear((ptr)[step]), 1) #define SUM2V(ptr) \ LinearToGamma(GammaToLinear((ptr)[0]) + GammaToLinear((ptr)[rgb_stride]), 1) #define SUM1(ptr) \ LinearToGamma(GammaToLinear((ptr)[0]), 2) #define RGB_TO_UV(x, y, SUM) { \ const int src = (2 * (step * (x) + (y) * rgb_stride)); \ const int dst = (x) + (y) * picture->uv_stride; \ const int r = SUM(r_ptr + src); \ const int g = SUM(g_ptr + src); \ const int b = SUM(b_ptr + src); \ picture->u[dst] = RGBToU(r, g, b, &rg); \ picture->v[dst] = RGBToV(r, g, b, &rg); \ } #define RGB_TO_UV0(x_in, x_out, y, SUM) { \ const int src = (step * (x_in) + (y) * rgb_stride); \ const int dst = (x_out) + (y) * picture->uv0_stride; \ const int r = SUM(r_ptr + src); \ const int g = SUM(g_ptr + src); \ const int b = SUM(b_ptr + src); \ picture->u0[dst] = RGBToU(r, g, b, &rg); \ picture->v0[dst] = RGBToV(r, g, b, &rg); \ } static void MakeGray(WebPPicture* const picture) { int y; const int uv_width = HALVE(picture->width); const int uv_height = HALVE(picture->height); for (y = 0; y < uv_height; ++y) { memset(picture->u + y * picture->uv_stride, 128, uv_width); memset(picture->v + y * picture->uv_stride, 128, uv_width); } } static int ImportYUVAFromRGBA(const uint8_t* const r_ptr, const uint8_t* const g_ptr, const uint8_t* const b_ptr, const uint8_t* const a_ptr, int step, // bytes per pixel int rgb_stride, // bytes per scanline float dithering, WebPPicture* const picture) { const WebPEncCSP uv_csp = picture->colorspace & WEBP_CSP_UV_MASK; int x, y; const int width = picture->width; const int height = picture->height; const int has_alpha = CheckNonOpaque(a_ptr, width, height, step, rgb_stride); VP8Random rg; picture->colorspace = uv_csp; picture->use_argb = 0; if (has_alpha) { picture->colorspace |= WEBP_CSP_ALPHA_BIT; } if (!WebPPictureAlloc(picture)) return 0; VP8InitRandom(&rg, dithering); InitGammaTables(); // Import luma plane for (y = 0; y < height; ++y) { for (x = 0; x < width; ++x) { const int offset = step * x + y * rgb_stride; picture->y[x + y * picture->y_stride] = RGBToY(r_ptr[offset], g_ptr[offset], b_ptr[offset], &rg); } } // Downsample U/V plane if (uv_csp != WEBP_YUV400) { for (y = 0; y < (height >> 1); ++y) { for (x = 0; x < (width >> 1); ++x) { RGB_TO_UV(x, y, SUM4); } if (width & 1) { RGB_TO_UV(x, y, SUM2V); } } if (height & 1) { for (x = 0; x < (width >> 1); ++x) { RGB_TO_UV(x, y, SUM2H); } if (width & 1) { RGB_TO_UV(x, y, SUM1); } } #ifdef WEBP_EXPERIMENTAL_FEATURES // Store original U/V samples too if (uv_csp == WEBP_YUV422) { for (y = 0; y < height; ++y) { for (x = 0; x < (width >> 1); ++x) { RGB_TO_UV0(2 * x, x, y, SUM2H); } if (width & 1) { RGB_TO_UV0(2 * x, x, y, SUM1); } } } else if (uv_csp == WEBP_YUV444) { for (y = 0; y < height; ++y) { for (x = 0; x < width; ++x) { RGB_TO_UV0(x, x, y, SUM1); } } } #endif } else { MakeGray(picture); } if (has_alpha) { assert(step >= 4); assert(picture->a != NULL); for (y = 0; y < height; ++y) { for (x = 0; x < width; ++x) { picture->a[x + y * picture->a_stride] = a_ptr[step * x + y * rgb_stride]; } } } return 1; } static int Import(WebPPicture* const picture, const uint8_t* const rgb, int rgb_stride, int step, int swap_rb, int import_alpha) { const uint8_t* const r_ptr = rgb + (swap_rb ? 