// Copyright 2012 Google Inc. All Rights Reserved. // // This code is licensed under the same terms as WebM: // Software License Agreement: http://www.webmproject.org/license/software/ // Additional IP Rights Grant: http://www.webmproject.org/license/additional/ // ----------------------------------------------------------------------------- // // Image transforms and color space conversion methods for lossless decoder. // // Authors: Vikas Arora (vikaas.arora@gmail.com) // jyrki@google.com (Jyrki Alakuijala) // Urvang Joshi (urvang@google.com) #if defined(__cplusplus) || defined(c_plusplus) extern "C" { #endif #include #include "./lossless.h" #include "../dec/vp8li.h" //------------------------------------------------------------------------------ // Inverse image transforms. // In-place sum of each component with mod 256. static WEBP_INLINE void AddPixelsEq(uint32_t* a, uint32_t b) { const uint32_t alpha_and_green = (*a & 0xff00ff00u) + (b & 0xff00ff00u); const uint32_t red_and_blue = (*a & 0x00ff00ffu) + (b & 0x00ff00ffu); *a = (alpha_and_green & 0xff00ff00u) | (red_and_blue & 0x00ff00ffu); } static WEBP_INLINE uint32_t Average2(uint32_t a0, uint32_t a1) { return (((a0 ^ a1) & 0xfefefefeL) >> 1) + (a0 & a1); } static WEBP_INLINE uint32_t Average3(uint32_t a0, uint32_t a1, uint32_t a2) { return Average2(Average2(a0, a2), a1); } static WEBP_INLINE uint32_t Average4(uint32_t a0, uint32_t a1, uint32_t a2, uint32_t a3) { return Average2(Average2(a0, a1), Average2(a2, a3)); } static WEBP_INLINE uint32_t Clip255(uint32_t a) { if (a < NUM_LITERAL_CODES) { return a; } // return 0, when a is a negative integer. // return 255, when a is positive. return ~a >> 24; } static WEBP_INLINE int AddSubtractComponentFull(int a, int b, int c) { return Clip255(a + b - c); } static WEBP_INLINE uint32_t ClampedAddSubtractFull(uint32_t c0, uint32_t c1, uint32_t c2) { const int a = AddSubtractComponentFull(c0 >> 24, c1 >> 24, c2 >> 24); const int r = AddSubtractComponentFull((c0 >> 16) & 0xff, (c1 >> 16) & 0xff, (c2 >> 16) & 0xff); const int g = AddSubtractComponentFull((c0 >> 8) & 0xff, (c1 >> 8) & 0xff, (c2 >> 8) & 0xff); const int b = AddSubtractComponentFull(c0 & 0xff, c1 & 0xff, c2 & 0xff); return (a << 24) | (r << 16) | (g << 8) | b; } static WEBP_INLINE int AddSubtractComponentHalf(int a, int b) { return Clip255(a + (a - b) / 2); } static WEBP_INLINE uint32_t ClampedAddSubtractHalf(uint32_t c0, uint32_t c1, uint32_t c2) { const uint32_t ave = Average2(c0, c1); const int a = AddSubtractComponentHalf(ave >> 24, c2 >> 24); const int r = AddSubtractComponentHalf((ave >> 16) & 0xff, (c2 >> 16) & 0xff); const int g = AddSubtractComponentHalf((ave >> 8) & 0xff, (c2 >> 8) & 0xff); const int b = AddSubtractComponentHalf((ave >> 0) & 0xff, (c2 >> 0) & 0xff); return (a << 24) | (r << 16) | (g << 8) | b; } static WEBP_INLINE int Sub3(int a, int b, int c) { const int pa = b - c; const int pb = a - c; return abs(pa) - abs(pb); } static WEBP_INLINE uint32_t Select(uint32_t a, uint32_t b, uint32_t c) { const int pa_minus_pb = Sub3((a >> 24) , (b >> 24) , (c >> 24) ) + Sub3((a >> 16) & 0xff, (b >> 16) & 0xff, (c >> 16) & 0xff) + Sub3((a >> 8) & 0xff, (b >> 8) & 0xff, (c >> 8) & 0xff) + Sub3((a ) & 0xff, (b ) & 0xff, (c ) & 0xff); return (pa_minus_pb <= 0) ? a : b; } //------------------------------------------------------------------------------ // Predictors