// Copyright 2025 Google Inc. All Rights Reserved. // // Use of this source code is governed by a BSD-style license // that can be found in the COPYING file in the root of the source // tree. An additional intellectual property rights grant can be found // in the file PATENTS. All contributing project authors may // be found in the AUTHORS file in the root of the source tree. // ----------------------------------------------------------------------------- // // AVX2 variant of methods for lossless encoder // // Author: Vincent Rabaud (vrabaud@google.com) #include "src/dsp/dsp.h" #if defined(WEBP_USE_AVX2) #include #include #include #include #include "src/dsp/cpu.h" #include "src/dsp/lossless.h" #include "src/dsp/lossless_common.h" #include "src/utils/utils.h" #include "src/webp/format_constants.h" #include "src/webp/types.h" //------------------------------------------------------------------------------ // Subtract-Green Transform static void SubtractGreenFromBlueAndRed_AVX2(uint32_t* argb_data, int num_pixels) { int i; const __m256i kCstShuffle = _mm256_set_epi8( -1, 29, -1, 29, -1, 25, -1, 25, -1, 21, -1, 21, -1, 17, -1, 17, -1, 13, -1, 13, -1, 9, -1, 9, -1, 5, -1, 5, -1, 1, -1, 1); for (i = 0; i + 8 <= num_pixels; i += 8) { const __m256i in = _mm256_loadu_si256((__m256i*)&argb_data[i]); // argb const __m256i in_0g0g = _mm256_shuffle_epi8(in, kCstShuffle); const __m256i out = _mm256_sub_epi8(in, in_0g0g); _mm256_storeu_si256((__m256i*)&argb_data[i], out); } // fallthrough and finish off with plain-SSE if (i != num_pixels) { VP8LSubtractGreenFromBlueAndRed_SSE(argb_data + i, num_pixels - i); } } //------------------------------------------------------------------------------ // Color Transform // For sign-extended multiplying constants, pre-shifted by 5: #define CST_5b(X) (((int16_t)((uint16_t)(X) << 8)) >> 5) #define MK_CST_16(HI, LO) \ _mm256_set1_epi32((int)(((uint32_t)(HI) << 16) | ((LO) & 0xffff))) static void TransformColor_AVX2(const VP8LMultipliers* WEBP_RESTRICT const m, uint32_t* WEBP_RESTRICT argb_data, int num_pixels) { const __m256i mults_rb = MK_CST_16(CST_5b(m->green_to_red), CST_5b(m->green_to_blue)); const __m256i mults_b2 = MK_CST_16(CST_5b(m->red_to_blue), 0); const __m256i mask_rb = _mm256_set1_epi32(0x00ff00ff); // red-blue masks const __m256i kCstShuffle = _mm256_set_epi8( 29, -1, 29, -1, 25, -1, 25, -1, 21, -1, 21, -1, 17, -1, 17, -1, 13, -1, 13, -1, 9, -1, 9, -1, 5, -1, 5, -1, 1, -1, 1, -1); int i; for (i = 0; i + 8 <= num_pixels; i += 8) { const __m256i in = _mm256_loadu_si256((__m256i*)&argb_data[i]); // argb const __m256i A = _mm256_shuffle_epi8(in, kCstShuffle); // g0g0 const __m256i B = _mm256_mulhi_epi16(A, mults_rb); // x dr x db1 const __m256i C = _mm256_slli_epi16(in, 8); // r 0 b 0 const __m256i D = _mm256_mulhi_epi16(C, mults_b2); // x db2 0 0 const __m256i E = _mm256_srli_epi32(D, 16); // 0 0 x db2 const __m256i F = _mm256_add_epi8(E, B); // x dr x db const __m256i G = _mm256_and_si256(F, mask_rb); // 0 dr 0 db const __m256i out = _mm256_sub_epi8(in, G); _mm256_storeu_si256((__m256i*)&argb_data[i], out); } // fallthrough and finish off with plain-C if (i != num_pixels) { VP8LTransformColor_SSE(m, argb_data + i, num_pixels - i); } } //------------------------------------------------------------------------------ #define SPAN 16 static void CollectColorBlueTransforms_AVX2(const uint32_t* WEBP_RESTRICT argb, int stride, int tile_width, int tile_height, int