// Copyright 2011 Google Inc. All Rights Reserved. // // This code is licensed under the same terms as WebM: // Software License Agreement: http://www.webmproject.org/license/software/ // Additional IP Rights Grant: http://www.webmproject.org/license/additional/ // ----------------------------------------------------------------------------- // // Bit writing and boolean coder // // Author: Skal (pascal.massimino@gmail.com) // Vikas Arora (vikaas.arora@gmail.com) #include #include // for memcpy() #include #include "./bit_writer.h" #if defined(__cplusplus) || defined(c_plusplus) extern "C" { #endif //------------------------------------------------------------------------------ // VP8BitWriter static int BitWriterResize(VP8BitWriter* const bw, size_t extra_size) { uint8_t* new_buf; size_t new_size; const size_t needed_size = bw->pos_ + extra_size; if (needed_size <= bw->max_pos_) return 1; new_size = 2 * bw->max_pos_; if (new_size < needed_size) new_size = needed_size; if (new_size < 1024) new_size = 1024; new_buf = (uint8_t*)malloc(new_size); if (new_buf == NULL) { bw->error_ = 1; return 0; } if (bw->pos_ > 0) memcpy(new_buf, bw->buf_, bw->pos_); free(bw->buf_); bw->buf_ = new_buf; bw->max_pos_ = new_size; return 1; } static void kFlush(VP8BitWriter* const bw) { const int s = 8 + bw->nb_bits_; const int32_t bits = bw->value_ >> s; assert(bw->nb_bits_ >= 0); bw->value_ -= bits << s; bw->nb_bits_ -= 8; if ((bits & 0xff) != 0xff) { size_t pos = bw->pos_; if (pos + bw->run_ >= bw->max_pos_) { // reallocate if (!BitWriterResize(bw, bw->run_ + 1)) { return; } } if (bits & 0x100) { // overflow -> propagate carry over pending 0xff's if (pos > 0) bw->buf_[pos - 1]++; } if (bw->run_ > 0) { const int value = (bits & 0x100) ? 0x00 : 0xff; for (; bw->run_ > 0; --bw->run_) bw->buf_[pos++] = value; } bw->buf_[pos++] = bits; bw->pos_ = pos; } else { bw->run_++; // delay writing of bytes 0xff, pending eventual carry. } } //------------------------------------------------------------------------------ // renormalization static const uint8_t kNorm[128] = { // renorm_sizes[i] = 8 - log2(i) 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0 }; // range = ((range + 1) << kVP8Log2Range[range]) - 1 static const uint8_t kNewRange[128] = { 127, 127, 191, 127, 159, 191, 223, 127, 143, 159, 175, 191, 207, 223, 239, 127, 135, 143, 151, 159, 167, 175, 183, 191, 199, 207, 215, 223, 231, 239, 247, 127, 131, 135, 139, 143, 147, 151, 155, 159, 163, 167, 171, 175, 179, 183, 187, 191, 195, 199, 203, 207, 211, 215, 219, 223, 227, 231, 235, 239, 243, 247, 251, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173, 175, 177, 179, 181, 183, 185, 187, 189, 191, 193, 195, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 231, 233, 235, 237, 239, 241, 243, 245, 247, 249, 251, 253, 127 }; int VP8PutBit(VP8BitWriter* const bw, int bit, int prob) { const int split = (bw->range_ * prob) >> 8; if (bit) { bw->value_ += split + 1; bw->range_ -= split + 1; } else { bw->range_ = split; } if (bw->range_ < 127) { // emit 'shift' bits out and renormalize const int shift = kNorm[bw->range_]; bw->range_ = kNewRange[bw->range_]; bw->value_ <<= shift; bw->nb_bits_ += shift; if (bw->nb_bits_ > 0) kFlush(bw); } return bit; } int VP8PutBitUniform(VP8BitWriter* const bw, int bit) { const int split = bw->range_ >> 1; if (bit) { bw->value_ += split + 1; bw->range_ -= split + 1; } else { bw->range_ = split; } if (bw->range_ < 127) { bw->range_ = kNewRange[bw->range_]; bw->value_ <<= 1; bw->nb_bits_ += 1; if (bw->nb_bits_ > 0) kFlush(bw); } return bit; } void VP8PutValue(VP8BitWriter* const bw, int value, int nb_bits) { int mask; for (mask = 1 << (nb_bits - 1); mask; mask >>= 