// Copyright 2016 Google Inc. All Rights Reserved. // // Use of this source code is governed by a BSD-style license // that can be found in the COPYING file in the root of the source // tree. An additional intellectual property rights grant can be found // in the file PATENTS. All contributing project authors may // be found in the AUTHORS file in the root of the source tree. // ----------------------------------------------------------------------------- // // Image transform methods for lossless encoder. // // Authors: Vikas Arora (vikaas.arora@gmail.com) // Jyrki Alakuijala (jyrki@google.com) // Urvang Joshi (urvang@google.com) // Vincent Rabaud (vrabaud@google.com) #include "../dsp/lossless.h" #include "../dsp/lossless_common.h" #include "./vp8li.h" #define MAX_DIFF_COST (1e30f) static const float kSpatialPredictorBias = 15.f; static const int kPredLowEffort = 11; static const uint32_t kMaskAlpha = 0xff000000; // Mostly used to reduce code size + readability static WEBP_INLINE int GetMin(int a, int b) { return (a > b) ? b : a; } static WEBP_INLINE int GetMax(int a, int b) { return (a < b) ? b : a; } //------------------------------------------------------------------------------ // Methods to calculate Entropy (Shannon). static float PredictionCostSpatial(const int counts[256], int weight_0, double exp_val) { const int significant_symbols = 256 >> 4; const double exp_decay_factor = 0.6; double bits = weight_0 * counts[0]; int i; for (i = 1; i < significant_symbols; ++i) { bits += exp_val * (counts[i] + counts[256 - i]); exp_val *= exp_decay_factor; } return (float)(-0.1 * bits); } static float PredictionCostSpatialHistogram(const int accumulated[4][256], const int tile[4][256]) { int i; double retval = 0; for (i = 0; i < 4; ++i) { const double kExpValue = 0.94; retval += PredictionCostSpatial(tile[i], 1, kExpValue); retval += VP8LCombinedShannonEntropy(tile[i], accumulated[i]); } return (float)retval; } static WEBP_INLINE void UpdateHisto(int histo_argb[4][256], uint32_t argb) { ++histo_argb[0][argb >> 24]; ++histo_argb[1][(argb >> 16) & 0xff]; ++histo_argb[2][(argb >> 8) & 0xff]; ++histo_argb[3][argb & 0xff]; } //------------------------------------------------------------------------------ // Spatial transform functions. static WEBP_INLINE void PredictBatch(int mode, int x_start, int y, int num_pixels, const uint32_t* current, const uint32_t* upper, uint32_t* out) { if (x_start == 0) { if (y == 0) { // ARGB_BLACK. VP8LPredictorsSub[0](current, NULL, 1, out); } else { // Top one. VP8LPredictorsSub[2](current, upper, 1, out); } ++x_start; ++out; --num_pixels; } if (y == 0) { // Left one. VP8LPredictorsSub[1](current + x_start, NULL, num_pixels, out); } else { VP8LPredictorsSub[mode](current + x_start, upper + x_start, num_pixels, out); } } static int MaxDiffBetweenPixels(uint32_t p1, uint32_t p2) { const int diff_a = abs((int)(p1 >> 24) - (int)(p2 >> 24)); const int diff_r = abs((int)((p1 >> 16) & 0xff) - (int)((p2 >> 16) & 0xff)); const int diff_g = abs((int)((p1 >> 8) & 0xff) - (int)((p2 >> 8) & 0xff)); const int diff_b = abs((int)(p1 & 0xff) - (int)(p2 & 0xff)); return GetMax(GetMax(diff_a, diff_r), GetMax(diff_g, diff_b)); } static int MaxDiffAroundPixel(uint32_t current, uint32_t up, uint32_t down, uint32_t left, uint32_t right) { const int diff_up = MaxDiffBetweenPixels(current, up); const int diff_down = MaxDiffBetweenPixels(current, down); const int diff_left = MaxDiffBetweenPixels(current, left); const int diff_right = MaxDiffBetweenPixels(current, right); return GetMax(GetMax(diff_up, diff_down), GetMax(diff_left, diff_right)); } static uint32_t AddGreenToBlueAndRed(uint32_t argb) { const uint32_t green = (argb >> 8) & 0xff; uint32_t red_blue = argb & 0x00ff00ffu; red_blue += (green << 16) | green; red_blue &= 0x00ff00ffu; return (argb & 0xff00ff00u) | red_blue; } static void MaxDiffsForRow(int width, int stride, const uint32_t* const argb, uint8_t* const max_diffs, int used_subtract_green) { uint32_t current, up, down, left, right; int x; if (width <= 2) return; current = argb[0]; right = argb[1]; if (used_subtract_green) { current = AddGreenToBlueAndRed(current); right = AddGreenToBlueAndRed(right); } // max_diffs[0] and max_diffs[width - 1] are never used. for (x = 1; x < width - 1; ++x) { up = argb[-stride + x]; down = argb[stride + x]; left = current; current = right; right = argb[x + 1]; if (used_subtract_green) { up = AddGreenToBlueAndRed(up); down = AddGreenToBlueAndRed(down); right = AddGreenToBlueAndRed(right); } max_diffs[x] = MaxDiffAroundPixel(current, up, down, left, right); } } // Quantize the difference between the actual component value and its prediction // to a multiple of quantization, working modulo 256, taking care not to cross // a boundary (inclusive upper limit). static uint8_t NearLosslessComponent(uint8_t value, uint8_t predict, uint8_t boundary, int quantization) { const int residual = (value - predict) & 0xff; const int boundary_residual = (boundary - predict) & 0xff; const int lower = residual & ~(quantization - 1); const int upper = lower + quantization; // Resolve ties towards a value closer to the prediction (i.e. towards lower // if value comes after prediction and towards upper otherwise). const int bias = ((boundary - value) & 0xff) < boundary_residual; if (residual - lower < upper - residual + bias) { // lower is closer to residual than upper. if (residual > boundary_residual && lower <= boundary_residual) { // Halve quantization step to avoid crossing boundary. This midpoint is // on the same side of boundary as residual because midpoint >= residual // (since lower is closer than upper) and residual is above the boundary. return lower + (quantization >> 1); } return lower; } else { // upper is closer to residual than lower. if (residual <= boundary_residual && upper > boundary_residual) { // Halve quantization step to avoid crossing boundary. This midpoint is // on the same side of boundary as residual because midpoint <= residual // (since upper is closer than lower) and residual is below the boundary. return lower + (quantization >> 1); } return upper & 0xff; } } // Quantize every component of the difference between the actual pixel value and // its prediction to a multiple of a quantization (a power of 2, not larger than // max_quantization which is a power of 2, smaller than max_diff). Take care if // value and predict have undergone subtract green, which means that red and // blue are represented as offsets from green. static uint32_t NearLossless(uint32_t value, uint32_t predict, int max_quantization, int max_diff, int used_subtract_green) { int quantization; uint8_t new_green = 0; uint8_t green_diff = 0; uint8_t a, r, g, b; if (max_diff <= 2) { return VP8LSubPixels(value, predict); } quantization = max_quantization; while (quantization >= max_diff) { quantization >>= 1; } if ((value >> 24) == 0 || (value >> 24) == 0xff) { // Preserve transparency of fully transparent or fully opaque pixels. a = ((value >> 24) - (predict >> 24)) & 0xff; } else { a = NearLosslessComponent(value >> 24, predict >> 24, 0xff, quantization); } g = NearLosslessComponent((value >> 8) & 0xff, (predict >> 8) & 0xff, 0xff, quantization); if (used_subtract_green) { // The green offset will be added to red and blue components during decoding // to obtain the actual red and blue values. new_green = ((predict >> 8) + g) & 0xff; // The amount by which green has been adjusted during quantization. It is // subtracted from red and blue for compensation, to avoid accumulating two // quantization errors in them. green_diff = (new_green - (value >> 8)) & 0xff; } r = NearLosslessComponent(((value >> 16) - green_diff) & 0xff, (predict >> 16) & 0xff, 0xff - new_green, quantization); b = NearLosslessComponent((value - green_diff) & 0xff, predict & 0xff, 0xff - new_green, quantization); return ((uint32_t)a << 24) | ((uint32_t)r << 16) | ((uint32_t)g << 8) | b; } // Stores the difference between the pixel and its prediction in "out". // In case of a lossy encoding, updates the source image to avoid propagating // the deviation further to pixels which depend on the current pixel for their // predictions. static WEBP_INLINE void GetResidual( int width, int height, uint32_t* const upper_row, uint32_t* const current_row, const uint8_t* const max_diffs, int mode, int x_start, int x_end, int y, int max_quantization, int exact, int used_subtract_green, uint32_t* const out) { if (exact) { PredictBatch(mode, x_start, y, x_end - x_start, current_row, upper_row, out); } else { const VP8LPredictorFunc pred_func = VP8LPredictors[mode]; int x; for (x = x_start; x < x_end; ++x) { uint32_t predict; uint32_t residual; if (y == 0) { predict = (x == 0) ? ARGB_BLACK : current_row[x - 1]; // Left. } else if (x == 0) { predict = upper_row[x]; // Top. } else { predict = pred_func(current_row[x - 1], upper_row + x); } if (mode == 0 || y == 0 || y == height - 1 || x == 0 || x == width - 1) { residual = VP8LSubPixels(current_row[x], predict); } else { residual = NearLossless(current_row[x], predict, max_quantization, max_diffs[x], used_subtract_green); // Update the source image. current_row[x] = VP8LAddPixels(predict, residual); // x is never 0 here so we do not need to update upper_row like below. } if ((current_row[x] & kMaskAlpha) == 0) { // If alpha is 0, cleanup RGB. We can choose the RGB values of the // residual for best compression. The prediction of alpha itself can be // non-zero and must be kept though. We choose RGB of the residual to be // 0. residual &= kMaskAlpha; // Update the source image. current_row[x] = predict & ~kMaskAlpha; // The prediction for the rightmost pixel in a row uses the leftmost // pixel // in that row as its top-right context pixel. Hence if we change the // leftmost pixel of current_row, the corresponding change must be // applied // to upper_row as well where top-right context is being read from. if (x == 0 && y != 0) upper_row[width] = current_row[0]; } out[x - x_start] = residual; } } } // Returns best predictor and updates the accumulated histogram. // If max_quantization > 1, assumes that near lossless processing will be // applied, quantizing residuals to multiples of quantization levels up to // max_quantization (the actual quantization level depends on smoothness near // the given pixel). static int GetBestPredictorForTile(int width, int height, int tile_x, int tile_y, int bits, int accumulated[4][256], uint32_t* const argb_scratch, const uint32_t* const argb, int max_quantization, int exact, int used_subtract_green, const uint32_t* const modes) { const int kNumPredModes = 14; const int start_x = tile_x << bits; const int start_y = tile_y << bits; const int tile_size = 1 << bits; const int max_y = GetMin(tile_size, height - start_y); const int max_x = GetMin(tile_size, width - start_x); // Whether there exist columns just outside the tile. const int have_left = (start_x > 0); const int have_right = (max_x < width - start_x); // Position and size of the strip covering the tile and adjacent columns if // they exist. const int context_start_x = start_x - have_left; const int context_width = max_x + have_left + have_right; const int tiles_per_row = VP8LSubSampleSize(width, bits); // Prediction modes of the left and above neighbor tiles. const int left_mode = (tile_x > 0) ? (modes[tile_y * tiles_per_row + tile_x - 1] >> 8) & 0xff : 0xff; const int above_mode = (tile_y > 0) ? (modes[(tile_y - 1) * tiles_per_row + tile_x] >> 8) & 0xff : 0xff; // The width of upper_row and current_row is one pixel larger than image width // to allow the top right pixel to point to the leftmost pixel of the next row // when at the right edge. uint32_t* upper_row = argb_scratch; uint32_t* current_row = upper_row + width + 1; uint8_t* const max_diffs = (uint8_t*)(current_row + width + 1); float best_diff = MAX_DIFF_COST; int best_mode = 0; int mode; int histo_stack_1[4][256]; int histo_stack_2[4][256]; // Need pointers to be able to swap arrays. int (*histo_argb)[256] = histo_stack_1; int (*best_histo)[256] = histo_stack_2; int i, j; uint32_t residuals[1 << MAX_TRANSFORM_BITS]; assert(bits <= MAX_TRANSFORM_BITS); assert(max_x <= (1 << MAX_TRANSFORM_BITS)); for (mode = 0; mode < kNumPredModes; ++mode) { float cur_diff; int relative_y; memset(histo_argb, 0, sizeof(histo_stack_1)); if (start_y > 0) { // Read the row above the tile which will become the first upper_row. // Include a pixel to the left if it exists; include a pixel to the right // in all cases (wrapping to the leftmost pixel of the next row if it does // not exist). memcpy(current_row + context_start_x, argb + (start_y - 1) * width + context_start_x, sizeof(*argb) * (max_x + have_left + 1)); } for (relative_y = 0; relative_y < max_y; ++relative_y) { const int y = start_y + relative_y; int relative_x; uint32_t* tmp = upper_row; upper_row = current_row; current_row = tmp; // Read current_row. Include a pixel to the left if it exists; include a // pixel to the right in all cases except at the bottom right corner of // the image (wrapping to the leftmost pixel of the next row if it does // not exist in the current row). memcpy(current_row + context_start_x, argb + y * width + context_start_x, sizeof(*argb) * (max_x + have_left + (y + 1 < height))); if (max_quantization > 1 && y >= 1 && y + 1 < height) { MaxDiffsForRow(context_width, width, argb + y * width + context_start_x, max_diffs + context_start_x, used_subtract_green); } GetResidual(width, height, upper_row, current_row, max_diffs, mode, start_x, start_x + max_x, y, max_quantization, exact, used_subtract_green, residuals); for (relative_x = 0; relative_x < max_x; ++relative_x) { UpdateHisto(histo_argb, residuals[relative_x]); } } cur_diff = PredictionCostSpatialHistogram( (const int (*)[256])accumulated, (const int (*)[256])histo_argb); // Favor keeping the areas locally similar. if (mode == left_mode) cur_diff -= kSpatialPredictorBias; if (mode == above_mode) cur_diff -= kSpatialPredictorBias; if (cur_diff < best_diff) { int (*tmp)[256] = histo_argb; histo_argb = best_histo; best_histo = tmp; best_diff = cur_diff; best_mode = mode; } } for (i = 0; i < 4; i++) { for (j = 0; j < 256; j++) { accumulated[i][j] += best_histo[i][j]; } } return best_mode; } // Converts pixels of the image to residuals with respect to predictions. // If max_quantization > 1, applies near lossless processing, quantizing // residuals to multiples of quantization levels up to max_quantization // (the actual quantization level depends on smoothness near the given pixel). static void CopyImageWithPrediction(int width, int height, int bits, uint32_t* const modes, uint32_t* const argb_scratch, uint32_t* const argb, int low_effort, int max_quantization, int exact, int used_subtract_green) { const int tiles_per_row = VP8LSubSampleSize(width, bits); // The width of upper_row and current_row is one pixel larger than image width // to allow the top right pixel to point to the leftmost pixel of the next row // when at the right edge. uint32_t* upper_row = argb_scratch; uint32_t* current_row = upper_row + width + 1; uint8_t* current_max_diffs = (uint8_t*)(current_row + width + 1); uint8_t* lower_max_diffs = current_max_diffs + width; int y; for (y = 0; y < height; ++y) { int x; uint32_t* const tmp32 = upper_row; upper_row = current_row; current_row = tmp32; memcpy(current_row, argb + y * width, sizeof(*argb) * (width + (y + 1 < height))); if (low_effort) { PredictBatch(kPredLowEffort, 0, y, width, current_row, upper_row, argb + y * width); } else { if (max_quantization > 1) { // Compute max_diffs for the lower row now, because that needs the // contents of argb for the current row, which we will overwrite with // residuals before proceeding with the next row. uint8_t* const tmp8 = current_max_diffs; current_max_diffs = lower_max_diffs; lower_max_diffs = tmp8; if (y + 2 < height) { MaxDiffsForRow(width, width, argb + (y + 1) * width, lower_max_diffs, used_subtract_green); } } for (x = 0; x < width;) { const int mode = (modes[(y >> bits) * tiles_per_row + (x >> bits)] >> 8) & 0xff; int x_end = x + (1 << bits); if (x_end > width) x_end = width; GetResidual(width, height, upper_row, current_row, current_max_diffs, mode, x, x_end, y, max_quantization, exact, used_subtract_green, argb + y * width + x); x = x_end; } } } } // Finds the best predictor for each tile, and converts the image to residuals // with respect to predictions. If near_lossless_quality < 100, applies // near lossless processing, shaving off more bits of residuals for lower // qualities. void VP8LResidualImage(int width, int height, int bits, int low_effort, uint32_t* const argb, uint32_t* const argb_scratch, uint32_t* const image, int near_lossless_quality, int exact, int used_subtract_green) { const int tiles_per_row = VP8LSubSampleSize(width, bits); const int tiles_per_col = VP8LSubSampleSize(height, bits); int tile_y; int histo[4][256]; const int max_quantization = 1 << VP8LNearLosslessBits(near_lossless_quality); if (low_effort) { int i; for (i = 0; i < tiles_per_row * tiles_per_col; ++i) { image[i] = ARGB_BLACK | (kPredLowEffort << 8); } } else { memset(histo, 0, sizeof(histo)); for (tile_y = 0; tile_y < tiles_per_col; ++tile_y) { int tile_x; for (tile_x = 0; tile_x < tiles_per_row; ++tile_x) { const int pred = GetBestPredictorForTile(width, height, tile_x, tile_y, bits, histo, argb_scratch, argb, max_quantization, exact, used_subtract_green, image); image[tile_y * tiles_per_row + tile_x] = ARGB_BLACK | (pred << 8); } } } CopyImageWithPrediction(width, height, bits, image, argb_scratch, argb, low_effort, max_quantization, exact, used_subtract_green); } //------------------------------------------------------------------------------ // Color transform functions. static WEBP_INLINE void MultipliersClear(VP8LMultipliers* const m) { m->green_to_red_ = 0; m->green_to_blue_ = 0; m->red_to_blue_ = 0; } static WEBP_INLINE void ColorCodeToMultipliers(uint32_t color_code, VP8LMultipliers* const m) { m->green_to_red_ = (color_code >> 0) & 0xff; m->green_to_blue_ = (color_code >> 8) & 0xff; m->red_to_blue_ = (color_code >> 16) & 0xff; } static WEBP_INLINE uint32_t MultipliersToColorCode( const VP8LMultipliers* const m) { return 0xff000000u | ((uint32_t)(m->red_to_blue_) << 16) | ((uint32_t)(m->green_to_blue_) << 8) | m->green_to_red_; } static float PredictionCostCrossColor(const int accumulated[256], const int counts[256]) { // Favor low entropy, locally and globally. // Favor small absolute values for PredictionCostSpatial static const double kExpValue = 2.4; return VP8LCombinedShannonEntropy(counts, accumulated) + PredictionCostSpatial(counts, 3, kExpValue); } static float GetPredictionCostCrossColorRed( const uint32_t* argb, int stride, int tile_width, int tile_height, VP8LMultipliers prev_x, VP8LMultipliers prev_y, int green_to_red, const int accumulated_red_histo[256]) { int histo[256] = { 0 }; float cur_diff; VP8LCollectColorRedTransforms(argb, stride, tile_width, tile_height, green_to_red, histo); cur_diff = PredictionCostCrossColor(accumulated_red_histo, histo); if ((uint8_t)green_to_red == prev_x.green_to_red_) { cur_diff -= 3; // favor keeping the areas locally similar } if ((uint8_t)green_to_red == prev_y.green_to_red_) { cur_diff -= 3; // favor keeping the areas locally similar } if (green_to_red == 0) { cur_diff -= 3; } return cur_diff; } static void GetBestGreenToRed( const uint32_t* argb, int stride, int tile_width, int tile_height, VP8LMultipliers prev_x, VP8LMultipliers prev_y, int quality, const int accumulated_red_histo[256], VP8LMultipliers* const best_tx) { const int kMaxIters = 4 + ((7 * quality) >> 8); // in range [4..6] int green_to_red_best = 0; int iter, offset; float best_diff = GetPredictionCostCrossColorRed( argb, stride, tile_width, tile_height, prev_x, prev_y, green_to_red_best, accumulated_red_histo); for (iter = 0; iter < kMaxIters; ++iter) { // ColorTransformDelta is a 3.5 bit fixed point, so 32 is equal to // one in color computation. Having initial delta here as 1 is sufficient // to explore the range of (-2, 2). const int delta = 32 >> iter; // Try a negative and a positive delta from the best known value. for (offset = -delta; offset <= delta; offset += 2 * delta) { const int green_to_red_cur = offset + green_to_red_best; const float cur_diff = GetPredictionCostCrossColorRed( argb, stride, tile_width, tile_height, prev_x, prev_y, green_to_red_cur, accumulated_red_histo); if (cur_diff < best_diff) { best_diff = cur_diff; green_to_red_best = green_to_red_cur; } } } best_tx->green_to_red_ = green_to_red_best; } static float GetPredictionCostCrossColorBlue( const uint32_t* argb, int stride, int tile_width, int tile_height, VP8LMultipliers prev_x, VP8LMultipliers prev_y, int green_to_blue, int red_to_blue, const int accumulated_blue_histo[256]) { int histo[256] = { 0 }; float cur_diff; VP8LCollectColorBlueTransforms(argb, stride, tile_width, tile_height, green_to_blue, red_to_blue, histo); cur_diff = PredictionCostCrossColor(accumulated_blue_histo, histo); if ((uint8_t)green_to_blue == prev_x.green_to_blue_) { cur_diff -= 3; // favor keeping the areas locally similar } if ((uint8_t)green_to_blue == prev_y.green_to_blue_) { cur_diff -= 3; // favor keeping the areas locally similar } if ((uint8_t)red_to_blue == prev_x.red_to_blue_) { cur_diff -= 3; // favor keeping the areas locally similar } if ((uint8_t)red_to_blue == prev_y.red_to_blue_) { cur_diff -= 3; // favor keeping the areas locally similar } if (green_to_blue == 0) { cur_diff -= 3; } if (red_to_blue == 0) { cur_diff -= 3; } return cur_diff; } #define kGreenRedToBlueNumAxis 8 #define kGreenRedToBlueMaxIters 7 static void GetBestGreenRedToBlue( const uint32_t* argb, int stride, int tile_width, int tile_height, VP8LMultipliers prev_x, VP8LMultipliers prev_y, int quality, const int accumulated_blue_histo[256], VP8LMultipliers* const best_tx) { const int8_t offset[kGreenRedToBlueNumAxis][2] = {{0, -1}, {0, 1}, {-1, 0}, {1, 0}, {-1, -1}, {-1, 1}, {1, -1}, {1, 1}}; const int8_t delta_lut[kGreenRedToBlueMaxIters] = { 16, 16, 8, 4, 2, 2, 2 }; const int iters = (quality < 25) ? 1 : (quality > 50) ? kGreenRedToBlueMaxIters : 4; int green_to_blue_best = 0; int red_to_blue_best = 0; int iter; // Initial value at origin: float best_diff = GetPredictionCostCrossColorBlue( argb, stride, tile_width, tile_height, prev_x, prev_y, green_to_blue_best, red_to_blue_best, accumulated_blue_histo); for (iter = 0; iter < iters; ++iter) { const int delta = delta_lut[iter]; int axis; for (axis = 0; axis < kGreenRedToBlueNumAxis; ++axis) { const int green_to_blue_cur = offset[axis][0] * delta + green_to_blue_best; const int red_to_blue_cur = offset[axis][1] * delta + red_to_blue_best; const float cur_diff = GetPredictionCostCrossColorBlue( argb, stride, tile_width, tile_height, prev_x, prev_y, green_to_blue_cur, red_to_blue_cur, accumulated_blue_histo); if (cur_diff < best_diff) { best_diff = cur_diff; green_to_blue_best = green_to_blue_cur; red_to_blue_best = red_to_blue_cur; } if (quality < 25 && iter == 4) { // Only axis aligned diffs for lower quality. break; // next iter. } } if (delta == 2 && green_to_blue_best == 0 && red_to_blue_best == 0) { // Further iterations would not help. break; // out of iter-loop. } } best_tx->green_to_blue_ = green_to_blue_best; best_tx->red_to_blue_ = red_to_blue_best; } #undef kGreenRedToBlueMaxIters #undef kGreenRedToBlueNumAxis static VP8LMultipliers GetBestColorTransformForTile( int tile_x, int tile_y, int bits, VP8LMultipliers prev_x, VP8LMultipliers prev_y, int quality, int xsize, int ysize, const int accumulated_red_histo[256], const int accumulated_blue_histo[256], const uint32_t* const argb) { const int max_tile_size = 1 << bits; const int tile_y_offset = tile_y * max_tile_size; const int tile_x_offset = tile_x * max_tile_size; const int all_x_max = GetMin(tile_x_offset + max_tile_size, xsize); const int all_y_max = GetMin(tile_y_offset + max_tile_size, ysize); const int tile_width = all_x_max - tile_x_offset; const int tile_height = all_y_max - tile_y_offset; const uint32_t* const tile_argb = argb + tile_y_offset * xsize + tile_x_offset; VP8LMultipliers best_tx; MultipliersClear(&best_tx); GetBestGreenToRed(tile_argb, xsize, tile_width, tile_height, prev_x, prev_y, quality, accumulated_red_histo, &best_tx); GetBestGreenRedToBlue(tile_argb, xsize, tile_width, tile_height, prev_x, prev_y, quality, accumulated_blue_histo, &best_tx); return best_tx; } static void CopyTileWithColorTransform(int xsize, int ysize, int tile_x, int tile_y, int max_tile_size, VP8LMultipliers color_transform, uint32_t* argb) { const int xscan = GetMin(max_tile_size, xsize - tile_x); int yscan = GetMin(max_tile_size, ysize - tile_y); argb += tile_y * xsize + tile_x; while (yscan-- > 0) { VP8LTransformColor(&color_transform, argb, xscan); argb += xsize; } } void VP8LColorSpaceTransform(int width, int height, int bits, int quality, uint32_t* const argb, uint32_t* image) { const int max_tile_size = 1 << bits; const int tile_xsize = VP8LSubSampleSize(width, bits); const int tile_ysize = VP8LSubSampleSize(height, bits); int accumulated_red_histo[256] = { 0 }; int accumulated_blue_histo[256] = { 0 }; int tile_x, tile_y; VP8LMultipliers prev_x, prev_y; MultipliersClear(&prev_y); MultipliersClear(&prev_x); for (tile_y = 0; tile_y < tile_ysize; ++tile_y) { for (tile_x = 0; tile_x < tile_xsize; ++tile_x) { int y; const int tile_x_offset = tile_x * max_tile_size; const int tile_y_offset = tile_y * max_tile_size; const int all_x_max = GetMin(tile_x_offset + max_tile_size, width); const int all_y_max = GetMin(tile_y_offset + max_tile_size, height); const int offset = tile_y * tile_xsize + tile_x; if (tile_y != 0) { ColorCodeToMultipliers(image[offset - tile_xsize], &prev_y); } prev_x = GetBestColorTransformForTile(tile_x, tile_y, bits, prev_x, prev_y, quality, width, height, accumulated_red_histo, accumulated_blue_histo, argb); image[offset] = MultipliersToColorCode(&prev_x); CopyTileWithColorTransform(width, height, tile_x_offset, tile_y_offset, max_tile_size, prev_x, argb); // Gather accumulated histogram data. for (y = tile_y_offset; y < all_y_max; ++y) { int ix = y * width + tile_x_offset; const int ix_end = ix + all_x_max - tile_x_offset; for (; ix < ix_end; ++ix) { const uint32_t pix = argb[ix]; if (ix >= 2 && pix == argb[ix - 2] && pix == argb[ix - 1]) { continue; // repeated pixels are handled by backward references } if (ix >= width + 2 && argb[ix - 2] == argb[ix - width - 2] && argb[ix - 1] == argb[ix - width - 1] && pix == argb[ix - width]) { continue; // repeated pixels are handled by backward references } ++accumulated_red_histo[(pix >> 16) & 0xff]; ++accumulated_blue_histo[(pix >> 0) & 0xff]; } } } } }