green_to_blue, int red_to_blue, uint32_t histo[]) { const __m256i mult = MK_CST_16(CST_5b(red_to_blue) + 256, CST_5b(green_to_blue)); const __m256i perm = _mm256_setr_epi8( -1, 1, -1, 2, -1, 5, -1, 6, -1, 9, -1, 10, -1, 13, -1, 14, -1, 17, -1, 18, -1, 21, -1, 22, -1, 25, -1, 26, -1, 29, -1, 30); if (tile_width >= 8) { int y, i; for (y = 0; y < tile_height; ++y) { uint8_t values[32]; const uint32_t* const src = argb + y * stride; const __m256i A1 = _mm256_loadu_si256((const __m256i*)src); const __m256i B1 = _mm256_shuffle_epi8(A1, perm); const __m256i C1 = _mm256_mulhi_epi16(B1, mult); const __m256i D1 = _mm256_sub_epi16(A1, C1); __m256i E = _mm256_add_epi16(_mm256_srli_epi32(D1, 16), D1); int x; for (x = 8; x + 8 <= tile_width; x += 8) { const __m256i A2 = _mm256_loadu_si256((const __m256i*)(src + x)); __m256i B2, C2, D2; _mm256_storeu_si256((__m256i*)values, E); for (i = 0; i < 32; i += 4) ++histo[values[i]]; B2 = _mm256_shuffle_epi8(A2, perm); C2 = _mm256_mulhi_epi16(B2, mult); D2 = _mm256_sub_epi16(A2, C2); E = _mm256_add_epi16(_mm256_srli_epi32(D2, 16), D2); } _mm256_storeu_si256((__m256i*)values, E); for (i = 0; i < 32; i += 4) ++histo[values[i]]; } } { const int left_over = tile_width & 7; if (left_over > 0) { VP8LCollectColorBlueTransforms_SSE(argb + tile_width - left_over, stride, left_over, tile_height, green_to_blue, red_to_blue, histo); } } } static void CollectColorRedTransforms_AVX2(const uint32_t* WEBP_RESTRICT argb, int stride, int tile_width, int tile_height, int green_to_red, uint32_t histo[]) { const __m256i mult = MK_CST_16(0, CST_5b(green_to_red)); const __m256i mask_g = _mm256_set1_epi32(0x0000ff00); if (tile_width >= 8) { int y, i; for (y = 0; y < tile_height; ++y) { uint8_t values[32]; const uint32_t* const src = argb + y * stride; const __m256i A1 = _mm256_loadu_si256((const __m256i*)src); const __m256i B1 = _mm256_and_si256(A1, mask_g); const __m256i C1 = _mm256_madd_epi16(B1, mult); __m256i D = _mm256_sub_epi16(A1, C1); int x; for (x = 8; x + 8 <= tile_width; x += 8) { const __m256i A2 = _mm256_loadu_si256((const __m256i*)(src + x)); __m256i B2, C2; _mm256_storeu_si256((__m256i*)values, D); for (i = 2; i < 32; i += 4) ++histo[values[i]]; B2 = _mm256_and_si256(A2, mask_g); C2 = _mm256_madd_epi16(B2, mult); D = _mm256_sub_epi16(A2, C2); } _mm256_storeu_si256((__m256i*)values, D); for (i = 2; i < 32; i += 4) ++histo[values[i]]; } } { const int left_over = tile_width & 7; if (left_over > 0) { VP8LCollectColorRedTransforms_SSE(argb + tile_width - left_over, stride, left_over, tile_height, green_to_red, histo); } } } #undef SPAN #undef MK_CST_16 //------------------------------------------------------------------------------ // Note we are adding uint32_t's as *signed* int32's (using _mm256_add_epi32). // But that's ok since the histogram values are less than 1<<28 (max picture // size). static void AddVector_AVX2(const uint32_t* WEBP_RESTRICT a, const uint32_t* WEBP_RESTRICT b, uint32_t* WEBP_RESTRICT out, int size) { int i = 0; int aligned_size = size & ~31; // Size is, at minimum, NUM_DISTANCE_CODES (40) and may be as large as // NUM_LITERAL_CODES (256) + NUM_LENGTH_CODES (24) + (0 or a non-zero power of // 2). See the usage in VP8LHistogramAdd(). assert(size >= 32); assert(size % 2 == 0); do { const __m256i a0 = _mm256_loadu_si256((const __m256i*)&a[i + 0]); const __m256i a1 = _mm256_loadu_si256((const __m256i*)&a[i + 8]); const __m256i a2 = _mm256_loadu_si256((const __m256i*)&a[i + 16]); const __m256i a3 = _mm256_loadu_si256((const __m256i*)&a[i + 24]); const __m256i b0 = _mm256_loadu_si256((const __m256i*)&b[i + 0]); const __m256i b1 = _mm256_loadu_si256((const __m256i*)&b[i + 8]); const __m256i b2 = _mm256_loadu_si256((const __m256i*)&b[i + 16]); const __m256i b3 = _mm256_loadu_si256((const __m256i*)&b[i + 24]); _mm256_storeu_si256((__m256i*)&out[i + 0], _mm256_add_epi32(a0, b0)); _mm256_storeu_si256((__m256i*)&out[i + 8], _mm256_add_epi32(a1, b1)); _mm256_storeu_si256((__m256i*)&out[i + 16], _mm256_add_epi32(a2, b2)); _mm256_storeu_si256((__m256i*)&out[i + 24], _mm256_add_epi32(a3, b3)); i += 32; } while (i != aligned_size); if ((size & 16) != 0) { const __m256i a0 = _mm256_loadu_si256((const __m256i*)&a[i + 0]); const __m256i a1 = _mm256_loadu_si256((const __m256i*)&a[i + 8]); const __m256i b0 = _mm256_loadu_si256((const __m256i*)&b[i + 0]); const __m256i b1 = _mm256_loadu_si256((const __m256i*)&b[i + 8]); _mm256_storeu_si256((__m256i*)&out[i + 0], _mm256_add_epi32(a0, b0)); _mm256_storeu_si256((__m256i*)&out[i + 8], _mm256_add_epi32(a1, b1)); i += 16; } size &= 15; if (size == 8) { const __m256i a0 = _mm256_loadu_si256((const __m256i*)&a[i]); const __m256i b0 = _mm256_loadu_si256((const __m256i*)&b[i]); _mm256_storeu_si256((__m256i*)&out[i], _mm256_add_epi32(a0, b0)); } else { for (; size--; ++i) { out[i] = a[i] + b[i]; } } } static void AddVectorEq_AVX2(const uint32_t* WEBP_RESTRICT a, uint32_t* WEBP_RESTRICT out, int size) { int i = 0; int aligned_size = size & ~31; // Size is, at minimum, NUM_DISTANCE_CODES (40) and may be as large as // NUM_LITERAL_CODES (256) + NUM_LENGTH_CODES (24) + (0 or a non-zero power of // 2). See the usage in VP8LHistogramAdd(). assert(size >= 32); assert(size % 2 == 0); do { const __m256i a0 = _mm256_loadu_si256((const __m256i*)&a[i + 0]); const __m256i a1 = _mm256_loadu_si256((const __m256i*)&a[i + 8]); const __m256i a2 = _mm256_loadu_si256((const __m256i*)&a[i + 16]); const __m256i a3 = _mm256_loadu_si256((const __m256i*)&a[i + 24]); const __m256i b0 = _mm256_loadu_si256((const __m256i*)&out[i + 0]); const __m256i b1 = _mm256_loadu_si256((const __m256i*)&out[i + 8]); const __m256i b2 = _mm256_loadu_si256((const __m256i*)&out[i + 16]); const __m256i b3 = _mm256_loadu_si256((const __m256i*)&out[i + 24]); _mm256_storeu_si256((__m256i*)&out[i + 0], _mm256_add_epi32(a0, b0)); _mm256_storeu_si256((__m256i*)&out[i + 8], _mm256_add_epi32(a1, b1)); _mm256_storeu_si256((__m256i*)&out[i + 16], _mm256_add_epi32(a2, b2)); _mm256_storeu_si256((__m256i*)&out[i + 24], _mm256_add_epi32(a3, b3)); i += 32; } while (i != aligned_size); if ((size & 16) != 0) { const __m256i a0 = _mm256_loadu_si256((const __m256i*)&a[i + 0]); const __m256i a1 = _mm256_loadu_si256((const __m256i*)&a[i + 8]); const __m256i b0 = _mm256_loadu_si256((const __m256i*)&out[i + 0]); const __m256i b1 = _mm256_loadu_si256((const __m256i*)&out[i + 8]); _mm256_storeu_si256((__m256i*)&out[i + 0], _mm256_add_epi32(a0, b0)); _mm256_storeu_si256((__m256i*)&out[i + 8], _mm256_add_epi32(a1, b1)); i += 16; } size &= 15; if (size == 8) { const __m256i a0 = _mm256_loadu_si256((const __m256i*)&a[i]); const __m256i b0 = _mm256_loadu_si256((const __m256i*)&out[i]); _mm256_storeu_si256((__m256i*)&out[i], _mm256_add_epi32(a0, b0)); } else { for (; size--; ++i) { out[i] += a[i]; } } } //------------------------------------------------------------------------------ // Entropy #if !defined(WEBP_HAVE_SLOW_CLZ_CTZ) static uint64_t CombinedShannonEntropy_AVX2(const uint32_t X[256], const uint32_t Y[256]) { int i; uint64_t retval = 0; uint32_t sumX = 0, sumXY = 0; const __m256i zero = _mm256_setzero_si256(); for (i = 0; i < 256; i += 32) { const __m256i x0 = _mm256_loadu_si256((const __m256i*)(X + i + 0)); const __m256i y0 = _mm256_loadu_si256((const __m256i*)(Y + i + 0)); const __m256i x1 = _mm256_loadu_si256((const __m256i*)(X + i + 8)); const __m256i y1 = _mm256_loadu_si256((const __m256i*)(Y + i + 8)); const __m256i x2 = _mm256_loadu_si256((const __m256i*)(X + i + 16)); const __m256i y2 = _mm256_loadu_si256((const __m256i*)(Y + i + 16)); const __m256i x3 = _mm256_loadu_si256((const __m256i*)(X + i + 24)); const __m256i y3 = _mm256_loadu_si256((const __m256i*)(Y + i + 24)); const __m256i x4 = _mm256_packs_epi16(_mm256_packs_epi32(x0, x1), _mm256_packs_epi32(x2, x3)); const __m256i y4 = _mm256_packs_epi16(_mm256_packs_epi32(y0, y1), _mm256_packs_epi32(y2, y3)); // Packed pixels are actually in order: ... 17 16 12 11 10 9 8 3 2 1 0 const __m256i x5 = _mm256_permutevar8x32_epi32( x4, _mm256_set_epi32(7, 3, 6, 2, 5, 1, 4, 0)); const __m256i y5 = _mm256_permutevar8x32_epi32( y4, _mm256_set_epi32(7, 3, 6, 2, 5, 1, 4, 0)); const uint32_t mx = (uint32_t)_mm256_movemask_epi8(_mm256_cmpgt_epi8(x5, zero)); uint32_t my = (uint32_t)_mm256_movemask_epi8(_mm256_cmpgt_epi8(y5, zero)) | mx; while (my) { const int32_t j = BitsCtz(my); uint32_t xy; if ((mx >> j) & 1) { const int x = X[i + j]; sumXY += x; retval += VP8LFastSLog2(x); } xy = X[i + j] + Y[i + j]; sumX += xy; retval += VP8LFastSLog2(xy); my &= my - 1; } } retval = VP8LFastSLog2(sumX) + VP8LFastSLog2(sumXY) - retval; return retval; } #else #define DONT_USE_COMBINED_SHANNON_ENTROPY_SSE2_FUNC // won't be faster #endif //------------------------------------------------------------------------------ static int VectorMismatch_AVX2(const uint32_t* const array1, const uint32_t* const array2, int length) { int match_len; if (length >= 24) { __m256i A0 = _mm256_loadu_si256((const __m256i*)&array1[0]); __m256i A1 = _mm256_loadu_si256((const __m256i*)&array2[0]); match_len = 0; do { // Loop unrolling and early load both provide a speedup of 10% for the // current function. Also, max_limit can be MAX_LENGTH=4096 at most. const __m256i cmpA = _mm256_cmpeq_epi32(A0, A1); const __m256i B0 = _mm256_loadu_si256((const __m256i*)&array1[match_len + 8]); const __m256i B1 = _mm256_loadu_si256((const __m256i*)&array2[match_len + 8]); if ((uint32_t)_mm256_movemask_epi8(cmpA) != 0xffffffff) break; match_len += 8; { const __m256i cmpB = _mm256_cmpeq_epi32(B0, B1); A0 = _mm256_loadu_si256((const __m256i*)&array1[match_len + 8]); A1 = _mm256_loadu_si256((const __m256i*)&array2[match_len + 8]); if ((uint32_t)_mm256_movemask_epi8(cmpB) != 0xffffffff) break; match_len += 8; } } while (match_len + 24 < length); } else { match_len = 0; // Unroll the potential first two loops. if (length >= 8 && (uint32_t)_mm256_movemask_epi8(_mm256_cmpeq_epi32( _mm256_loadu_si256((const __m256i*)&array1[0]), _mm256_loadu_si256((const __m256i*)&array2[0]))) == 0xffffffff) { match_len = 8; if (length >= 16 && (uint32_t)_mm256_movemask_epi8(_mm256_cmpeq_epi32( _mm256_loadu_si256((const __m256i*)&array1[8]), _mm256_loadu_si256((const __m256i*)&array2[8]))) == 0xffffffff) { match_len = 16; } } } while (match_len < length && array1[match_len] == array2[match_len]) { ++match_len; } return