1) VP8PutBitUniform(bw, value & mask); } void VP8PutSignedValue(VP8BitWriter* const bw, int value, int nb_bits) { if (!VP8PutBitUniform(bw, value != 0)) return; if (value < 0) { VP8PutValue(bw, ((-value) << 1) | 1, nb_bits + 1); } else { VP8PutValue(bw, value << 1, nb_bits + 1); } } //------------------------------------------------------------------------------ int VP8BitWriterInit(VP8BitWriter* const bw, size_t expected_size) { bw->range_ = 255 - 1; bw->value_ = 0; bw->run_ = 0; bw->nb_bits_ = -8; bw->pos_ = 0; bw->max_pos_ = 0; bw->error_ = 0; bw->buf_ = NULL; return (expected_size > 0) ? BitWriterResize(bw, expected_size) : 1; } uint8_t* VP8BitWriterFinish(VP8BitWriter* const bw) { VP8PutValue(bw, 0, 9 - bw->nb_bits_); bw->nb_bits_ = 0; // pad with zeroes kFlush(bw); return bw->buf_; } int VP8BitWriterAppend(VP8BitWriter* const bw, const uint8_t* data, size_t size) { assert(data); if (bw->nb_bits_ != -8) return 0; // kFlush() must have been called if (!BitWriterResize(bw, size)) return 0; memcpy(bw->buf_ + bw->pos_, data, size); bw->pos_ += size; return 1; } void VP8BitWriterWipeOut(VP8BitWriter* const bw) { if (bw) { free(bw->buf_); memset(bw, 0, sizeof(*bw)); } } #ifdef USE_LOSSLESS_ENCODER //------------------------------------------------------------------------------ // VP8LBitWriter // Returns 1 on success. static int VP8LBitWriterResize(VP8LBitWriter* const bw, size_t extra_size) { uint8_t* allocated_buf; size_t allocated_size; const size_t size_required = VP8LBitWriterNumBytes(bw) + extra_size; if ((bw->max_bytes_ > 0) && (size_required <= bw->max_bytes_)) return 1; allocated_size = (3 * bw->max_bytes_) >> 1; if (allocated_size < size_required) { allocated_size = size_required; } // Make Allocated size multiple of KBs allocated_size = (((allocated_size >> 10) + 1) << 10); allocated_buf = (uint8_t*)malloc(allocated_size); if (allocated_buf == NULL) return 0; memset(allocated_buf, 0, allocated_size); if (bw->bit_pos_ > 0) { memcpy(allocated_buf, bw->buf_, VP8LBitWriterNumBytes(bw)); } free(bw->buf_); bw->buf_ = allocated_buf; bw->max_bytes_ = allocated_size; return 1; } int VP8LBitWriterInit(VP8LBitWriter* const bw, size_t expected_size) { memset(bw, 0, sizeof(*bw)); return VP8LBitWriterResize(bw, expected_size); } void VP8LBitWriterDestroy(VP8LBitWriter* const bw) { if (bw != NULL) { free(bw->buf_); memset(bw, 0, sizeof(*bw)); } } void VP8LWriteBits(VP8LBitWriter* const bw, int n_bits, uint32_t bits) { if (n_bits < 1) return; #if !defined(__BIG_ENDIAN__) // Technically, this branch of the code can write up to 25 bits at a time, // but in deflate, the maximum number of bits written is 16 at a time. { uint8_t* p = &bw->buf_[bw->bit_pos_ >> 3]; uint32_t v = *(const uint32_t*)(p); v |= bits << (bw->bit_pos_ & 7); *(uint32_t*)(p) = v; bw->bit_pos_ += n_bits; } #else // LITTLE_ENDIAN // implicit & 0xff is assumed for uint8_t arithmetics { uint8_t* p = &bw->buf_[bw->bit_pos_ >> 3]; const int bits_reserved_in_first_byte = (bw->bit_pos_ & 7); *p++ |= (bits << bits_reserved_in_first_byte); const int bits_left_to_write = n_bits - 8 + bits_reserved_in_first_byte; if (bits_left_to_write >= 1) { *p++ = bits >> (8 - bits_reserved_in_first_byte); if (bits_left_to_write >= 9) { *p++ = bits >> (16 - bits_reserved_in_first_byte); } } *p = 0; bw->bit_pos_ += n_bits; } #endif // BIG_ENDIAN if ((bw->bit_pos_ >> 3) > (bw->max_bytes_ - 8)) { const size_t kAdditionalBuffer = 32768 + bw->max_bytes_; if (!VP8LBitWriterResize(bw, kAdditionalBuffer)) { bw->bit_pos_ = 0; bw->error_ = 1; } } } #endif //------------------------------------------------------------------------------ #if defined(__cplusplus) || defined(c_plusplus) } // extern "C" #endif