// Copyright 2012 Google Inc. All Rights Reserved. // // Use of this source code is governed by a BSD-style license // that can be found in the COPYING file in the root of the source // tree. An additional intellectual property rights grant can be found // in the file PATENTS. All contributing project authors may // be found in the AUTHORS file in the root of the source tree. // ----------------------------------------------------------------------------- // // ARM NEON version of dsp functions and loop filtering. // // Authors: Somnath Banerjee (somnath@google.com) // Johann Koenig (johannkoenig@google.com) #include "./dsp.h" #if defined(WEBP_USE_NEON) // #define USE_INTRINSICS // use intrinsics when possible // if using intrinsics, this flag avoids some functions that make gcc-4.6.3 // crash ("internal compiler error: in immed_double_const, at emit-rtl."). // (probably similar to gcc.gnu.org/bugzilla/show_bug.cgi?id=48183) #define WORK_AROUND_GCC #include #include "../dec/vp8i.h" #define QRegs "q0", "q1", "q2", "q3", \ "q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15" #define FLIP_SIGN_BIT2(a, b, s) \ "veor " #a "," #a "," #s " \n" \ "veor " #b "," #b "," #s " \n" \ #define FLIP_SIGN_BIT4(a, b, c, d, s) \ FLIP_SIGN_BIT2(a, b, s) \ FLIP_SIGN_BIT2(c, d, s) \ #define NEEDS_FILTER(p1, p0, q0, q1, thresh, mask) \ "vabd.u8 q15," #p0 "," #q0 " \n" /* abs(p0 - q0) */ \ "vabd.u8 q14," #p1 "," #q1 " \n" /* abs(p1 - q1) */ \ "vqadd.u8 q15, q15, q15 \n" /* abs(p0 - q0) * 2 */ \ "vshr.u8 q14, q14, #1 \n" /* abs(p1 - q1) / 2 */ \ "vqadd.u8 q15, q15, q14 \n" /* abs(p0 - q0) * 2 + abs(p1 - q1) / 2 */ \ "vdup.8 q14, " #thresh " \n" \ "vcge.u8 " #mask ", q14, q15 \n" /* mask <= thresh */ #define GET_BASE_DELTA(p1, p0, q0, q1, o) \ "vqsub.s8 q15," #q0 "," #p0 " \n" /* (q0 - p0) */ \ "vqsub.s8 " #o "," #p1 "," #q1 " \n" /* (p1 - q1) */ \ "vqadd.s8 " #o "," #o ", q15 \n" /* (p1 - q1) + 1 * (p0 - q0) */ \ "vqadd.s8 " #o "," #o ", q15 \n" /* (p1 - q1) + 2 * (p0 - q0) */ \ "vqadd.s8 " #o "," #o ", q15 \n" /* (p1 - q1) + 3 * (p0 - q0) */ #define DO_SIMPLE_FILTER(p0, q0, fl) \ "vmov.i8 q15, #0x03 \n" \ "vqadd.s8 q15, q15, " #fl " \n" /* filter1 = filter + 3 */ \ "vshr.s8 q15, q15, #3 \n" /* filter1 >> 3 */ \ "vqadd.s8 " #p0 "," #p0 ", q15 \n" /* p0 += filter1 */ \ \ "vmov.i8 q15, #0x04 \n" \ "vqadd.s8 q15, q15, " #fl " \n" /* filter1 = filter + 4 */ \ "vshr.s8 q15, q15, #3 \n" /* filter2 >> 3 */ \ "vqsub.s8 " #q0 "," #q0 ", q15 \n" /* q0 -= filter2 */ // Applies filter on 2 pixels (p0 and q0) #define DO_FILTER2(p1, p0, q0, q1, thresh) \ NEEDS_FILTER(p1, p0, q0, q1, thresh, q9) /* filter mask in q9 */ \ "vmov.i8 q10, #0x80 \n" /* sign bit */ \ FLIP_SIGN_BIT4(p1, p0, q0, q1, q10) /* convert to signed value */ \ GET_BASE_DELTA(p1, p0, q0, q1, q11) /* get filter level */ \ "vand q9, q9, q11 \n" /* apply filter mask */ \ DO_SIMPLE_FILTER(p0, q0, q9) /* apply filter */ \ FLIP_SIGN_BIT2(p0, q0, q10) #if defined(USE_INTRINSICS) //------------------------------------------------------------------------------ // NxM Loading functions #if !defined(WORK_AROUND_GCC) // This intrinsics version makes gcc-4.6.3 crash during Load4x??() compilation // (register alloc, probably). The variants somewhat mitigate the problem, but // not quite. HFilter16i() remains problematic. static WEBP_INLINE uint8x8x4_t Load4x8(const uint8_t* const src, int stride) { uint8x8x4_t out = {{{0}, {0}, {0}, {0}}}; out = vld4_lane_u8(src + 0 * stride, out, 0); out = vld4_lane_u8(src + 1 * stride, out, 1); out = vld4_lane_u8(src + 2 * stride, out, 2); out = vld4_lane_u8(src + 3 * stride, out, 3); out = vld4_lane_u8(src + 4 * stride, out, 4); out = vld4_lane_u8(src + 5 * stride, out, 5); out = vld4_lane_u8(src + 6 * stride, out, 6); out = vld4_lane_u8(src + 7 * stride, out, 7); return out; } static WEBP_INLINE void Load4x16(const uint8_t* const src, int stride, uint8x16_t* const p1, uint8x16_t* const p0, uint8x16_t* const q0, uint8x16_t* const q1) { // row0 = p1[0..7]|p0[0..7]|q0[0..7]|q1[0..7] // row8 = p1[8..15]|p0[8..15]|q0[8..15]|q1[8..15] const uint8x8x4_t row0 = Load4x8(src - 2 + 0 * stride, stride); const uint8x8x4_t row8 = Load4x8(src - 2 + 8 * stride, stride); *p1 = vcombine_u8(row0.val[0], row8.val[0]); *p0 = vcombine_u8(row0.val[1], row8.val[1]); *q0 = vcombine_u8(row0.val[2], row8.val[2]); *q1 = vcombine_u8(row0.val[3], row8.val[3]); } #else #define LOAD_LANE_32b(VALUE, LANE) do { \ (VALUE) = vset_lane_u32(*(const uint32_t*)src, (VALUE), (LANE)); \ src += stride; \ } while (0) #define LOADQ_LANE_32b(VALUE, LANE) do { \ (VALUE) = vsetq_lane_u32(*(const