// Copyright 2010 Google Inc. // // This code is licensed under the same terms as WebM: // Software License Agreement: http://www.webmproject.org/license/software/ // Additional IP Rights Grant: http://www.webmproject.org/license/additional/ // ----------------------------------------------------------------------------- // // speed-critical functions. // // Author: Skal (pascal.massimino@gmail.com) #include "vp8i.h" #if defined(__cplusplus) || defined(c_plusplus) extern "C" { #endif //----------------------------------------------------------------------------- // run-time tables (~4k) static uint8_t abs0[255 + 255 + 1]; // abs(i) static uint8_t abs1[255 + 255 + 1]; // abs(i)>>1 static int8_t sclip1[1020 + 1020 + 1]; // clips [-1020, 1020] to [-128, 127] static int8_t sclip2[112 + 112 + 1]; // clips [-112, 112] to [-16, 15] static uint8_t clip1[255 + 510 + 1]; // clips [-255,510] to [0,255] // We declare this variable 'volatile' to prevent instruction reordering // and make sure it's set to true _last_ (so as to be thread-safe) static volatile int tables_ok = 0; void VP8DspInitTables(void) { if (!tables_ok) { int i; for (i = -255; i <= 255; ++i) { abs0[255 + i] = (i < 0) ? -i : i; abs1[255 + i] = abs0[255 + i] >> 1; } for (i = -1020; i <= 1020; ++i) { sclip1[1020 + i] = (i < -128) ? -128 : (i > 127) ? 127 : i; } for (i = -112; i <= 112; ++i) { sclip2[112 + i] = (i < -16) ? -16 : (i > 15) ? 15 : i; } for (i = -255; i <= 255 + 255; ++i) { clip1[255 + i] = (i < 0) ? 0 : (i > 255) ? 255 : i; } tables_ok = 1; } } static inline uint8_t clip_8b(int v) { return (!(v & ~0xff)) ? v : (v < 0) ? 0 : 255; } //----------------------------------------------------------------------------- // Transforms (Paragraph 14.4) #define STORE(x, y, v) \ dst[x + y * BPS] = clip_8b(dst[x + y * BPS] + ((v) >> 3)) static const int kC1 = 20091 + (1 << 16); static const int kC2 = 35468; #define MUL(a, b) (((a) * (b)) >> 16) static void Transform(const int16_t* in, uint8_t* dst) { int C[4 * 4], *tmp; int i; tmp = C; for (i = 0; i < 4; ++i) { // vertical pass const int a = in[0] + in[8]; // [-4096, 4094] const int b = in[0] - in[8]; // [-4095, 4095] const int c = MUL(in[4], kC2) - MUL(in[12], kC1); // [-3783, 3783] const int d = MUL(in[4], kC1) + MUL(in[12], kC2); // [-3785, 3781] tmp[0] = a + d; // [-7881, 7875] tmp[1] = b + c; // [-7878, 7878] tmp[2] = b - c; // [-7878, 7878] tmp[3] = a - d; // [-7877, 7879] tmp += 4; in++; } // Each pass is expanding the dynamic range by ~3.85 (upper bound). // The exact value is (2. + (kC1 + kC2) / 65536). // After the second pass, maximum interval is [-3794, 3794], assuming // an input in [-2048, 2047] interval. We then need to add a dst value // in the [0, 255] range. // In the worst case scenario, the