2 : 0); const uint8_t* const g_ptr = rgb + 1; const uint8_t* const b_ptr = rgb + (swap_rb ? 0 : 2); const uint8_t* const a_ptr = import_alpha ? rgb + 3 : NULL; const int width = picture->width; const int height = picture->height; if (!picture->use_argb) { return ImportYUVAFromRGBA(r_ptr, g_ptr, b_ptr, a_ptr, step, rgb_stride, 0.f /* no dithering */, picture); } if (import_alpha) { picture->colorspace |= WEBP_CSP_ALPHA_BIT; } else { picture->colorspace &= ~WEBP_CSP_ALPHA_BIT; } if (!WebPPictureAlloc(picture)) return 0; if (!import_alpha) { int x, y; for (y = 0; y < height; ++y) { for (x = 0; x < width; ++x) { const int offset = step * x + y * rgb_stride; const uint32_t argb = MakeARGB32(r_ptr[offset], g_ptr[offset], b_ptr[offset]); picture->argb[x + y * picture->argb_stride] = argb; } } } else { int x, y; assert(step >= 4); for (y = 0; y < height; ++y) { for (x = 0; x < width; ++x) { const int offset = step * x + y * rgb_stride; const uint32_t argb = ((uint32_t)a_ptr[offset] << 24) | (r_ptr[offset] << 16) | (g_ptr[offset] << 8) | (b_ptr[offset]); picture->argb[x + y * picture->argb_stride] = argb; } } } return 1; } #undef SUM4 #undef SUM2V #undef SUM2H #undef SUM1 #undef RGB_TO_UV int WebPPictureImportRGB(WebPPicture* picture, const uint8_t* rgb, int rgb_stride) { return Import(picture, rgb, rgb_stride, 3, 0, 0); } int WebPPictureImportBGR(WebPPicture* picture, const uint8_t* rgb, int rgb_stride) { return Import(picture, rgb, rgb_stride, 3, 1, 0); } int WebPPictureImportRGBA(WebPPicture* picture, const uint8_t* rgba, int rgba_stride) { return Import(picture, rgba, rgba_stride, 4, 0, 1); } int WebPPictureImportBGRA(WebPPicture* picture, const uint8_t* rgba, int rgba_stride) { return Import(picture, rgba, rgba_stride, 4, 1, 1); } int WebPPictureImportRGBX(WebPPicture* picture, const uint8_t* rgba, int rgba_stride) { return Import(picture, rgba, rgba_stride, 4, 0, 0); } int WebPPictureImportBGRX(WebPPicture* picture, const uint8_t* rgba, int rgba_stride) { return Import(picture, rgba, rgba_stride, 4, 1, 0); } //------------------------------------------------------------------------------ // Automatic YUV <-> ARGB conversions. int WebPPictureYUVAToARGB(WebPPicture* picture) { if (picture == NULL) return 0; if (picture->y == NULL || picture->u == NULL || picture->v == NULL) { return WebPEncodingSetError(picture, VP8_ENC_ERROR_NULL_PARAMETER); } if ((picture->colorspace & WEBP_CSP_ALPHA_BIT) && picture->a == NULL) { return WebPEncodingSetError(picture, VP8_ENC_ERROR_NULL_PARAMETER); } if ((picture->colorspace & WEBP_CSP_UV_MASK) != WEBP_YUV420) { return WebPEncodingSetError(picture, VP8_ENC_ERROR_INVALID_CONFIGURATION); } // Allocate a new argb buffer (discarding the previous one). if (!PictureAllocARGB(picture)) return 0; // Convert { int y; const int width = picture->width; const int height = picture->height; const int argb_stride = 4 * picture->argb_stride; uint8_t* dst = (uint8_t*)picture->argb; const uint8_t *cur_u = picture->u, *cur_v = picture->v, *cur_y = picture->y; WebPUpsampleLinePairFunc upsample = WebPGetLinePairConverter(ALPHA_IS_LAST); // First row, with replicated top samples. upsample(cur_y, NULL, cur_u, cur_v, cur_u, cur_v, dst, NULL, width); cur_y += picture->y_stride; dst += argb_stride; // Center rows. for (y = 1; y + 1 < height; y += 2) { const uint8_t* const top_u = cur_u; const uint8_t* const top_v = cur_v; cur_u += picture->uv_stride; cur_v += picture->uv_stride; upsample(cur_y, cur_y + picture->y_stride, top_u, top_v, cur_u, cur_v, dst, dst + argb_stride, width); cur_y += 2 * picture->y_stride; dst += 2 * argb_stride; } // Last row (if needed), with replicated bottom samples. if (height > 1 && !(height & 1)) { upsample(cur_y, NULL, cur_u, cur_v, cur_u, cur_v, dst, NULL, width); } // Insert alpha values if needed, in replacement for the default 0xff ones. if (picture->colorspace & WEBP_CSP_ALPHA_BIT) { for (y = 0; y < height; ++y) { uint32_t* const argb_dst = picture->argb + y * picture->argb_stride; const uint8_t* const src = picture->a + y * picture->a_stride; int x; for (x = 0; x < width; ++x) { argb_dst[x] = (argb_dst[x] & 0x00ffffffu) | ((uint32_t)src[x] << 24); } } } } return 1; } int WebPPictureARGBToYUVADithered(WebPPicture* picture, WebPEncCSP colorspace, float dithering) { if (picture == NULL) return 0; if (picture->argb == NULL) { return WebPEncodingSetError(picture, VP8_ENC_ERROR_NULL_PARAMETER); } else { const uint8_t* const argb = (const uint8_t*)picture->argb; const uint8_t* const r = ALPHA_IS_LAST ? argb + 2 : argb + 1; const uint8_t* const g = ALPHA_IS_LAST ? argb + 1 : argb + 2; const uint8_t* const b = ALPHA_IS_LAST ? argb + 0 : argb + 3; const uint8_t* const a = ALPHA_IS_LAST ? argb + 3 : argb + 0; // We work on a tmp copy of 'picture', because ImportYUVAFromRGBA() // would be calling WebPPictureFree(picture) otherwise. WebPPicture tmp = *picture; PictureResetARGB(&tmp); // reset ARGB buffer so that it's not free()'d. tmp.use_argb = 0; tmp.colorspace = colorspace & WEBP_CSP_UV_MASK; if (!ImportYUVAFromRGBA(r, g, b, a, 4, 4 * picture->argb_stride, dithering, &tmp)) { return WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY); } // Copy back the YUV specs into 'picture'. tmp.argb = picture->argb; tmp.argb_stride = picture->argb_stride; tmp.memory_argb_ = picture->memory_argb_; *picture = tmp; } return 1; } int WebPPictureARGBToYUVA(WebPPicture* picture, WebPEncCSP colorspace) { return WebPPictureARGBToYUVADithered(picture, colorspace, 0.f); } //------------------------------------------------------------------------------ // Helper: clean up fully transparent area to help compressibility. #define SIZE 8 #define SIZE2 (SIZE / 2) static int is_transparent_area(const uint8_t* ptr, int stride, int size) { int y, x; for (y = 0; y < size; ++y) { for (x = 0; x < size; ++x) { if (ptr[x]) { return 0; } } ptr += stride; } return 1; } static WEBP_INLINE void flatten(uint8_t* ptr, int v, int stride, int size) { int y; for (y = 0; y < size; ++y) { memset(ptr, v, size); ptr += stride; } } void WebPCleanupTransparentArea(WebPPicture* pic) { int x, y, w, h; const