uint32_t*)src, (VALUE), (LANE)); \ src += stride; \ } while (0) static WEBP_INLINE uint8x8x4_t Load4x8(const uint8_t* src, int stride) { uint32x2x4_t in = {{{0}, {0}, {0}, {0}}}; LOAD_LANE_32b(in.val[0], 0); // a0 a1 a2 a3 LOAD_LANE_32b(in.val[1], 0); // b0 b1 b2 b3 LOAD_LANE_32b(in.val[2], 0); // c0 c1 c2 c3 LOAD_LANE_32b(in.val[3], 0); // d0 d1 d2 d3 LOAD_LANE_32b(in.val[0], 1); // e0 e1 e2 e3 LOAD_LANE_32b(in.val[1], 1); // f0 f1 f2 f3 LOAD_LANE_32b(in.val[2], 1); // g0 g1 g2 g3 LOAD_LANE_32b(in.val[3], 1); // h0 h1 h2 h3 // out{4} = // a0 a1 a2 a3 | e0 e1 e2 e3 // b0 b1 b2 b3 | f0 f1 f2 f3 // c0 c1 c2 c3 | g0 g1 g2 g3 // d0 d1 d2 d3 | h0 h1 h2 h3 // Transpose two 4x4 parts: { const uint8x8x2_t row01 = vtrn_u8(vreinterpret_u8_u32(in.val[0]), vreinterpret_u8_u32(in.val[1])); const uint8x8x2_t row23 = vtrn_u8(vreinterpret_u8_u32(in.val[2]), vreinterpret_u8_u32(in.val[3])); // row01 = a0 b0 a2 b2 | e0 f0 e2 f2 // a1 b1 a3 b3 | e1 f1 e3 f3 // row23 = c0 d0 c2 c2 | g0 h0 g2 h2 // c1 d1 d3 d3 | g1 h1 g3 h3 const uint16x4x2_t row02 = vtrn_u16(vreinterpret_u16_u8(row01.val[0]), vreinterpret_u16_u8(row23.val[0])); const uint16x4x2_t row13 = vtrn_u16(vreinterpret_u16_u8(row01.val[1]), vreinterpret_u16_u8(row23.val[1])); // row02 = a0 b0 c0 d0 | e0 f0 g0 h0 // a2 b2 c2 c2 | e2 f2 g2 h2 // row13 = a1 b1 c1 d1 | e1 f1 g1 h1 // a3 b3 d3 d3 | e3 f3 h3 h3 uint8x8x4_t out = {{{0}, {0}, {0}, {0}}}; out.val[0] = vreinterpret_u8_u16(row02.val[0]); out.val[1] = vreinterpret_u8_u16(row13.val[0]); out.val[2] = vreinterpret_u8_u16(row02.val[1]); out.val[3] = vreinterpret_u8_u16(row13.val[1]); return out; } } static WEBP_INLINE void Load4x16(const uint8_t* src, int stride, uint8x16_t* const p1, uint8x16_t* const p0, uint8x16_t* const q0, uint8x16_t* const q1) { uint32x4x4_t in = {{{0}, {0}, {0}, {0}}}; src -= 2; LOADQ_LANE_32b(in.val[0], 0); LOADQ_LANE_32b(in.val[1], 0); LOADQ_LANE_32b(in.val[2], 0); LOADQ_LANE_32b(in.val[3], 0); LOADQ_LANE_32b(in.val[0], 1); LOADQ_LANE_32b(in.val[1], 1); LOADQ_LANE_32b(in.val[2], 1); LOADQ_LANE_32b(in.val[3], 1); LOADQ_LANE_32b(in.val[0], 2); LOADQ_LANE_32b(in.val[1], 2); LOADQ_LANE_32b(in.val[2], 2); LOADQ_LANE_32b(in.val[3], 2); LOADQ_LANE_32b(in.val[0], 3); LOADQ_LANE_32b(in.val[1], 3); LOADQ_LANE_32b(in.val[2], 3); LOADQ_LANE_32b(in.val[3], 3); // Transpose four 4x4 parts: { const uint8x16x2_t row01 = vtrnq_u8(vreinterpretq_u8_u32(in.val[0]), vreinterpretq_u8_u32(in.val[1])); const uint8x16x2_t row23 = vtrnq_u8(vreinterpretq_u8_u32(in.val[2]), vreinterpretq_u8_u32(in.val[3])); const uint16x8x2_t row02 = vtrnq_u16(vreinterpretq_u16_u8(row01.val[0]), vreinterpretq_u16_u8(row23.val[0])); const uint16x8x2_t row13 = vtrnq_u16(vreinterpretq_u16_u8(row01.val[1]), vreinterpretq_u16_u8(row23.val[1])); *p1 = vreinterpretq_u8_u16(row02.val[0]); *p0 = vreinterpretq_u8_u16(row13.val[0]); *q0 = vreinterpretq_u8_u16(row02.val[1]); *q1 = vreinterpretq_u8_u16(row13.val[1]); } } #undef LOAD_LANE_32b #undef LOADQ_LANE_32b #endif // WORK_AROUND_GCC static WEBP_INLINE void Load8x16(const uint8_t* const src, int stride, uint8x16_t* const p3, uint8x16_t* const p2, uint8x16_t* const p1, uint8x16_t* const p0, uint8x16_t* const q0, uint8x16_t* const q1, uint8x16_t* const q2, uint8x16_t* const q3) { Load4x16(src - 2, stride, p3, p2, p1, p0); Load4x16(src + 2, stride, q0, q1, q2, q3); } static WEBP_INLINE void Load16x4(const uint8_t* const src, int stride, uint8x16_t* const p1, uint8x16_t* const p0, uint8x16_t* const q0, uint8x16_t* const q1) { *p1 = vld1q_u8(src - 2 * stride); *p0 = vld1q_u8(src - 1 * stride); *q0 = vld1q_u8(src + 0 * stride); *q1 = vld1q_u8(src + 1 * stride); } static WEBP_INLINE void Load16x8(const uint8_t* const src, int stride, uint8x16_t* const p3, uint8x16_t* const p2, uint8x16_t* const p1, uint8x16_t* const p0, uint8x16_t* const q0, uint8x16_t* const q1, uint8x16_t* const q2, uint8x16_t* const q3) { Load16x4(src - 2 * stride, stride, p3, p2, p1, p0); Load16x4(src + 2 * stride, stride, q0, q1, q2, q3); } static WEBP_INLINE void Store2x8(const uint8x8x2_t v, uint8_t* const dst, int stride) { vst2_lane_u8(dst + 0 * stride, v, 0); vst2_lane_u8(dst + 1 * stride, v, 1); vst2_lane_u8(dst + 2 * stride, v, 2); vst2_lane_u8(dst + 3 * stride, v, 3); vst2_lane_u8(dst + 4 * stride, v, 4); vst2_lane_u8(dst + 5 * stride, v, 5); vst2_lane_u8(dst + 6 * stride, v, 6); vst2_lane_u8(dst + 7 * stride, v, 7); } static WEBP_INLINE void Store2x16(const uint8x16_t p0, const uint8x16_t q0, uint8_t* const dst, int stride) { uint8x8x2_t lo, hi; lo.val[0] = vget_low_u8(p0); lo.val[1] = vget_low_u8(q0); hi.val[0] = vget_high_u8(p0); hi.val[1] = vget_high_u8(q0); Store2x8(lo, dst - 1 + 0 * stride, stride); Store2x8(hi, dst - 1 + 8 * stride, stride); } static WEBP_INLINE void Store4x8(const uint8x8x4_t v, uint8_t* const dst, int stride) { vst4_lane_u8(dst + 0 * stride, v, 0); vst4_lane_u8(dst + 1 * stride, v, 1); vst4_lane_u8(dst + 2 * stride, v, 2); vst4_lane_u8(dst + 3 * stride, v, 3); vst4_lane_u8(dst + 4 * stride, v, 4); vst4_lane_u8(dst + 5 * stride, v, 5); vst4_lane_u8(dst + 6 * stride, v, 6); vst4_lane_u8(dst + 7 * stride, v, 7); } static WEBP_INLINE void Store4x16(const uint8x16_t p1, const uint8x16_t p0, const uint8x16_t q0, const uint8x16_t q1, uint8_t* const dst, int stride) { const uint8x8x4_t lo = {{ vget_low_u8(p1), vget_low_u8(p0), vget_low_u8(q0), vget_low_u8(q1) }}; const uint8x8x4_t hi = {{ vget_high_u8(p1), vget_high_u8(p0), vget_high_u8(q0), vget_high_u8(q1) }}; Store4x8(lo, dst - 2 + 0 * stride, stride); Store4x8(hi, dst - 2 + 8 * stride, stride); } static WEBP_INLINE void Store16x2(const uint8x16_t p0, const uint8x16_t q0, uint8_t* const dst, int stride) { vst1q_u8(dst - stride, p0); vst1q_u8(dst, q0); } static WEBP_INLINE void Store16x4(const uint8x16_t p1, const uint8x16_t p0, const uint8x16_t q0, const uint8x16_t q1, uint8_t* const dst, int stride) { Store16x2(p1, p0, dst - stride, stride); Store16x2(q0, q1, dst + stride, stride); } //------------------------------------------------------------------------------ static uint8x16_t NeedsFilter(const uint8x16_t p1, const uint8x16_t p0, const uint8x16_t q0, const uint8x16_t q1, int thresh) { const uint8x16_t thresh_v = vdupq_n_u8((uint8_t)thresh); const uint8x16_t a_p0_q0 = vabdq_u8(p0, q0); // abs(p0-q0) const uint8x16_t a_p1_q1 = vabdq_u8(p1, q1); // abs(p1-q1) const uint8x16_t a_p0_q0_2 = vqaddq_u8(a_p0_q0, a_p0_q0); // 2 * abs(p0-q0) const uint8x16_t a_p1_q1_2 = vshrq_n_u8(a_p1_q1, 1); // abs(p1-q1) / 2 const uint8x16_t sum = vqaddq_u8(a_p0_q0_2, a_p1_q1_2); const uint8x16_t mask = vcgeq_u8(thresh_v, sum); return mask; } static int8x16_t FlipSign(const uint8x16_t v) { const uint8x16_t sign_bit = vdupq_n_u8(0x80); return vreinterpretq_s8_u8(veorq_u8(v, sign_bit)); } static uint8x16_t FlipSignBack(const int8x16_t v) { const int8x16_t sign_bit = vdupq_n_s8(0x80); return vreinterpretq_u8_s8(veorq_s8(v, sign_bit)); } static int8x16_t GetBaseDelta(const int8x16_t p1, const int8x16_t p0, const int8x16_t q0, const int8x16_t q1) { const int8x16_t q0_p0 = vqsubq_s8(q0, p0); // (q0-p0) const int8x16_t p1_q1 = vqsubq_s8(p1, q1); // (p1-q1) const int8x16_t s1 = vqaddq_s8(p1_q1, q0_p0); // (p1-q1) + 1 * (q0 - p0) const int8x16_t s2 = vqaddq_s8(q0_p0, s1); // (p1-q1) + 2 * (q0 - p0) const int8x16_t s3 = vqaddq_s8(q0_p0, s2); // (p1-q1) + 3 * (q0 - p0) return s3; } static int8x16_t GetBaseDelta0(const int8x16_t p0, const int8x16_t q0) { const int8x16_t q0_p0 = vqsubq_s8(q0, p0); // (q0-p0) const int8x16_t s1 = vqaddq_s8(q0_p0, q0_p0); // 2 * (q0 - p0) const int8x16_t s2 = vqaddq_s8(q0_p0, s1); // 3 * (q0 - p0) return s2; } //------------------------------------------------------------------------------ static void ApplyFilter2(const int8x16_t p0s, const int8x16_t q0s, const int8x16_t delta, uint8x16_t* const op0, uint8x16_t* const oq0) { const int8x16_t kCst3 = vdupq_n_s8(0x03); const int8x16_t kCst4 = vdupq_n_s8(0x04); const int8x16_t delta_p3 = vqaddq_s8(delta, kCst3); const int8x16_t delta_p4 = vqaddq_s8(delta, kCst4); const int8x16_t delta3 = vshrq_n_s8(delta_p3, 3); const int8x16_t delta4 = vshrq_n_s8(delta_p4, 3); const int8x16_t sp0 = vqaddq_s8(p0s, delta3); const int8x16_t sq0 = vqsubq_s8(q0s, delta4); *op0 = FlipSignBack(sp0); *oq0 = FlipSignBack(sq0); } static void DoFilter2(const uint8x16_t p1, const uint8x16_t p0, const uint8x16_t q0, const uint8x16_t q1, const uint8x16_t mask, uint8x16_t* const op0, uint8x16_t* const oq0) { const int8x16_t p1s = FlipSign(p1); const int8x16_t p0s = FlipSign(p0); const int8x16_t q0s = FlipSign(q0); const int8x16_t q1s = FlipSign(q1); const int8x16_t delta0 = GetBaseDelta(p1s, p0s, q0s, q1s); const int8x16_t delta1 = vandq_s8(delta0, vreinterpretq_s8_u8(mask)); ApplyFilter2(p0s, q0s, delta1, op0, oq0); } #endif // USE_INTRINSICS // Load/Store vertical edge #define LOAD8x4(c1, c2, c3, c4, b1, b2, stride) \ "vld4.8 {" #c1"[0], " #c2"[0], " #c3"[0], " #c4"[0]}," #b1 "," #stride"\n" \ "vld4.8 {" #c1"[1], " #c2"[1], " #c3"[1], " #c4"[1]}," #b2 "," #stride"\n" \ "vld4.8 {" #c1"[2], " #c2"[2], " #c3"[2], " #c4"[2]}," #b1 "," #stride"\n" \ "vld4.8 {" #c1"[3], " #c2"[3], " #c3"[3], " #c4"[3]}," #b2 "," #stride"\n" \ "vld4.8 {" #c1"[4], " #c2"[4], " #c3"[4], " #c4"[4]}," #b1 "," #stride"\n" \ "vld4.8 {" #c1"[5], " #c2"[5], " #c3"[5], " #c4"[5]}," #b2 "," #stride"\n" \ "vld4.8 {" #c1"[6], " #c2"[6], " #c3"[6], " #c4"[6]}," #b1 "," #stride"\n" \ "vld4.8 {" #c1"[7], " #c2"[7], " #c3"[7], " #c4"[7]}," #b2 "," #stride"\n" #define STORE8x2(c1, c2, p, stride) \ "vst2.8 {" #c1"[0], " #c2"[0]}," #p "," #stride " \n" \ "vst2.8 {" #c1"[1], " #c2"[1]}," #p "," #stride " \n" \ "vst2.8 {" #c1"[2], " #c2"[2]}," #p "," #stride " \n" \ "vst2.8 {" #c1"[3], " #c2"[3]}," #p "," #stride " \n" \ "vst2.8 {" #c1"[4], " #c2"[4]}," #p "," #stride " \n" \ "vst2.8 {" #c1"[5], " #c2"[5]}," #p "," #stride " \n" \ "vst2.8 {" #c1"[6], " #c2"[6]}," #p "," #stride " \n" \ "vst2.8 {" #c1"[7], " #c2"[7]}," #p "," #stride " \n" // Treats 'v' as an uint8x8_t and zero extends to an int16x8_t. static WEBP_INLINE int16x8_t ConvertU8ToS16(uint32x2_t v) { return vreinterpretq_s16_u16(vmovl_u8(vreinterpret_u8_u32(v))); } // Performs unsigned 8b saturation on 'dst01' and 'dst23' storing the result // to the corresponding rows of 'dst'. static WEBP_INLINE void SaturateAndStore4x4(uint8_t* const dst, int16x8_t dst01, int16x8_t dst23) { // Unsigned saturate to 8b. const uint8x8_t dst01_u8 = vqmovun_s16(dst01); const uint8x8_t dst23_u8 = vqmovun_s16(dst23); // Store the results. *(int*)(dst + 0 * BPS) = vget_lane_s32(vreinterpret_s32_u8(dst01_u8), 0); *(int*)(dst + 1 * BPS) = vget_lane_s32(vreinterpret_s32_u8(dst01_u8), 1); *(int*)(dst + 2 * BPS) = vget_lane_s32(vreinterpret_s32_u8(dst23_u8), 0); *(int*)(dst + 3 * BPS) = vget_lane_s32(vreinterpret_s32_u8(dst23_u8), 1); } //----------------------------------------------------------------------------- // Simple In-loop filtering (Paragraph 15.2) #if !defined(USE_INTRINSICS) static void SimpleVFilter16(uint8_t* p, int stride, int thresh) { __asm__ volatile ( "sub %[p], %[p], %[stride], lsl #1 \n" // p -= 2 * stride "vld1.u8 {q1}, [%[p]], %[stride] \n" // p1 "vld1.u8 {q2}, [%[p]], %[stride] \n" // p0 "vld1.u8 {q3}, [%[p]], %[stride] \n" // q0 "vld1.u8 {q12}, [%[p]] \n" // q1 DO_FILTER2(q1, q2, q3, q12, %[thresh]) "sub %[p], %[p], %[stride], lsl #1 \n" // p -= 2 * stride "vst1.u8 {q2}, [%[p]], %[stride] \n" // store op0 "vst1.u8 {q3}, [%[p]] \n" // store oq0 : [p] "+r"(p) : [stride] "r"(stride), [thresh] "r"(thresh) : "memory", QRegs ); } static void SimpleHFilter16(uint8_t* p, int stride, int thresh) { __asm__ volatile ( "sub r4, %[p], #2 \n" // base1 = p - 2 "lsl r6, %[stride], #1 \n" // r6 = 2 * stride "add r5, r4, %[stride] \n" // base2 = base1 + stride LOAD8x4(d2, d3, d4, d5, [r4], [r5], r6) LOAD8x4(d24, d25, d26, d27, [r4], [r5], r6) "vswp d3, d24 \n" // p1:q1 p0:q3 "vswp d5, d26 \n" // q0:q2 q1:q4 "vswp q2, q12 \n" // p1:q1 p0:q2 q0:q3 q1:q4 DO_FILTER2(q1, q2, q12, q13, %[thresh]) "sub %[p], %[p], #1 \n" // p - 1 "vswp d5, d24 \n" STORE8x2(d4, d5, [%[p]], %[stride]) STORE8x2(d24, d25, [%[p]], %[stride]) : [p] "+r"(p) : [stride] "r"(stride), [thresh] "r"(thresh) : "memory", "r4", "r5", "r6", QRegs ); } #else static void SimpleVFilter16(uint8_t* p, int stride, int thresh) { uint8x16_t p1, p0, q0, q1, op0, oq0; Load16x4(p, stride, &p1, &p0, &q0, &q1); { const uint8x16_t mask = NeedsFilter(p1, p0, q0, q1, thresh); DoFilter2(p1, p0, q0, q1, mask, &op0, &oq0); } Store16x2(op0, oq0, p, stride); } static void SimpleHFilter16(uint8_t* p, int stride, int thresh) { uint8x16_t p1, p0, q0, q1, oq0, op0; Load4x16(p, stride, &p1, &p0, &q0, &q1); { const uint8x16_t mask = NeedsFilter(p1, p0, q0, q1, thresh); DoFilter2(p1, p0, q0, q1, mask, &op0, &oq0); } Store2x16(op0, oq0, p, stride); } #endif // USE_INTRINSICS static void SimpleVFilter16i(uint8_t* p, int stride, int thresh) { int k; for (k = 3; k > 0; --k) { p += 4 * stride; SimpleVFilter16(p, stride, thresh); } } static void SimpleHFilter16i(uint8_t* p, int stride, int thresh) { int k; for (k = 3; k > 0; --k) { p += 4; SimpleHFilter16(p, stride, thresh); } } //------------------------------------------------------------------------------ // Complex In-loop filtering (Paragraph 15.3) #if defined(USE_INTRINSICS) static uint8x16_t NeedsHev(const uint8x16_t p1, const uint8x16_t p0, const uint8x16_t q0, const uint8x16_t q1, int hev_thresh) { const uint8x16_t hev_thresh_v = vdupq_n_u8((uint8_t)hev_thresh); const uint8x16_t a_p1_p0 = vabdq_u8(p1, p0); // abs(p1 - p0) const uint8x16_t a_q1_q0 = vabdq_u8(q1, q0); // abs(q1 - q0) const uint8x16_t mask1 = vcgtq_u8(a_p1_p0, hev_thresh_v); const uint8x16_t mask2 = vcgtq_u8(a_q1_q0, hev_thresh_v); const uint8x16_t mask = vorrq_u8(mask1, mask2); return mask; } static uint8x16_t NeedsFilter2(const uint8x16_t p3, const uint8x16_t p2, const uint8x16_t p1, const uint8x16_t p0, const uint8x16_t q0, const uint8x16_t q1, const uint8x16_t q2, const uint8x16_t q3, int ithresh, int thresh) { const uint8x16_t ithresh_v = vdupq_n_u8((uint8_t)ithresh); const uint8x16_t a_p3_p2 = vabdq_u8(p3, p2); // abs(p3 - p2) const uint8x16_t a_p2_p1 = vabdq_u8(p2, p1); // abs(p2 - p1) const uint8x16_t a_p1_p0 = vabdq_u8(p1, p0); // abs(p1 - p0) const uint8x16_t a_q3_q2 = vabdq_u8(q3, q2); // abs(q3 - q2) const uint8x16_t a_q2_q1 = vabdq_u8(q2, q1); // abs(q2 - q1) const uint8x16_t a_q1_q0 = vabdq_u8(q1, q0); // abs(q1 - q0) const uint8x16_t max1 = vmaxq_u8(a_p3_p2, a_p2_p1); const uint8x16_t max2 = vmaxq_u8(a_p1_p0, a_q3_q2); const uint8x16_t max3 = vmaxq_u8(a_q2_q1, a_q1_q0); const uint8x16_t max12 = vmaxq_u8(max1, max2); const uint8x16_t max123 = vmaxq_u8(max12, max3); const uint8x16_t mask2 = vcgeq_u8(ithresh_v, max123); const uint8x16_t mask1 = NeedsFilter(p1, p0, q0, q1, thresh); const uint8x16_t mask = vandq_u8(mask1, mask2); return mask; } // 4-points filter static void ApplyFilter4( const int8x16_t p1, const int8x16_t p0, const int8x16_t q0, const int8x16_t q1, const int8x16_t delta0, uint8x16_t* const op1, uint8x16_t* const op0, uint8x16_t* const oq0, uint8x16_t* const oq1) { const int8x16_t kCst3 = vdupq_n_s8(0x03); const int8x16_t kCst4 = vdupq_n_s8(0x04); const int8x16_t delta1 = vqaddq_s8(delta0, kCst4); const int8x16_t delta2 = vqaddq_s8(delta0, kCst3); const int8x16_t a1 = vshrq_n_s8(delta1, 3); const int8x16_t a2 = vshrq_n_s8(delta2, 3); const int8x16_t a3 = vrshrq_n_s8(a1, 1); // a3 = (a1 + 1) >> 1 *op0 = FlipSignBack(vqaddq_s8(p0, a2)); // clip(p0 + a2) *oq0 = FlipSignBack(vqsubq_s8(q0, a1)); // clip(q0 - a1) *op1 = FlipSignBack(vqaddq_s8(p1, a3)); // clip(p1 + a3) *oq1 = FlipSignBack(vqsubq_s8(q1, a3)); // clip(q1 - a3) } static void DoFilter4( const uint8x16_t p1, const uint8x16_t p0, const uint8x16_t q0, const uint8x16_t q1, const uint8x16_t mask, const uint8x16_t hev_mask, uint8x16_t* const op1, uint8x16_t* const op0, uint8x16_t* const oq0, uint8x16_t* const oq1) { // This is a fused version of DoFilter2() calling ApplyFilter2 directly const int8x16_t p1s = FlipSign(p1); int8x16_t p0s = FlipSign(p0); int8x16_t q0s = FlipSign(q0); const int8x16_t q1s = FlipSign(q1); const uint8x16_t simple_lf_mask = vandq_u8(mask, hev_mask); // do_filter2 part (simple loopfilter on pixels with hev) { const int8x16_t delta = GetBaseDelta(p1s, p0s, q0s, q1s); const int8x16_t simple_lf_delta = vandq_s8(delta, vreinterpretq_s8_u8(simple_lf_mask)); uint8x16_t tmp_p0, tmp_q0; ApplyFilter2(p0s, q0s, simple_lf_delta, &tmp_p0, &tmp_q0); // TODO(skal): avoid the double FlipSign() in ApplyFilter2() and here p0s = FlipSign(tmp_p0); q0s = FlipSign(tmp_q0); } // do_filter4 part (complex loopfilter on pixels without hev) { const int8x16_t delta0 = GetBaseDelta0(p0s, q0s); // we use: (mask & hev_mask) ^ mask = mask & !hev_mask const uint8x16_t complex_lf_mask = veorq_u8(simple_lf_mask, mask); const int8x16_t complex_lf_delta = vandq_s8(delta0, vreinterpretq_s8_u8(complex_lf_mask)); ApplyFilter4(p1s, p0s, q0s, q1s, complex_lf_delta, op1, op0, oq0, oq1); } } // 6-points filter static void ApplyFilter6( const int8x16_t p2, const int8x16_t p1, const int8x16_t p0, const int8x16_t q0, const int8x16_t q1, const int8x16_t q2, const int8x16_t delta, uint8x16_t* const op2, uint8x16_t* const op1, uint8x16_t* const op0, uint8x16_t* const oq0, uint8x16_t* const oq1, uint8x16_t* const oq2) { const int16x8_t kCst63 = vdupq_n_s16(63); const int8x8_t kCst27 = vdup_n_s8(27); const int8x8_t kCst18 = vdup_n_s8(18); const int8x8_t kCst9 = vdup_n_s8(9); const int8x8_t delta_lo = vget_low_s8(delta); const int8x8_t delta_hi = vget_high_s8(delta); const int16x8_t s1_lo = vmlal_s8(kCst63, kCst27, delta_lo); // 63 + 27 * a const int16x8_t s1_hi = vmlal_s8(kCst63, kCst27, delta_hi); // 63 + 27 * a const int16x8_t s2_lo = vmlal_s8(kCst63, kCst18, delta_lo); // 63 + 18 * a const int16x8_t s2_hi = vmlal_s8(kCst63, kCst18, delta_hi); // 63 + 18 * a const int16x8_t s3_lo = vmlal_s8(kCst63, kCst9, delta_lo); // 63 + 9 * a const int16x8_t s3_hi = vmlal_s8(kCst63, kCst9, delta_hi); // 63 + 9 * a const int8x8_t a1_lo = vqshrn_n_s16(s1_lo, 7); const int8x8_t a1_hi = vqshrn_n_s16(s1_hi, 7); const int8x8_t a2_lo = vqshrn_n_s16(s2_lo, 7); const int8x8_t a2_hi = vqshrn_n_s16(s2_hi, 7); const int8x8_t a3_lo = vqshrn_n_s16(s3_lo, 7); const int8x8_t a3_hi = vqshrn_n_s16(s3_hi, 7); const int8x16_t a1 = vcombine_s8(a1_lo, a1_hi); const int8x16_t a2 = vcombine_s8(a2_lo, a2_hi); const int8x16_t a3 = vcombine_s8(a3_lo, a3_hi); *op0 = FlipSignBack(vqaddq_s8(p0, a1)); // clip(p0 + a1) *oq0 = FlipSignBack(vqsubq_s8(q0, a1)); // clip(q0 - q1) *oq1 = FlipSignBack(vqsubq_s8(q1, a2)); // clip(q1 - a2) *op1 = FlipSignBack(vqaddq_s8(p1, a2)); // clip(p1 + a2) *oq2 = FlipSignBack(vqsubq_s8(q2, a3)); // clip(q2 - a3) *op2 = FlipSignBack(vqaddq_s8(p2, a3)); // clip(p2 + a3) } static void DoFilter6( const uint8x16_t p2, const uint8x16_t p1, const uint8x16_t p0, const uint8x16_t q0, const uint8x16_t q1, const uint8x16_t q2, const uint8x16_t mask, const uint8x16_t hev_mask, uint8x16_t* const op2, uint8x16_t* const op1, uint8x16_t* const op0, uint8x16_t* const oq0, uint8x16_t* const oq1, uint8x16_t* const oq2) { // This is a fused version of DoFilter2() calling ApplyFilter2 directly const int8x16_t p2s = FlipSign(p2); const int8x16_t p1s = FlipSign(p1); int8x16_t p0s = FlipSign(p0); int8x16_t q0s = FlipSign(q0); const int8x16_t q1s = FlipSign(q1); const int8x16_t q2s = FlipSign(q2); const uint8x16_t simple_lf_mask = vandq_u8(mask, hev_mask); const int8x16_t delta0 = GetBaseDelta(p1s, p0s, q0s, q1s); // do_filter2 part (simple loopfilter on pixels with hev) { const int8x16_t simple_lf_delta = vandq_s8(delta0, vreinterpretq_s8_u8(simple_lf_mask)); uint8x16_t tmp_p0, tmp_q0; ApplyFilter2(p0s, q0s, simple_lf_delta, &tmp_p0, &tmp_q0); // TODO(skal): avoid the double FlipSign() in ApplyFilter2() and here p0s = FlipSign(tmp_p0); q0s = FlipSign(tmp_q0); } // do_filter6 part (complex loopfilter on pixels without hev) { // we use: (mask & hev_mask) ^ mask = mask & !hev_mask const uint8x16_t complex_lf_mask = veorq_u8(simple_lf_mask, mask); const int8x16_t complex_lf_delta = vandq_s8(delta0, vreinterpretq_s8_u8(complex_lf_mask)); ApplyFilter6(p2s, p1s, p0s, q0s, q1s, q2s, complex_lf_delta, op2, op1, op0, oq0, oq1, oq2); } } // on macroblock edges static void VFilter16(uint8_t* p, int stride, int thresh, int ithresh, int hev_thresh) { uint8x16_t p3, p2, p1, p0, q0, q1, q2, q3; Load16x8(p, stride, &p3, &p2, &p1, &p0, &q0, &q1, &q2, &q3); { const uint8x16_t mask = NeedsFilter2(p3, p2, p1, p0, q0, q1, q2, q3, ithresh, thresh); const uint8x16_t hev_mask = NeedsHev(p1, p0, q0, q1, hev_thresh); uint8x16_t op2, op1, op0, oq0, oq1, oq2; DoFilter6(p2, p1, p0, q0, q1, q2, mask, hev_mask, &op2, &op1, &op0, &oq0, &oq1, &oq2); Store16x2(op2, op1, p - 2 * stride, stride); Store16x2(op0, oq0, p + 0 * stride, stride); Store16x2(oq1, oq2, p + 2 * stride, stride); } } static void HFilter16(uint8_t* p, int stride, int thresh, int ithresh, int hev_thresh) { uint8x16_t p3, p2, p1, p0, q0, q1, q2, q3; Load8x16(p, stride, &p3, &p2, &p1, &p0, &q0, &q1, &q2, &q3); { const uint8x16_t mask = NeedsFilter2(p3, p2, p1, p0, q0, q1, q2, q3, ithresh, thresh); const uint8x16_t hev_mask = NeedsHev(p1, p0, q0, q1, hev_thresh); uint8x16_t op2, op1, op0, oq0, oq1, oq2; DoFilter6(p2, p1, p0, q0, q1, q2, mask, hev_mask, &op2, &op1, &op0, &oq0, &oq1, &oq2); Store2x16(op2, op1, p - 2, stride); Store2x16(op0, oq0, p + 0, stride); Store2x16(oq1, oq2, p + 2, stride); } } // on three inner edges static void VFilter16i(uint8_t* p, int stride, int thresh, int ithresh, int hev_thresh) { int k; for (k = 3; k > 0; --k) { uint8x16_t p3, p2, p1, p0, q0, q1, q2, q3; p += 4 * stride; Load16x8(p, stride, &p3, &p2, &p1, &p0, &q0, &q1, &q2, &q3); { const uint8x16_t mask = NeedsFilter2(p3, p2, p1, p0, q0, q1, q2, q3, ithresh, thresh); const uint8x16_t hev_mask = NeedsHev(p1, p0, q0, q1, hev_thresh); uint8x16_t op1, op0, oq0, oq1; DoFilter4(p1, p0, q0, q1, mask, hev_mask, &op1, &op0, &oq0, &oq1); Store16x4(op1, op0, oq0, oq1, p, stride); } } } #if !defined(WORK_AROUND_GCC) static void HFilter16i(uint8_t* p, int stride, int thresh, int ithresh, int hev_thresh) { int k; for (k = 3; k > 0; --k) { uint8x16_t p3, p2, p1, p0, q0, q1, q2, q3; p += 4; Load8x16(p, stride, &p3, &p2, &p1, &p0, &q0, &q1, &q2, &q3); { const uint8x16_t mask = NeedsFilter2(p3, p2, p1, p0, q0, q1, q2, q3, ithresh, thresh); const uint8x16_t hev_mask = NeedsHev(p1, p0, q0, q1, hev_thresh); uint8x16_t op1, op0, oq0, oq1; DoFilter4(p1, p0, q0, q1, mask, hev_mask, &op1, &op0, &oq0, &oq1); Store4x16(op1, op0, oq0, oq1, p, stride); } } } #endif #endif // USE_INTRINSICS //----------------------------------------------------------------------------- // Inverse transforms (Paragraph 14.4) static void TransformOne(const int16_t* in, uint8_t* dst) { const int kBPS = BPS; const int16_t constants[] = {20091, 17734, 0, 0}; /* kC1, kC2. Padded