input to clip_8b() can be as large as // [-60713, 60968]. tmp = C; for (i = 0; i < 4; ++i) { // horizontal pass const int dc = tmp[0] + 4; const int a = dc + tmp[8]; const int b = dc - tmp[8]; const int c = MUL(tmp[4], kC2) - MUL(tmp[12], kC1); const int d = MUL(tmp[4], kC1) + MUL(tmp[12], kC2); STORE(0, 0, a + d); STORE(1, 0, b + c); STORE(2, 0, b - c); STORE(3, 0, a - d); tmp++; dst += BPS; } } #undef MUL static void TransformUV(const int16_t* in, uint8_t* dst) { VP8Transform(in + 0 * 16, dst); VP8Transform(in + 1 * 16, dst + 4); VP8Transform(in + 2 * 16, dst + 4 * BPS); VP8Transform(in + 3 * 16, dst + 4 * BPS + 4); } static void TransformDC(const int16_t *in, uint8_t* dst) { const int DC = in[0] + 4; int i, j; for (j = 0; j < 4; ++j) { for (i = 0; i < 4; ++i) { STORE(i, j, DC); } } } static void TransformDCUV(const int16_t* in, uint8_t* dst) { if (in[0 * 16]) TransformDC(in + 0 * 16, dst); if (in[1 * 16]) TransformDC(in + 1 * 16, dst + 4); if (in[2 * 16]) TransformDC(in + 2 * 16, dst + 4 * BPS); if (in[3 * 16]) TransformDC(in + 3 * 16, dst + 4 * BPS + 4); } #undef STORE // default C implementations: VP8Idct VP8Transform = Transform; VP8Idct VP8TransformUV = TransformUV; VP8Idct VP8TransformDC = TransformDC; VP8Idct VP8TransformDCUV = TransformDCUV; //----------------------------------------------------------------------------- // Paragraph 14.3 static void TransformWHT(const int16_t* in, int16_t* out) { int tmp[16]; int i; for (i = 0; i < 4; ++i) { const int a0 = in[0 + i] + in[12 + i]; const int a1 = in[4 + i] + in[ 8 + i]; const int a2 = in[4 + i] - in[ 8 + i]; const int a3 = in[0 + i] - in[12 + i]; tmp[0 + i] = a0 + a1; tmp[8 + i] = a0 - a1; tmp[4 + i] = a3 + a2; tmp[12 + i] = a3 - a2; } for (i = 0; i < 4; ++i) { const int dc = tmp[0 + i * 4] + 3; // w/ rounder const int a0 = dc + tmp[3 + i * 4]; const int a1 = tmp[1 + i * 4] + tmp[2 + i * 4]; const int a2 = tmp[1 + i * 4] - tmp[2 + i * 4]; const int a3 = dc - tmp[3 + i * 4]; out[ 0] = (a0 + a1) >> 3; out[16] = (a3 + a2) >> 3; out[32] = (a0 - a1) >> 3; out[48] = (a3 - a2) >> 3; out += 64; } } void (*VP8TransformWHT)(const int16_t* in, int16_t* out) = TransformWHT; //----------------------------------------------------------------------------- // Intra predictions #define OUT(x, y) dst[(x) + (y) * BPS] static inline void TrueMotion(uint8_t *dst, int size) { const uint8_t* top = dst - BPS; const uint8_t* const clip0 = clip1 + 255 - top[-1]; int y; for (y = 0; y < size; ++y) { const uint8_t* const clip = clip0 + dst[-1]; int x; for (x = 0; x < size; ++x) { dst[x] = clip[top[x]]; } dst += BPS; } } static void TM4(uint8_t *dst) { TrueMotion(dst, 4); } static void TM8uv(uint8_t *dst) { TrueMotion(dst, 8); } static void TM16(uint8_t *dst) { TrueMotion(dst, 