uint8_t* a_ptr; int values[3] = { 0 }; if (pic == NULL) return; a_ptr = pic->a; if (a_ptr == NULL) return; // nothing to do w = pic->width / SIZE; h = pic->height / SIZE; for (y = 0; y < h; ++y) { int need_reset = 1; for (x = 0; x < w; ++x) { const int off_a = (y * pic->a_stride + x) * SIZE; const int off_y = (y * pic->y_stride + x) * SIZE; const int off_uv = (y * pic->uv_stride + x) * SIZE2; if (is_transparent_area(a_ptr + off_a, pic->a_stride, SIZE)) { if (need_reset) { values[0] = pic->y[off_y]; values[1] = pic->u[off_uv]; values[2] = pic->v[off_uv]; need_reset = 0; } flatten(pic->y + off_y, values[0], pic->y_stride, SIZE); flatten(pic->u + off_uv, values[1], pic->uv_stride, SIZE2); flatten(pic->v + off_uv, values[2], pic->uv_stride, SIZE2); } else { need_reset = 1; } } // ignore the left-overs on right/bottom } } #undef SIZE #undef SIZE2 //------------------------------------------------------------------------------ // Blend color and remove transparency info #define BLEND(V0, V1, ALPHA) \ ((((V0) * (255 - (ALPHA)) + (V1) * (ALPHA)) * 0x101) >> 16) #define BLEND_10BIT(V0, V1, ALPHA) \ ((((V0) * (1020 - (ALPHA)) + (V1) * (ALPHA)) * 0x101) >> 18) void WebPBlendAlpha(WebPPicture* pic, uint32_t background_rgb) { const int red = (background_rgb >> 16) & 0xff; const int green = (background_rgb >> 8) & 0xff; const int blue = (background_rgb >> 0) & 0xff; VP8Random rg; int x, y; if (pic == NULL) return; VP8InitRandom(&rg, 0.f); if (!pic->use_argb) { const int uv_width = (pic->width >> 1); // omit last pixel during u/v loop const int Y0 = RGBToY(red, green, blue, &rg); // VP8RGBToU/V expects the u/v values summed over four pixels const int U0 = RGBToU(4 * red, 4 * green, 4 * blue, &rg); const int V0 = RGBToV(4 * red, 4 * green, 4 * blue, &rg); const int has_alpha = pic->colorspace & WEBP_CSP_ALPHA_BIT; if (!has_alpha || pic->a == NULL) return; // nothing to do for (y = 0; y < pic->height; ++y) { // Luma blending uint8_t* const y_ptr = pic->y + y * pic->y_stride; uint8_t* const a_ptr = pic->a + y * pic->a_stride; for (x = 0; x < pic->width; ++x) { const int alpha = a_ptr[x]; if (alpha < 0xff) { y_ptr[x] = BLEND(Y0, y_ptr[x], a_ptr[x]); } } // Chroma blending every even line if ((y & 1) == 0) { uint8_t* const u = pic->u + (y >> 1) * pic->uv_stride; uint8_t* const v = pic->v + (y >> 1) * pic->uv_stride; uint8_t* const a_ptr2 = (y + 1 == pic->height) ? a_ptr : a_ptr + pic->a_stride; for (x = 0; x < uv_width; ++x) { // Average four alpha values into a single blending weight. // TODO(skal): might lead to visible contouring. Can we do better? const int alpha = a_ptr[2 * x + 0] + a_ptr[2 * x + 1] + a_ptr2[2 * x + 0] + a_ptr2[2 * x + 1]; u[x] = BLEND_10BIT(U0, u[x], alpha); v[x] = BLEND_10BIT(V0, v[x], alpha); } if (pic->width & 1) { // rightmost pixel const int alpha = 2 * (a_ptr[2 * x + 0] + a_ptr2[2 * x + 0]); u[x] = BLEND_10BIT(U0, u[x], alpha); v[x] = BLEND_10BIT(V0, v[x], alpha); } } memset(a_ptr, 0xff, pic->width); } } else { uint32_t* argb = pic->argb; const uint32_t background = MakeARGB32(red, green, blue); for (y = 0; y < pic->height; ++y) { for (x = 0; x < pic->width; ++x) { const int alpha = (argb[x] >> 24) & 0xff; if (alpha != 0xff) { if (alpha > 0) { int r = (argb[x] >> 16) & 0xff; int g = (argb[x] >> 8) & 0xff; int b = (argb[x] >> 0) & 0xff; r = BLEND(red, r, alpha); g = BLEND(green, g, alpha); b = BLEND(blue, b, alpha); argb[x] = MakeARGB32(r, g, b); } else { argb[x] = background; } } } argb += pic->argb_stride; } } } #undef BLEND #undef BLEND_10BIT //------------------------------------------------------------------------------ // local-min distortion // // For every pixel in the *reference* picture, we search for the local best // match in the compressed image. This is not a symmetrical measure. // search radius. Shouldn't be too large. #define RADIUS 2 static float AccumulateLSIM(const uint8_t* src, int src_stride, const uint8_t* ref, int ref_stride, int w, int h) { int x, y; double total_sse = 0.; for (y = 0; y < h; ++y) { const int y_0 = (y - RADIUS < 0) ? 0 : y - RADIUS; const int y_1 = (y + RADIUS + 1 >= h) ? h : y + RADIUS + 1; for (x = 0; x < w; ++x) { const int x_0 = (x - RADIUS < 0) ? 0 : x - RADIUS; const int x_1 = (x + RADIUS + 1 >= w) ? w : x + RADIUS + 1; double best_sse = 255. * 255.; const double value = (double)ref[y * ref_stride + x]; int i, j; for (j = y_0; j < y_1; ++j) { const uint8_t* s = src + j * src_stride; for (i = x_0; i < x_1; ++i) { const double sse = (double)(s[i] - value) * (s[i] - value); if (sse < best_sse) best_sse = sse; } } total_sse += best_sse; } } return (float)total_sse; } #undef RADIUS //------------------------------------------------------------------------------ // Distortion // Max value returned in case of exact similarity. static const double kMinDistortion_dB = 99.; static float GetPSNR(const double v) { return (float)((v > 0.) ? -4.3429448 * log(v / (255 * 255.)) : kMinDistortion_dB); } int WebPPictureDistortion(const WebPPicture* src, const WebPPicture* ref, int type, float result[5]) { DistoStats stats[5]; int has_alpha; int uv_w, uv_h; if (src == NULL || ref == NULL || src->width != ref->width || src->height != ref->height || src->y == NULL || ref->y == NULL || src->u == NULL || ref->u == NULL || src->v == NULL || ref->v == NULL || result == NULL) { return 0; } // TODO(skal): provide distortion for ARGB too. if (src->use_argb == 1 || src->use_argb != ref->use_argb) { return 0; } has_alpha = !!(src->colorspace & WEBP_CSP_ALPHA_BIT); if (has_alpha != !!(ref->colorspace & WEBP_CSP_ALPHA_BIT) || (has_alpha && (src->a == NULL || ref->a == NULL))) { return 0; } memset(stats, 0, sizeof(stats)); uv_w = HALVE(src->width); uv_h = HALVE(src->height); if (type >= 2) { float sse[4]; sse[0] = AccumulateLSIM(src->y, src->y_stride, ref->y, ref->y_stride, src->width, src->height); sse[1] = AccumulateLSIM(src->u, src->uv_stride, ref->u, ref->uv_stride, uv_w, uv_h); sse[2] = AccumulateLSIM(src->v, src->uv_stride, ref->v, ref->uv_stride, uv_w, uv_h); sse[3] = has_alpha ? AccumulateLSIM(src->a, src->a_stride, ref->a, ref->a_stride, src->width, src->height) : 0.f; result[0] = GetPSNR(sse[0] / (src->width * src->height)); result[1] = GetPSNR(sse[1] / (uv_w * uv_h)); result[2] = GetPSNR(sse[2] / (uv_w * uv_h)); result[3] = GetPSNR(sse[3] / (src->width * src->height)); { double total_sse = sse[0] + sse[1] + sse[2]; int total_pixels = src->width * src->height + 2 * uv_w * uv_h; if (has_alpha) { total_pixels += src->width * src->height; total_sse += sse[3]; } result[4] = GetPSNR(total_sse / total_pixels); } } else { int c; VP8SSIMAccumulatePlane(src->y, src->y_stride, ref->y, ref->y_stride, src->width, src->height, &stats[0]); VP8SSIMAccumulatePlane(src->u, src->uv_stride, ref->u, ref->uv_stride, uv_w, uv_h, &stats[1]); VP8SSIMAccumulatePlane(src->v, src->uv_stride, ref->v, ref->uv_stride, uv_w, uv_h, &stats[2]); if (has_alpha) { VP8SSIMAccumulatePlane(src->a, src->a_stride, ref->a, ref->a_stride, src->width, src->height, &stats[3]); } for (c = 0; c <= 4; ++c) { if (type == 1) { const double v = VP8SSIMGet(&stats[c]); result[c] = (float)((v < 1.) ? -10.0 * log10(1. - v) : kMinDistortion_dB); } else { const double v = VP8SSIMGetSquaredError(&stats[c]); result[c] = GetPSNR(v); } // Accumulate forward if (c < 4) VP8SSIMAddStats(&stats[c], &stats[4]); } } return 1; } //------------------------------------------------------------------------------ // Simplest high-level calls: typedef int (*Importer)(WebPPicture* const, const uint8_t* const, int); static size_t Encode(const uint8_t* rgba, int width, int height, int stride, Importer import, float quality_factor, int lossless, uint8_t** output) { WebPPicture pic; WebPConfig config; WebPMemoryWriter wrt; int ok; if (!WebPConfigPreset(&config, WEBP_PRESET_DEFAULT, quality_factor) || !WebPPictureInit(&pic)) { return 0; // shouldn't happen, except if system installation is broken } config.lossless = !!lossless; pic.use_argb = !!lossless; pic.width = width; pic.height = height; pic.writer = WebPMemoryWrite; pic.custom_ptr = &wrt; WebPMemoryWriterInit(&wrt); ok = import(&pic, rgba, stride) && WebPEncode(&config, &pic); WebPPictureFree(&pic); if (!ok) { free(wrt.mem); *output = NULL; return 0; } *output = wrt.mem; return wrt.size; } #define ENCODE_FUNC(NAME, IMPORTER) \ size_t NAME(const uint8_t* in, int w, int h, int bps, float q, \ uint8_t** out) { \ return Encode(in, w, h, bps, IMPORTER, q, 0, out); \ } ENCODE_FUNC(WebPEncodeRGB, WebPPictureImportRGB) ENCODE_FUNC(WebPEncodeBGR, WebPPictureImportBGR) ENCODE_FUNC(WebPEncodeRGBA, WebPPictureImportRGBA) ENCODE_FUNC(WebPEncodeBGRA, WebPPictureImportBGRA) #undef ENCODE_FUNC #define LOSSLESS_DEFAULT_QUALITY 70. #define LOSSLESS_ENCODE_FUNC(NAME, IMPORTER) \ size_t NAME(const uint8_t* in, int w, int h, int bps, uint8_t** out) { \ return Encode(in, w, h, bps, IMPORTER, LOSSLESS_DEFAULT_QUALITY, 1, out); \ } LOSSLESS_ENCODE_FUNC(WebPEncodeLosslessRGB, WebPPictureImportRGB) LOSSLESS_ENCODE_FUNC(WebPEncodeLosslessBGR, WebPPictureImportBGR) LOSSLESS_ENCODE_FUNC(WebPEncodeLosslessRGBA, WebPPictureImportRGBA) LOSSLESS_ENCODE_FUNC(WebPEncodeLosslessBGRA, WebPPictureImportBGRA) #undef LOSSLESS_ENCODE_FUNC //------------------------------------------------------------------------------ #if defined(__cplusplus) || defined(c_plusplus) } // extern "C" #endif