match_len; } // Bundles multiple (1, 2, 4 or 8) pixels into a single pixel. static void BundleColorMap_AVX2(const uint8_t* WEBP_RESTRICT const row, int width, int xbits, uint32_t* WEBP_RESTRICT dst) { int x = 0; assert(xbits >= 0); assert(xbits <= 3); switch (xbits) { case 0: { const __m256i ff = _mm256_set1_epi16((short)0xff00); const __m256i zero = _mm256_setzero_si256(); // Store 0xff000000 | (row[x] << 8). for (x = 0; x + 32 <= width; x += 32, dst += 32) { const __m256i in = _mm256_loadu_si256((const __m256i*)&row[x]); const __m256i in_lo = _mm256_unpacklo_epi8(zero, in); const __m256i dst0 = _mm256_unpacklo_epi16(in_lo, ff); const __m256i dst1 = _mm256_unpackhi_epi16(in_lo, ff); const __m256i in_hi = _mm256_unpackhi_epi8(zero, in); const __m256i dst2 = _mm256_unpacklo_epi16(in_hi, ff); const __m256i dst3 = _mm256_unpackhi_epi16(in_hi, ff); _mm256_storeu2_m128i((__m128i*)&dst[16], (__m128i*)&dst[0], dst0); _mm256_storeu2_m128i((__m128i*)&dst[20], (__m128i*)&dst[4], dst1); _mm256_storeu2_m128i((__m128i*)&dst[24], (__m128i*)&dst[8], dst2); _mm256_storeu2_m128i((__m128i*)&dst[28], (__m128i*)&dst[12], dst3); } break; } case 1: { const __m256i ff = _mm256_set1_epi16((short)0xff00); const __m256i mul = _mm256_set1_epi16(0x110); for (x = 0; x + 32 <= width; x += 32, dst += 16) { // 0a0b | (where a/b are 4 bits). const __m256i in = _mm256_loadu_si256((const __m256i*)&row[x]); const __m256i tmp = _mm256_mullo_epi16(in, mul); // aba0 const __m256i pack = _mm256_and_si256(tmp, ff); // ab00 const __m256i dst0 = _mm256_unpacklo_epi16(pack, ff); const __m256i dst1 = _mm256_unpackhi_epi16(pack, ff); _mm256_storeu2_m128i((__m128i*)&dst[8], (__m128i*)&dst[0], dst0); _mm256_storeu2_m128i((__m128i*)&dst[12], (__m128i*)&dst[4], dst1); } break; } case 2: { const __m256i mask_or = _mm256_set1_epi32((int)0xff000000); const __m256i mul_cst = _mm256_set1_epi16(0x0104); const __m256i mask_mul = _mm256_set1_epi16(0x0f00); for (x = 0; x + 32 <= width; x += 32, dst += 8) { // 000a000b000c000d | (where a/b/c/d are 2 bits). const __m256i in = _mm256_loadu_si256((const __m256i*)&row[x]); const __m256i mul = _mm256_mullo_epi16(in, mul_cst); // 00ab00b000cd00d0 const __m256i tmp = _mm256_and_si256(mul, mask_mul); // 00ab000000cd0000 const __m256i shift = _mm256_srli_epi32(tmp, 12); // 00000000ab000000 const __m256i pack = _mm256_or_si256(shift, tmp); // 00000000abcd0000 // Convert to 0xff00**00. const __m256i res = _mm256_or_si256(pack, mask_or); _mm256_storeu_si256((__m256i*)dst, res); } break; } default: { assert(xbits == 3); for (x = 0; x + 32 <= width; x += 32, dst += 4) { // 0000000a00000000b... | (where a/b are 1 bit). const __m256i in = _mm256_loadu_si256((const __m256i*)&row[x]); const __m256i shift = _mm256_slli_epi64(in, 7); const uint32_t move = _mm256_movemask_epi8(shift); dst[0] = 0xff000000 | ((move & 0xff) << 8); dst[1] = 0xff000000 | (move & 0xff00); dst[2] = 0xff000000 | ((move & 0xff0000) >> 8); dst[3] = 0xff000000 | ((move & 0xff000000) >> 16); } break; } } if (x != width) { VP8LBundleColorMap_SSE(row + x, width - x, xbits, dst); } } //------------------------------------------------------------------------------ // Batch version of Predictor Transform subtraction static WEBP_INLINE void Average2_m256i(const __m256i* const a0, const __m256i* const a1, __m256i* const avg) { // (a + b) >> 1 = ((a + b + 1) >> 1) - ((a ^ b) & 1) const __m256i ones = _mm256_set1_epi8(1); const __m256i avg1 = _mm256_avg_epu8(*a0, *a1); const __m256i one = _mm256_and_si256(_mm256_xor_si256(*a0, *a1), ones); *avg = _mm256_sub_epi8(avg1, one); } // Predictor0: ARGB_BLACK. static void PredictorSub0_AVX2(const uint32_t* in, const uint32_t* upper, int num_pixels, uint32_t* WEBP_RESTRICT out) { int i; const __m256i black = _mm256_set1_epi32((int)ARGB_BLACK); for (i = 0; i + 8 <= num_pixels; i += 8) { const __m256i src = _mm256_loadu_si256((const __m256i*)&in[i]); const __m256i res = _mm256_sub_epi8(src, black); _mm256_storeu_si256((__m256i*)&out[i], res); } if (i != num_pixels) { VP8LPredictorsSub_SSE[0](in + i, NULL, num_pixels - i, out + i); } (void)upper; } #define GENERATE_PREDICTOR_1(X, IN) \ static void PredictorSub##X##_AVX2( \ const uint32_t* const in, const uint32_t* const upper, int num_pixels, \ uint32_t* WEBP_RESTRICT const out) { \ int i; \ for (i = 0; i + 8 <= num_pixels; i += 8) { \ const __m256i src = _mm256_loadu_si256((const __m256i*)&in[i]); \ const __m256i pred = _mm256_loadu_si256((const __m256i*)&(IN)); \ const __m256i res = _mm256_sub_epi8(src, pred); \ _mm256_storeu_si256((__m256i*)&out[i], res); \ } \ if (i != num_pixels) { \ VP8LPredictorsSub_SSE[(X)](in + i, WEBP_OFFSET_PTR(upper, i), \ num_pixels - i, out + i); \ } \ } GENERATE_PREDICTOR_1(1, in[i - 1]) // Predictor1: L GENERATE_PREDICTOR_1(2, upper[i]) // Predictor2: T GENERATE_PREDICTOR_1(3, upper[i + 1]) // Predictor3: TR GENERATE_PREDICTOR_1(4, upper[i - 1]) // Predictor4: TL #undef GENERATE_PREDICTOR_1 // Predictor5: avg2(avg2(L, TR), T) static void PredictorSub5_AVX2(const uint32_t* in, const uint32_t* upper, int num_pixels, uint32_t* WEBP_RESTRICT out) { int i; for (i = 0; i + 8 <= num_pixels; i += 8) { const __m256i L = _mm256_loadu_si256((const __m256i*)&in[i - 1]); const __m256i T = _mm256_loadu_si256((const __m256i*)&upper[i]); const __m256i TR = _mm256_loadu_si256((const __m256i*)&upper[i + 1]); const __m256i src = _mm256_loadu_si256((const __m256i*)&in[i]); __m256i avg, pred, res; Average2_m256i(&L, &TR, &avg); Average2_m256i(&avg, &T, &pred); res = _mm256_sub_epi8(src, pred); _mm256_storeu_si256((__m256i*)&out[i], res); } if (i != num_pixels) { VP8LPredictorsSub_SSE[5](in + i, upper + i, num_pixels - i, out + i); } } #define GENERATE_PREDICTOR_2(X, A, B) \ static void PredictorSub##X##_AVX2(const uint32_t* in, \ const uint32_t* upper, int num_pixels, \ uint32_t* WEBP_RESTRICT out) { \ int i; \ for (i = 0; i + 8 <= num_pixels; i += 8) { \ const __m256i tA = _mm256_loadu_si256((const __m256i*)&(A)); \ const __m256i tB = _mm256_loadu_si256((const __m256i*)&(B)); \ const __m256i src = _mm256_loadu_si256((const __m256i*)&in[i]); \ __m256i pred, res; \ Average2_m256i(&tA, &tB, &pred); \ res = _mm256_sub_epi8(src, pred); \ _mm256_storeu_si256((__m256i*)&out[i], res); \ } \ if (i != num_pixels) { \ VP8LPredictorsSub_SSE[(X)](in + i, upper + i, num_pixels - i, out + i); \ } \ } GENERATE_PREDICTOR_2(6, in[i - 1], upper[i - 1]) // Predictor6: avg(L, TL) GENERATE_PREDICTOR_2(7, in[i - 1], upper[i]) // Predictor7: avg(L, T) GENERATE_PREDICTOR_2(8, upper[i - 1], upper[i]) // Predictor8: avg(TL, T) GENERATE_PREDICTOR_2(9, upper[i], upper[i + 1]) // Predictor9: average(T, TR) #undef GENERATE_PREDICTOR_2 // Predictor10: avg(avg(L,TL), avg(T, TR)). static void PredictorSub10_AVX2(const uint32_t* in, const uint32_t* upper, int num_pixels, uint32_t* WEBP_RESTRICT out) { int i; for (i = 0; i + 8 <= num_pixels; i += 8) { const __m256i L = _mm256_loadu_si256((const __m256i*)&in[i - 1]); const __m256i src = _mm256_loadu_si256((const __m256i*)&in[i]); const __m256i TL = _mm256_loadu_si256((const __m256i*)&upper[i - 1]); const __m256i T = _mm256_loadu_si256((const __m256i*)&upper[i]); const __m256i TR = _mm256_loadu_si256((const __m256i*)&upper[i + 1]); __m256i avgTTR, avgLTL, avg, res; Average2_m256i(&T, &TR, &avgTTR); Average2_m256i(&L, &TL, &avgLTL); Average2_m256i(&avgTTR, &avgLTL, &avg); res = _mm256_sub_epi8(src, avg); _mm256_storeu_si256((__m256i*)&out[i], res); } if (i != num_pixels) { VP8LPredictorsSub_SSE[10](in + i, upper + i, num_pixels - i, out + i); } } // Predictor11: select. static void GetSumAbsDiff32_AVX2(const __m256i* const A, const __m256i* const B, __m256i* const out) { // We can unpack with any value on the upper 32 bits, provided it's the same // on both operands (to that their sum of abs diff is zero). Here we use *A. const __m256i A_lo = _mm256_unpacklo_epi32(*A, *A); const __m256i B_lo = _mm256_unpacklo_epi32(*B, *A); const __m256i A_hi = _mm256_unpackhi_epi32(*A, *A); const __m256i B_hi = _mm256_unpackhi_epi32(*B, *A); const __m256i s_lo = _mm256_sad_epu8(A_lo, B_lo); const __m256i s_hi = _mm256_sad_epu8(A_hi, B_hi); *out = _mm256_packs_epi32(s_lo, s_hi); } static void PredictorSub11_AVX2(const uint32_t* in, const uint32_t* upper, int num_pixels, uint32_t* WEBP_RESTRICT out) { int i; for (i = 0; i + 8 <= num_pixels; i += 8) { const __m256i L = _mm256_loadu_si256((const __m256i*)&in[i - 1]); const __m256i T = _mm256_loadu_si256((const __m256i*)&upper[i]); const __m256i TL = _mm256_loadu_si256((const __m256i*)&upper[i - 1]); const __m256i src = _mm256_loadu_si256((const __m256i*)&in[i]); __m256i pa, pb; GetSumAbsDiff32_AVX2(&T, &TL, &pa); // pa = sum |T-TL| GetSumAbsDiff32_AVX2(&L, &TL, &pb); // pb = sum |L-TL| { const __m256i mask = _mm256_cmpgt_epi32(pb, pa); const __m256i A = _mm256_and_si256(mask, L); const __m256i B = _mm256_andnot_si256(mask, T); const __m256i pred = _mm256_or_si256(A, B); // pred = (L > T)? L : T const __m256i res = _mm256_sub_epi8(src, pred); _mm256_storeu_si256((__m256i*)&out[i], res); } } if (i != num_pixels) { VP8LPredictorsSub_SSE[11](in + i, upper + i, num_pixels - i, out + i); } } // Predictor12: ClampedSubSubtractFull. static void PredictorSub12_AVX2(const uint32_t* in, const uint32_t* upper, int num_pixels, uint32_t* WEBP_RESTRICT out) { int i; const __m256i zero = _mm256_setzero_si256(); for (i = 0; i + 8 <= num_pixels; i += 8) { const __m256i src = _mm256_loadu_si256((const __m256i*)&in[i]); const __m256i L = _mm256_loadu_si256((const __m256i*)&in[i - 1]); const __m256i L_lo = _mm256_unpacklo_epi8(L, zero); const __m256i L_hi = _mm256_unpackhi_epi8(L, zero); const __m256i T = _mm256_loadu_si256((const __m256i*)&upper[i]); const __m256i T_lo = _mm256_unpacklo_epi8(T, zero); const __m256i T_hi = _mm256_unpackhi_epi8(T, zero); const __m256i TL = _mm256_loadu_si256((const __m256i*)&upper[i - 1]); const __m256i TL_lo = _mm256_unpacklo_epi8(TL, zero); const __m256i TL_hi = _mm256_unpackhi_epi8(TL, zero); const __m256i diff_lo = _mm256_sub_epi16(T_lo, TL_lo); const __m256i diff_hi = _mm256_sub_epi16(T_hi, TL_hi); const __m256i pred_lo = _mm256_add_epi16(L_lo, diff_lo); const __m256i pred_hi = _mm256_add_epi16(L_hi, diff_hi); const __m256i pred = _mm256_packus_epi16(pred_lo, pred_hi); const __m256i res = _mm256_sub_epi8(src, pred); _mm256_storeu_si256((__m256i*)&out[i], res); } if (i != num_pixels) { VP8LPredictorsSub_SSE[12](in + i, upper + i, num_pixels - i, out + i); } } // Predictors13: ClampedAddSubtractHalf static void PredictorSub13_AVX2(const uint32_t* in, const uint32_t* upper, int num_pixels, uint32_t* WEBP_RESTRICT out) { int i; const __m256i zero = _mm256_setzero_si256(); for (i = 0; i + 8 <= num_pixels; i += 8) { const __m256i L = _mm256_loadu_si256((const __m256i*)&in[i - 1]); const __m256i src = _mm256_loadu_si256((const __m256i*)&in[i]); const __m256i T = _mm256_loadu_si256((const __m256i*)&upper[i]); const __m256i TL = _mm256_loadu_si256((const __m256i*)&upper[i - 1]); // lo. const __m256i L_lo = _mm256_unpacklo_epi8(L, zero); const __m256i T_lo = _mm256_unpacklo_epi8(T, zero); const __m256i TL_lo = _mm256_unpacklo_epi8(TL, zero); const __m256i sum_lo = _mm256_add_epi16(T_lo, L_lo); const __m256i avg_lo = _mm256_srli_epi16(sum_lo, 1); const __m256i A1_lo = _mm256_sub_epi16(avg_lo, TL_lo); const __m256i bit_fix_lo = _mm256_cmpgt_epi16(TL_lo, avg_lo); const __m256i A2_lo = _mm256_sub_epi16(A1_lo, bit_fix_lo); const __m256i A3_lo = _mm256_srai_epi16(A2_lo, 1); const __m256i A4_lo = _mm256_add_epi16(avg_lo, A3_lo); // hi. const __m256i L_hi = _mm256_unpackhi_epi8(L, zero); const __m256i T_hi = _mm256_unpackhi_epi8(T, zero); const __m256i TL_hi = _mm256_unpackhi_epi8(TL, zero); const __m256i sum_hi = _mm256_add_epi16(T_hi, L_hi); const __m256i avg_hi = _mm256_srli_epi16(sum_hi, 1); const __m256i A1_hi = _mm256_sub_epi16(avg_hi, TL_hi); const __m256i bit_fix_hi = _mm256_cmpgt_epi16(TL_hi, avg_hi); const __m256i A2_hi = _mm256_sub_epi16(A1_hi, bit_fix_hi); const __m256i A3_hi = _mm256_srai_epi16(A2_hi, 1); const __m256i A4_hi = _mm256_add_epi16(avg_hi, A3_hi); const __m256i pred = _mm256_packus_epi16(A4_lo, A4_hi); const __m256i res = _mm256_sub_epi8(src, pred); _mm256_storeu_si256((__m256i*)&out[i], res); } if (i != num_pixels) { VP8LPredictorsSub_SSE[13](in + i, upper + i, num_pixels - i, out + i); } } //------------------------------------------------------------------------------ // Entry point extern void VP8LEncDspInitAVX2(void); WEBP_TSAN_IGNORE_FUNCTION void VP8LEncDspInitAVX2(void) { VP8LSubtractGreenFromBlueAndRed = SubtractGreenFromBlueAndRed_AVX2; VP8LTransformColor = TransformColor_AVX2; VP8LCollectColorBlueTransforms = CollectColorBlueTransforms_AVX2; VP8LCollectColorRedTransforms = CollectColorRedTransforms_AVX2; VP8LAddVector = AddVector_AVX2; VP8LAddVectorEq = AddVectorEq_AVX2; VP8LCombinedShannonEntropy = CombinedShannonEntropy_AVX2; VP8LVectorMismatch = VectorMismatch_AVX2; VP8LBundleColorMap = BundleColorMap_AVX2; VP8LPredictorsSub[0] = PredictorSub0_AVX2; VP8LPredictorsSub[1] = PredictorSub1_AVX2; VP8LPredictorsSub[2] = PredictorSub2_AVX2; VP8LPredictorsSub[3] = PredictorSub3_AVX2; VP8LPredictorsSub[4] = PredictorSub4_AVX2; VP8LPredictorsSub[5] = PredictorSub5_AVX2; VP8LPredictorsSub[6] = PredictorSub6_AVX2; VP8LPredictorsSub[7] = PredictorSub7_AVX2; VP8LPredictorsSub[8] = PredictorSub8_AVX2; VP8LPredictorsSub[9] = PredictorSub9_AVX2; VP8LPredictorsSub[10] = PredictorSub10_AVX2; VP8LPredictorsSub[11] = PredictorSub11_AVX2; VP8LPredictorsSub[12] = PredictorSub12_AVX2; VP8LPredictorsSub[13] = PredictorSub13_AVX2; VP8LPredictorsSub[14] = PredictorSub0_AVX2; // <- padding security sentinels VP8LPredictorsSub[15] = PredictorSub0_AVX2; } #else // !WEBP_USE_AVX2 WEBP_DSP_INIT_STUB(VP8LEncDspInitAVX2) #endif // WEBP_USE_AVX2