16); } //----------------------------------------------------------------------------- // 16x16 static void VE16(uint8_t *dst) { // vertical int j; for (j = 0; j < 16; ++j) { memcpy(dst + j * BPS, dst - BPS, 16); } } static void HE16(uint8_t *dst) { // horizontal int j; for (j = 16; j > 0; --j) { memset(dst, dst[-1], 16); dst += BPS; } } static inline void Put16(int v, uint8_t* dst) { int j; for (j = 0; j < 16; ++j) { memset(dst + j * BPS, v, 16); } } static void DC16(uint8_t *dst) { // DC int DC = 16; int j; for (j = 0; j < 16; ++j) { DC += dst[-1 + j * BPS] + dst[j - BPS]; } Put16(DC >> 5, dst); } static void DC16NoTop(uint8_t *dst) { // DC with top samples not available int DC = 8; int j; for (j = 0; j < 16; ++j) { DC += dst[-1 + j * BPS]; } Put16(DC >> 4, dst); } static void DC16NoLeft(uint8_t *dst) { // DC with left samples not available int DC = 8; int i; for (i = 0; i < 16; ++i) { DC += dst[i - BPS]; } Put16(DC >> 4, dst); } static void DC16NoTopLeft(uint8_t *dst) { // DC with no top and left samples Put16(0x80, dst); } //----------------------------------------------------------------------------- // 4x4 #define AVG3(a, b, c) (((a) + 2 * (b) + (c) + 2) >> 2) #define AVG2(a, b) (((a) + (b) + 1) >> 1) static void VE4(uint8_t *dst) { // vertical const uint8_t* top = dst - BPS; const uint8_t vals[4] = { AVG3(top[-1], top[0], top[1]), AVG3(top[ 0], top[1], top[2]), AVG3(top[ 1], top[2], top[3]), AVG3(top[ 2], top[3], top[4]) }; int i; for (i = 0; i < 4; ++i) { memcpy(dst + i * BPS, vals, sizeof(vals)); } } static void HE4(uint8_t *dst) { // horizontal const int A = dst[-1 - BPS]; const int B = dst[-1]; const int C = dst[-1 + BPS]; const int D = dst[-1 + 2 * BPS]; const int E = dst[-1 + 3 * BPS]; *(uint32_t*)(dst + 0 * BPS) = 0x01010101U * AVG3(A, B, C); *(uint32_t*)(dst + 1 * BPS) = 0x01010101U * AVG3(B, C, D); *(uint32_t*)(dst + 2 * BPS) = 0x01010101U * AVG3(C, D, E); *(uint32_t*)(dst + 3 * BPS) = 0x01010101U * AVG3(D, E, E); } static void DC4(uint8_t *dst) { // DC uint32_t dc = 4; int i; for (i = 0; i < 4; ++i) dc += dst[i - BPS] + dst[-1 + i * BPS]; dc >>= 3; for (i = 0; i < 4; ++i) memset(dst + i * BPS, dc, 4); } static void RD4(uint8_t *dst) { // Down-right const int I = dst[-1 + 0 * BPS]; const int J = dst[-1 + 1 * BPS]; const int K = dst[-1 + 2 * BPS]; const int L = dst[-1 + 3 * BPS]; const int X = dst[-1 - BPS]; const int A = dst[0 - BPS]; const int B = dst[1 - BPS]; const int C = dst[2 - BPS]; const int D = dst[3 - BPS]; OUT(0, 3) = AVG3(J, K, L); OUT(0, 2) = OUT(1, 3) = AVG3(I, J, K); OUT(0, 1) = OUT(1, 2) = OUT(2, 3) = AVG3(X, I, J); OUT(0, 0) = OUT(1, 1) = OUT(2, 2) = OUT(3, 3) = AVG3(A, X, I); OUT(1, 0) = OUT(2, 1) = OUT(3, 2) = AVG3(B, A, X); OUT(2, 0) = OUT(3, 1) = AVG3(C, B, A); OUT(3, 0) = AVG3(D, C, B); } static