because vld1.16 loads 8 bytes * Technically these are unsigned but vqdmulh is only available in signed. * vqdmulh returns high half (effectively >> 16) but also doubles the value, * changing the >> 16 to >> 15 and requiring an additional >> 1. * We use this to our advantage with kC2. The canonical value is 35468. * However, the high bit is set so treating it as signed will give incorrect * results. We avoid this by down shifting by 1 here to clear the highest bit. * Combined with the doubling effect of vqdmulh we get >> 16. * This can not be applied to kC1 because the lowest bit is set. Down shifting * the constant would reduce precision. */ /* libwebp uses a trick to avoid some extra addition that libvpx does. * Instead of: * temp2 = ip[12] + ((ip[12] * cospi8sqrt2minus1) >> 16); * libwebp adds 1 << 16 to cospi8sqrt2minus1 (kC1). However, this causes the * same issue with kC1 and vqdmulh that we work around by down shifting kC2 */ /* Adapted from libvpx: vp8/common/arm/neon/shortidct4x4llm_neon.asm */ __asm__ volatile ( "vld1.16 {q1, q2}, [%[in]] \n" "vld1.16 {d0}, [%[constants]] \n" /* d2: in[0] * d3: in[8] * d4: in[4] * d5: in[12] */ "vswp d3, d4 \n" /* q8 = {in[4], in[12]} * kC1 * 2 >> 16 * q9 = {in[4], in[12]} * kC2 >> 16 */ "vqdmulh.s16 q8, q2, d0[0] \n" "vqdmulh.s16 q9, q2, d0[1] \n" /* d22 = a = in[0] + in[8] * d23 = b = in[0] - in[8] */ "vqadd.s16 d22, d2, d3 \n" "vqsub.s16 d23, d2, d3 \n" /* The multiplication should be x * kC1 >> 16 * However, with vqdmulh we get x * kC1 * 2 >> 16 * (multiply, double, return high half) * We avoided this in kC2 by pre-shifting the constant. * q8 = in[4]/[12] * kC1 >> 16 */ "vshr.s16 q8, q8, #1 \n" /* Add {in[4], in[12]} back after the multiplication. This is handled by * adding 1 << 16 to kC1 in the libwebp C code. */ "vqadd.s16 q8, q2, q8 \n" /* d20 = c = in[4]*kC2 - in[12]*kC1 * d21 = d = in[4]*kC1 + in[12]*kC2 */ "vqsub.s16 d20, d18, d17 \n" "vqadd.s16 d21, d19, d16 \n" /* d2 = tmp[0] = a + d * d3 = tmp[1] = b + c * d4 = tmp[2] = b - c * d5 = tmp[3] = a - d */ "vqadd.s16 d2, d22, d21 \n" "vqadd.s16 d3, d23, d20 \n" "vqsub.s16 d4, d23, d20 \n" "vqsub.s16 d5, d22, d21 \n" "vzip.16 q1, q2 \n" "vzip.16 q1, q2 \n" "vswp d3, d4 \n" /* q8 = {tmp[4], tmp[12]} * kC1 * 2 >> 16 * q9 = {tmp[4], tmp[12]} * kC2 >> 16 */ "vqdmulh.s16 q8, q2, d0[0] \n" "vqdmulh.s16 q9, q2, d0[1] \n" /* d22 = a = tmp[0] + tmp[8] * d23 = b = tmp[0] - tmp[8] */ "vqadd.s16 d22, d2, d3 \n" "vqsub.s16 d23, d2, d3 \n" /* See long winded explanations prior */ "vshr.s16 q8, q8, #1 \n" "vqadd.s16 q8, q2, q8 \n" /* d20 = c = in[4]*kC2 - in[12]*kC1 * d21 = d = in[4]*kC1 + in[12]*kC2 */ "vqsub.s16 d20, d18, d17 \n" "vqadd.s16 d21, d19, d16 \n" /* d2 = tmp[0] = a + d * d3 = tmp[1] = b + c * d4 = tmp[2] = b - c * d5 = tmp[3] = a - d */ "vqadd.s16 d2, d22, d21 \n" "vqadd.s16 d3, d23, d20 \n" "vqsub.s16 d4, d23, d20 \n" "vqsub.s16 d5, d22, d21 \n" "vld1.32 d6[0], [%[dst]], %[kBPS] \n" "vld1.32 d6[1], [%[dst]], %[kBPS] \n" "vld1.32 d7[0], [%[dst]], %[kBPS] \n" "vld1.32 d7[1], [%[dst]], %[kBPS] \n" "sub %[dst], %[dst], %[kBPS], lsl #2 \n" /* (val) + 4 >> 3 */ "vrshr.s16 d2, d2, #3 \n" "vrshr.s16 d3, d3, #3 \n" "vrshr.s16 d4, d4, #3 \n" "vrshr.s16 d5, d5, #3 \n" "vzip.16 q1, q2 \n" "vzip.16 q1, q2 \n" /* Must accumulate before saturating */ "vmovl.u8 q8, d6 \n" "vmovl.u8 q9, d7 \n" "vqadd.s16 q1, q1, q8 \n" "vqadd.s16 q2, q2, q9 \n" "vqmovun.s16 d0, q1 \n" "vqmovun.s16 d1, q2 \n" "vst1.32 d0[0], [%[dst]], %[kBPS] \n" "vst1.32 d0[1], [%[dst]], %[kBPS] \n" "vst1.32 d1[0], [%[dst]], %[kBPS] \n" "vst1.32 d1[1], [%[dst]] \n" : [in] "+r"(in), [dst] "+r"(dst) /* modified registers */ : [kBPS] "r"(kBPS), [constants] "r"(constants) /* constants */ : "memory", "q0", "q1", "q2", "q8", "q9", "q10", "q11" /* clobbered */ ); } static void TransformTwo(const int16_t* in, uint8_t* dst, int do_two) { TransformOne(in, dst); if (do_two) { TransformOne(in + 16, dst + 4); } } static void TransformDC(const int16_t* in, uint8_t* dst) { const int16x8_t DC = vdupq_n_s16((in[0] + 4) >> 3); uint32x2_t dst01 = {0, 0}; uint32x2_t dst23 = {0, 0}; // Load the source pixels. dst01 = vset_lane_u32(*(uint32_t*)(dst + 0 * BPS), dst01, 0); dst23 = vset_lane_u32(*(uint32_t*)(dst + 2 * BPS), dst23, 0); dst01 = vset_lane_u32(*(uint32_t*)(dst + 1 * BPS), dst01, 1); dst23 = vset_lane_u32(*(uint32_t*)(dst + 3 * BPS), dst23, 1); { // Convert to 16b. int16x8_t dst01_s16 = ConvertU8ToS16(dst01); int16x8_t dst23_s16 = ConvertU8ToS16(dst23); // Add the inverse transform. dst01_s16 = vaddq_s16(dst01_s16, DC); dst23_s16 = vaddq_s16(dst23_s16, DC); SaturateAndStore4x4(dst, dst01_s16, dst23_s16); } } //------------------------------------------------------------------------------ #define STORE_WHT(dst, col, row01, row23) do { \ *dst = vgetq_lane_s32(row01.val[0], col); (dst) += 16; \ *dst = vgetq_lane_s32(row01.val[1], col); (dst) += 16; \ *dst = vgetq_lane_s32(row23.val[0], col); (dst) += 16; \ *dst = vgetq_lane_s32(row23.val[1], col); (dst) += 16; \ } while (0) static void TransformWHT(const int16_t* in, int16_t* out) { int32x4x2_t tmp0; // tmp[0..7] int32x4x2_t tmp1; // tmp[8..15] { // Load the source. const int16x4_t in00_03 = vld1_s16(in + 0); const int16x4_t in04_07 = vld1_s16(in + 4); const int16x4_t in08_11 = vld1_s16(in + 8); const int16x4_t in12_15 = vld1_s16(in + 12); const int32x4_t a0 = vaddl_s16(in00_03, in12_15); // in[0..3] + in[12..15] const int32x4_t a1 = vaddl_s16(in04_07, in08_11); // in[4..7] + in[8..11] const int32x4_t a2 = vsubl_s16(in04_07, in08_11); // in[4..7] - in[8..11] const int32x4_t a3 = vsubl_s16(in00_03, in12_15); // in[0..3] - in[12..15] tmp0.val[0] = vaddq_s32(a0, a1); tmp0.val[1] = vaddq_s32(a3, a2); tmp1.val[0] = vsubq_s32(a0, a1); tmp1.val[1] = vsubq_s32(a3, a2); } tmp0 = vzipq_s32(tmp0.val[0], tmp0.val[1]); // 0, 4, 1, 5 | 2, 6, 3, 7 tmp1 = vzipq_s32(tmp1.val[0], tmp1.val[1]); // 8, 12, 9, 13 | 10, 14, 11, 15 { // Arrange the temporary results column-wise. const int32x4_t tmp_0_4_8_12 = vcombine_s32(vget_low_s32(tmp0.val[0]), vget_low_s32(tmp1.val[0])); const int32x4_t tmp_2_6_10_14 = vcombine_s32(vget_low_s32(tmp0.val[1]), vget_low_s32(tmp1.val[1])); const int32x4_t tmp_1_5_9_13 = vcombine_s32(vget_high_s32(tmp0.val[0]), vget_high_s32(tmp1.val[0])); const int32x4_t tmp_3_7_11_15 = vcombine_s32(vget_high_s32(tmp0.val[1]), vget_high_s32(tmp1.val[1])); const int32x4_t three = vdupq_n_s32(3); const int32x4_t dc = vaddq_s32(tmp_0_4_8_12, three); // add rounder const int32x4_t a0 = vaddq_s32(dc, tmp_3_7_11_15); const int32x4_t a1 = vaddq_s32(tmp_1_5_9_13, tmp_2_6_10_14); const int32x4_t a2 = vsubq_s32(tmp_1_5_9_13, tmp_2_6_10_14); const int32x4_t a3 = vsubq_s32(dc, tmp_3_7_11_15); tmp0.val[0] = vaddq_s32(a0, a1); tmp0.val[1] = vaddq_s32(a3, a2); tmp1.val[0] = vsubq_s32(a0, a1); tmp1.val[1] = vsubq_s32(a3, a2); // right shift the results by 3. tmp0.val[0] = vshrq_n_s32(tmp0.val[0], 3); tmp0.val[1] = vshrq_n_s32(tmp0.val[1], 3); tmp1.val[0] = vshrq_n_s32(tmp1.val[0], 3); tmp1.val[1] = vshrq_n_s32(tmp1.val[1], 3); STORE_WHT(out, 0, tmp0, tmp1); STORE_WHT(out, 1, tmp0, tmp1); STORE_WHT(out, 2, tmp0, tmp1); STORE_WHT(out, 3, tmp0, tmp1); } } #undef STORE_WHT //------------------------------------------------------------------------------ #define MUL(a, b) (((a) * (b)) >> 16) static void TransformAC3(const int16_t* in, uint8_t* dst) { static const int kC1 = 20091 + (1 << 16); static const int kC2 = 35468; const int16x4_t A = vdup_n_s16(in[0] + 4); const int16x4_t c4 = vdup_n_s16(MUL(in[4], kC2)); const int16x4_t d4 = vdup_n_s16(MUL(in[4], kC1)); const int c1 = MUL(in[1], kC2); const int d1 = MUL(in[1], kC1); const int16x4_t CD = {d1, c1, -c1, -d1}; const int16x4_t B = vqadd_s16(A, CD); const int16x8_t m0_m1 = vcombine_s16(vqadd_s16(B, d4), vqadd_s16(B, c4)); const int16x8_t m2_m3 = vcombine_s16(vqsub_s16(B, c4), vqsub_s16(B, d4)); uint32x2_t dst01 = {0, 0}; uint32x2_t dst23 = {0, 0}; // Load the source pixels. dst01 = vset_lane_u32(*(uint32_t*)(dst + 0 * BPS), dst01, 0); dst23 = vset_lane_u32(*(uint32_t*)(dst + 2 * BPS), dst23, 0); dst01 = vset_lane_u32(*(uint32_t*)(dst + 1 * BPS), dst01, 1); dst23 = vset_lane_u32(*(uint32_t*)(dst + 3 * BPS), dst23, 1); { // Convert to 16b. int16x8_t dst01_s16 = ConvertU8ToS16(dst01); int16x8_t dst23_s16 = ConvertU8ToS16(dst23); // Add the inverse transform. dst01_s16 = vsraq_n_s16(dst01_s16, m0_m1, 3); dst23_s16 = vsraq_n_s16(dst23_s16, m2_m3, 3); SaturateAndStore4x4(dst, dst01_s16, dst23_s16); } } #undef MUL #endif // WEBP_USE_NEON //------------------------------------------------------------------------------ // Entry point extern void VP8DspInitNEON(void); void VP8DspInitNEON(void) { #if defined(WEBP_USE_NEON) VP8Transform = TransformTwo; VP8TransformAC3 = TransformAC3; VP8TransformDC = TransformDC; VP8TransformWHT = TransformWHT; #if defined(USE_INTRINSICS) VP8VFilter16 = VFilter16; VP8VFilter16i = VFilter16i; VP8HFilter16 = HFilter16; #if !defined(WORK_AROUND_GCC) VP8HFilter16i = HFilter16i; #endif #endif VP8SimpleVFilter16 = SimpleVFilter16; VP8SimpleHFilter16 = SimpleHFilter16; VP8SimpleVFilter16i = SimpleVFilter16i; VP8SimpleHFilter16i = SimpleHFilter16i; #endif // WEBP_USE_NEON }