static void Predictor0(uint32_t* src, const uint32_t* top) { (void)top; AddPixelsEq(src, ARGB_BLACK); } static void Predictor1(uint32_t* src, const uint32_t* top) { (void)top; AddPixelsEq(src, src[-1]); // left } static void Predictor2(uint32_t* src, const uint32_t* top) { AddPixelsEq(src, top[0]); } static void Predictor3(uint32_t* src, const uint32_t* top) { AddPixelsEq(src, top[1]); } static void Predictor4(uint32_t* src, const uint32_t* top) { AddPixelsEq(src, top[-1]); } static void Predictor5(uint32_t* src, const uint32_t* top) { const uint32_t pred = Average3(src[-1], top[0], top[1]); AddPixelsEq(src, pred); } static void Predictor6(uint32_t* src, const uint32_t* top) { const uint32_t pred = Average2(src[-1], top[-1]); AddPixelsEq(src, pred); } static void Predictor7(uint32_t* src, const uint32_t* top) { const uint32_t pred = Average2(src[-1], top[0]); AddPixelsEq(src, pred); } static void Predictor8(uint32_t* src, const uint32_t* top) { const uint32_t pred = Average2(top[-1], top[0]); AddPixelsEq(src, pred); } static void Predictor9(uint32_t* src, const uint32_t* top) { const uint32_t pred = Average2(top[0], top[1]); AddPixelsEq(src, pred); } static void Predictor10(uint32_t* src, const uint32_t* top) { const uint32_t pred = Average4(src[-1], top[-1], top[0], top[1]); AddPixelsEq(src, pred); } static void Predictor11(uint32_t* src, const uint32_t* top) { const uint32_t pred = Select(top[0], src[-1], top[-1]); AddPixelsEq(src, pred); } static void Predictor12(uint32_t* src, const uint32_t* top) { const uint32_t pred = ClampedAddSubtractFull(src[-1], top[0], top[-1]); AddPixelsEq(src, pred); } static void Predictor13(uint32_t* src, const uint32_t* top) { const uint32_t pred = ClampedAddSubtractHalf(src[-1], top[0], top[-1]); AddPixelsEq(src, pred); } typedef void (*PredictorFunc)(uint32_t* src, const uint32_t* top); static const PredictorFunc kPredictors[16] = { Predictor0, Predictor1, Predictor2, Predictor3, Predictor4, Predictor5, Predictor6, Predictor7, Predictor8, Predictor9, Predictor10, Predictor11, Predictor12, Predictor13, Predictor0, Predictor0 // <- padding security sentinels }; // Inverse prediction. static void PredictorInverseTransform(const VP8LTransform* const transform, int y_start, int y_end, uint32_t* data) { const int width = transform->xsize_; if (y_start == 0) { // First Row follows the L (mode=1) mode. int x; Predictor0(data, NULL); for (x = 1; x < width; ++x) { Predictor1(data + x, NULL); } data += width; ++y_start; } { int y = y_start; const int mask = (1 << transform->bits_) - 1; const int tiles_per_row = VP8LSubSampleSize(width, transform->bits_); const uint32_t* pred_mode_base = transform->data_ + (y >> transform->bits_) * tiles_per_row; while (y < y_end) { const uint32_t* pred_mode_src = pred_mode_base; PredictorFunc pred_func; int x; // First pixel follows the T (mode=2) mode. Predictor2(data, data - width); // .. the rest: pred_func = kPredictors[((*pred_mode_src++) >> 8) & 0xf]; for (x = 1; x < width; ++x) { if ((x & mask) == 0) { // start of tile. Read predictor function. pred_func = kPredictors[((*pred_mode_src++) >> 8) & 0xf]; } pred_func(data + x, data + x - width); } data += width; ++y; if ((y & mask) == 0) { // Use the same mask, since tiles are squares. pred_mode_base += tiles_per_row; } } } } // Add Green to Blue and Red channels (i.e. perform the inverse transform of // 'Subtract