void LD4(uint8_t *dst) { // Down-Left const int A = dst[0 - BPS]; const int B = dst[1 - BPS]; const int C = dst[2 - BPS]; const int D = dst[3 - BPS]; const int E = dst[4 - BPS]; const int F = dst[5 - BPS]; const int G = dst[6 - BPS]; const int H = dst[7 - BPS]; OUT(0, 0) = AVG3(A, B, C); OUT(1, 0) = OUT(0, 1) = AVG3(B, C, D); OUT(2, 0) = OUT(1, 1) = OUT(0, 2) = AVG3(C, D, E); OUT(3, 0) = OUT(2, 1) = OUT(1, 2) = OUT(0, 3) = AVG3(D, E, F); OUT(3, 1) = OUT(2, 2) = OUT(1, 3) = AVG3(E, F, G); OUT(3, 2) = OUT(2, 3) = AVG3(F, G, H); OUT(3, 3) = AVG3(G, H, H); } static void VR4(uint8_t *dst) { // Vertical-Right const int I = dst[-1 + 0 * BPS]; const int J = dst[-1 + 1 * BPS]; const int K = dst[-1 + 2 * BPS]; const int X = dst[-1 - BPS]; const int A = dst[0 - BPS]; const int B = dst[1 - BPS]; const int C = dst[2 - BPS]; const int D = dst[3 - BPS]; OUT(0, 0) = OUT(1, 2) = AVG2(X, A); OUT(1, 0) = OUT(2, 2) = AVG2(A, B); OUT(2, 0) = OUT(3, 2) = AVG2(B, C); OUT(3, 0) = AVG2(C, D); OUT(0, 3) = AVG3(K, J, I); OUT(0, 2) = AVG3(J, I, X); OUT(0, 1) = OUT(1, 3) = AVG3(I, X, A); OUT(1, 1) = OUT(2, 3) = AVG3(X, A, B); OUT(2, 1) = OUT(3, 3) = AVG3(A, B, C); OUT(3, 1) = AVG3(B, C, D); } static void VL4(uint8_t *dst) { // Vertical-Left const int A = dst[0 - BPS]; const int B = dst[1 - BPS]; const int C = dst[2 - BPS]; const int D = dst[3 - BPS]; const int E = dst[4 - BPS]; const int F = dst[5 - BPS]; const int G = dst[6 - BPS]; const int H = dst[7 - BPS]; OUT(0, 0) = AVG2(A, B); OUT(1, 0) = OUT(0, 2) = AVG2(B, C); OUT(2, 0) = OUT(1, 2) = AVG2(C, D); OUT(3, 0) = OUT(2, 2) = AVG2(D, E); OUT(0, 1) = AVG3(A, B, C); OUT(1, 1) = OUT(0, 3) = AVG3(B, C, D); OUT(2, 1) = OUT(1, 3) = AVG3(C, D, E); OUT(3, 1) = OUT(2, 3) = AVG3(D, E, F); OUT(3, 2) = AVG3(E, F, G); OUT(3, 3) = AVG3(F, G, H); } static void HU4(uint8_t *dst) { // Horizontal-Up const int I = dst[-1 + 0 * BPS]; const int J = dst[-1 + 1 * BPS]; const int K = dst[-1 + 2 * BPS]; const int L = dst[-1 + 3 * BPS]; OUT(0, 0) = AVG2(I, J); OUT(2, 0) = OUT(0, 1) = AVG2(J, K); OUT(2, 1) = OUT(0, 2) = AVG2(K, L); OUT(1, 0) = AVG3(I, J, K); OUT(3, 0) = OUT(1, 1) = AVG3(J, K, L); OUT(3, 1) = OUT(1, 2) = AVG3(K, L, L); OUT(3, 2) = OUT(2, 2) = OUT(0, 3) = OUT(1, 3) = OUT(2, 3) = OUT(3, 3) = L; } static void HD4(uint8_t *dst) { // Horizontal-Down const int I = dst[-1 + 0 * BPS]; const int J = dst[-1 + 1 * BPS]; const int K = dst[-1 + 2 * BPS]; const int L = dst[-1 + 3 * BPS]; const int X = dst[-1 - BPS]; const int A = dst[0 - BPS]; const int B = dst[1 - BPS]; const int C = dst[2 - BPS]; OUT(0, 0) = OUT(2, 1) = AVG2(I, X); OUT(0, 1) = OUT(2, 2) = AVG2(J, I); OUT(0, 2) = OUT(2, 3) = AVG2(K, J); OUT(0, 3) = AVG2(L, K); OUT(3, 0) = AVG3(A, B, C); OUT(2, 0) = AVG3(X, A, B); OUT(1, 0) = OUT(3, 1) = AVG3(I, X, A); OUT(1, 1) = OUT(3, 2) = AVG3(J, I, X); OUT(1, 2) = OUT(3, 3) = AVG3(K, J, I); OUT(1, 3) = AVG3(L, K, J); } #undef AVG3 #undef AVG2 //----------------------------------------------------------------------------- // Chroma static void VE8uv(uint8_t *dst) { // vertical int j; for (j = 0; j < 8; ++j) { memcpy(dst + j * BPS, dst - BPS, 8); } } static void HE8uv(uint8_t *dst) { // horizontal int j; for (j = 0; j < 8; ++j) { memset(dst, dst[-1], 8); dst += BPS; } } // helper for chroma-DC predictions static inline void Put8x8uv(uint64_t v, uint8_t* dst) { int j; for (j = 0; j < 8; ++j) { *(uint64_t*)(dst + j * BPS) = v; } } static void DC8uv(uint8_t *dst) { // DC int dc0 = 8; int i; for (i = 0; i < 8; ++i) { dc0 += dst[i - BPS] + dst[-1 + i * BPS]; } Put8x8uv((uint64_t)((dc0 >> 4) * 0x0101010101010101ULL), dst); } static void DC8uvNoLeft(uint8_t *dst) { // DC with no left samples int dc0 = 4; int i; for (i = 0; i < 8; ++i) { dc0 += dst[i - BPS]; } Put8x8uv((uint64_t)((dc0 >> 3) * 0x0101010101010101ULL), dst); } static void DC8uvNoTop(uint8_t *dst) { // DC with no top samples int dc0 = 4; int i; for (i = 0; i < 8; ++i) { dc0 += dst[-1 + i * BPS]; } Put8x8uv((uint64_t)((dc0 >> 3) * 0x0101010101010101ULL), dst); } static void DC8uvNoTopLeft(uint8_t *dst) { // DC with nothing Put8x8uv(0x8080808080808080ULL, dst); } //----------------------------------------------------------------------------- // default C implementations VP8PredFunc VP8PredLuma4[NUM_BMODES] = { DC4, TM4, VE4, HE4, RD4, VR4, LD4, VL4, HD4, HU4 }; VP8PredFunc VP8PredLuma16[NUM_B_DC_MODES] = { DC16, TM16, VE16, HE16, DC16NoTop, DC16NoLeft, DC16NoTopLeft }; VP8PredFunc VP8PredChroma8[NUM_B_DC_MODES] = { DC8uv, TM8uv, VE8uv, HE8uv, DC8uvNoTop, DC8uvNoLeft, DC8uvNoTopLeft }; //----------------------------------------------------------------------------- // Edge filtering functions // 4 pixels in, 2 pixels out static inline void do_filter2(uint8_t* p, int step) { const int p1 = p[-2*step], p0 = p[-step], q0 = p[0], q1 = p[step]; const int a = 3 * (q0 - p0) + sclip1[1020 + p1 - q1]; const int a1 = sclip2[112 + ((a + 4) >> 3)]; const int a2 = sclip2[112 + ((a + 3) >> 3)]; p[-step] = clip1[255 + p0 + a2]; p[ 0] = clip1[255 + q0 - a1]; } // 4 pixels in, 4 pixels out static inline void do_filter4(uint8_t* p, int step) { const int p1 = p[-2*step], p0 = p[-step], q0 = p[0], q1 = p[step]; const int a = 3 * (q0 - p0); const int a1 = sclip2[112 + ((a + 4) >> 3)]; const int a2 = sclip2[112 + ((a + 3) >> 3)]; const int a3 = (a1 + 1) >> 1; p[-2*step] = clip1[255 + p1 + a3]; p[- step] = clip1[255 + p0 + a2]; p[ 0] = clip1[255 + q0 - a1]; p[ step] = clip1[255 + q1 - a3]; } // 6 pixels in, 6 pixels out static inline void do_filter6(uint8_t* p, int step) { const