Green'). static void AddGreenToBlueAndRed(const VP8LTransform* const transform, int y_start, int y_end, uint32_t* data) { const int width = transform->xsize_; const uint32_t* const data_end = data + (y_end - y_start) * width; while (data < data_end) { const uint32_t argb = *data; // "* 0001001u" is equivalent to "(green << 16) + green)" const uint32_t green = ((argb >> 8) & 0xff); uint32_t red_blue = (argb & 0x00ff00ffu); red_blue += (green << 16) | green; red_blue &= 0x00ff00ffu; *data++ = (argb & 0xff00ff00u) | red_blue; } } typedef struct { int green_to_red_; int green_to_blue_; int red_to_blue_; } Multipliers; static WEBP_INLINE uint32_t ColorTransformDelta(int8_t color_pred, int8_t color) { return (uint32_t)((int)(color_pred) * color) >> 5; } static WEBP_INLINE void ColorCodeToMultipliers(uint32_t color_code, Multipliers* const m) { m->green_to_red_ = (color_code >> 0) & 0xff; m->green_to_blue_ = (color_code >> 8) & 0xff; m->red_to_blue_ = (color_code >> 16) & 0xff; } static WEBP_INLINE void TransformColor(const Multipliers* const m, uint32_t* const argb) { const uint32_t green = *argb >> 8; const uint32_t red = *argb >> 16; uint32_t new_red = red; uint32_t new_blue = *argb; new_red += ColorTransformDelta(m->green_to_red_, green); new_red &= 0xff; new_blue += ColorTransformDelta(m->green_to_blue_, green); new_blue += ColorTransformDelta(m->red_to_blue_, new_red); new_blue &= 0xff; *argb = (*argb & 0xff00ff00u) | (new_red << 16) | (new_blue); } // Color space inverse transform. static void ColorSpaceInverseTransform(const VP8LTransform* const transform, int y_start, int y_end, uint32_t* data) { const int width = transform->xsize_; const int mask = (1 << transform->bits_) - 1; const int tiles_per_row = VP8LSubSampleSize(width, transform->bits_); int y = y_start; const uint32_t* pred_row = transform->data_ + (y >> transform->bits_) * tiles_per_row; while (y < y_end) { const uint32_t* pred = pred_row; Multipliers m; int x; for (x = 0; x < width; ++x) { if ((x & mask) == 0) ColorCodeToMultipliers(*pred++, &m); TransformColor(&m, data + x); } data += width; ++y; if ((y & mask) == 0) pred_row += tiles_per_row;; } } // Separate out pixels packed together using pixel-bundling. static void ColorIndexInverseTransform( const VP8LTransform* const transform, int y_start, int y_end, uint32_t* const data_in, uint32_t* const data_out) { int y; const int bits_per_pixel = 8 >> transform->bits_; const int width = transform->xsize_; const uint32_t* const color_map = transform->data_; uint32_t* dst = data_out; const uint32_t* src = data_in; if (bits_per_pixel < 8) { const int pixels_per_byte = 1 << transform->bits_; const int count_mask = pixels_per_byte - 1; const uint32_t bit_mask = (1 << bits_per_pixel) - 1; for (y = y_start; y < y_end; ++y) { uint32_t packed_pixels; int x; for (x = 0; x < width; ++x) { // We need to load fresh 'packed_pixels' once every 'bytes_per_pixels' // increments of x. Fortunately, pixels_per_byte is a power of 2, so // can just use a mask for that, instead of decrementing a counter. if ((x & count_mask) == 0) packed_pixels = ((*src++) >> 8) & 0xff; *dst++ = color_map[packed_pixels & bit_mask]; packed_pixels >>= bits_per_pixel; } } } else { for (y = y_start; y < y_end; ++y) { int x; for (x = 0; x < width; ++x) { *dst++ = color_map[((*src++) >> 8) & 0xff]; } } } } void VP8LInverseTransform(const VP8LTransform* const transform, size_t row_start, size_t row_end, uint32_t* const data_in, uint32_t* const data_out) { assert(row_start < row_end); assert(row_end <= transform->ysize_); switch (transform->type_) { case SUBTRACT_GREEN: AddGreenToBlueAndRed(transform, row_start, row_end, data_out); break; case PREDICTOR_TRANSFORM: PredictorInverseTransform(transform, row_start, row_end, data_out); if (row_end != transform->ysize_) { // The last predicted row in this iteration will be the top-pred row // for the first row in next iteration. const int width = transform->xsize_; memcpy(data_out - width, data_out + (row_end - row_start - 1) * width, width * sizeof(*data_out)); } break; case CROSS_COLOR_TRANSFORM: ColorSpaceInverseTransform(transform, row_start, row_end, data_out); break; case COLOR_INDEXING_TRANSFORM: ColorIndexInverseTransform(transform, row_start, row_end, data_in, data_out); break; } } //------------------------------------------------------------------------------ // Color space conversion. static int is_big_endian(void) { static const union { uint16_t w; uint8_t b[2]; } tmp = { 1 }; return (tmp.b[0] != 1); } static void ConvertBGRAToRGB(const uint32_t* src, int num_pixels, uint8_t* dst) { const uint32_t* src_end = src + num_pixels; while (src < src_end) { const uint32_t argb = *src++; *dst++ = (argb >> 16) & 0xff; *dst++ = (argb >> 8) & 0xff; *dst++ = (argb >> 0) & 0xff; } } static void ConvertBGRAToRGBA(const uint32_t* src, int num_pixels, uint8_t* dst) { const uint32_t* src_end = src + num_pixels; while (src < src_end) { const uint32_t argb = *src++; *dst++ = (argb >> 16) & 0xff; *dst++ = (argb >> 8) & 0xff; *dst++ = (argb >> 0) & 0xff; *dst++ = (argb >> 24) & 0xff; } } static void ConvertBGRAToBGR(const uint32_t* src, int num_pixels, uint8_t* dst) { const uint32_t* src_end = src + num_pixels; while (src < src_end) { const uint32_t argb = *src++; *dst++ = (argb >> 0) & 0xff; *dst++ = (argb >> 8) & 0xff; *dst++ = (argb >> 16) & 0xff; } } static void CopyOrSwap(const uint32_t* src, int num_pixels, uint8_t* dst, int swap_on_big_endian) { if (is_big_endian() == swap_on_big_endian) { const uint32_t* src_end = src + num_pixels; while (src < src_end) { uint32_t argb = *src++; #if !defined(__BIG_ENDIAN__) && (defined(__i386__) || defined(__x86_64__)) __asm__ volatile("bswap %0" : "=r"(argb) : "0"(argb)); *(uint32_t*)dst = argb; dst += sizeof(argb); #elif !defined(__BIG_ENDIAN__) && defined(_MSC_VER) argb = _byteswap_ulong(argb); *(uint32_t*)dst = argb; dst += sizeof(argb); #else *dst++ = (argb >> 24) & 0xff; *dst++ = (argb >> 16) & 0xff; *dst++ = (argb >> 8) & 0xff; *dst++ = (argb >> 0) & 0xff; #endif } } else { memcpy(dst, src, num_pixels * sizeof(*src)); } } void VP8LConvertFromBGRA(const uint32_t* const in_data, int num_pixels, WEBP_CSP_MODE out_colorspace, uint8_t* const rgba) { switch (out_colorspace) { case MODE_RGB: ConvertBGRAToRGB(in_data, num_pixels, rgba); break; case MODE_RGBA: ConvertBGRAToRGBA(in_data, num_pixels, rgba); break; case MODE_BGR: ConvertBGRAToBGR(in_data, num_pixels, rgba); break; case MODE_BGRA: CopyOrSwap(in_data, num_pixels, rgba, 1); break; case MODE_ARGB: CopyOrSwap(in_data, num_pixels, rgba, 0); break; default: assert(0); // Code flow should not reach here. } } //------------------------------------------------------------------------------ #if defined(__cplusplus) || defined(c_plusplus) } // extern "C" #endif