int p2 = p[-3*step], p1 = p[-2*step], p0 = p[-step]; const int q0 = p[0], q1 = p[step], q2 = p[2*step]; const int a = sclip1[1020 + 3 * (q0 - p0) + sclip1[1020 + p1 - q1]]; const int a1 = (27 * a + 63) >> 7; // eq. to ((3 * a + 7) * 9) >> 7 const int a2 = (18 * a + 63) >> 7; // eq. to ((2 * a + 7) * 9) >> 7 const int a3 = (9 * a + 63) >> 7; // eq. to ((1 * a + 7) * 9) >> 7 p[-3*step] = clip1[255 + p2 + a3]; p[-2*step] = clip1[255 + p1 + a2]; p[- step] = clip1[255 + p0 + a1]; p[ 0] = clip1[255 + q0 - a1]; p[ step] = clip1[255 + q1 - a2]; p[ 2*step] = clip1[255 + q2 - a3]; } static inline int hev(const uint8_t* p, int step, int thresh) { const int p1 = p[-2*step], p0 = p[-step], q0 = p[0], q1 = p[step]; return (abs0[255 + p1 - p0] > thresh) || (abs0[255 + q1 - q0] > thresh); } static inline int needs_filter(const uint8_t* p, int step, int thresh) { const int p1 = p[-2*step], p0 = p[-step], q0 = p[0], q1 = p[step]; return (2 * abs0[255 + p0 - q0] + abs1[255 + p1 - q1]) <= thresh; } static inline int needs_filter2(const uint8_t* p, int step, int t, int it) { const int p3 = p[-4*step], p2 = p[-3*step], p1 = p[-2*step], p0 = p[-step]; const int q0 = p[0], q1 = p[step], q2 = p[2*step], q3 = p[3*step]; if ((2 * abs0[255 + p0 - q0] + abs1[255 + p1 - q1]) > t) return 0; return abs0[255 + p3 - p2] <= it && abs0[255 + p2 - p1] <= it && abs0[255 + p1 - p0] <= it && abs0[255 + q3 - q2] <= it && abs0[255 + q2 - q1] <= it && abs0[255 + q1 - q0] <= it; } //----------------------------------------------------------------------------- // Simple In-loop filtering (Paragraph 15.2) static void SimpleVFilter16(uint8_t* p, int stride, int thresh) { int i; for (i = 0; i < 16; ++i) { if (needs_filter(p + i, stride, thresh)) { do_filter2(p + i, stride); } } } static void SimpleHFilter16(uint8_t* p, int stride, int thresh) { int i; for (i = 0; i < 16; ++i) { if (needs_filter(p + i * stride, 1, thresh)) { do_filter2(p + i * stride, 1); } } } static void SimpleVFilter16i(uint8_t* p, int stride, int thresh) { int k; for (k = 3; k > 0; --k) { p += 4 * stride; SimpleVFilter16(p, stride, thresh); } } static void SimpleHFilter16i(uint8_t* p, int stride, int thresh) { int k; for (k = 3; k > 0; --k) { p += 4; SimpleHFilter16(p, stride, thresh); } } //----------------------------------------------------------------------------- // Complex In-loop filtering (Paragraph 15.3) static inline void FilterLoop26(uint8_t* p, int hstride, int vstride, int size, int thresh, int ithresh, int hev_thresh) { while (size-- > 0) { if (needs_filter2(p, hstride, thresh, ithresh)) { if (hev(p, hstride, hev_thresh)) { do_filter2(p, hstride); } else { do_filter6(p, hstride); } } p += vstride; } } static inline void FilterLoop24(uint8_t* p, int hstride, int vstride, int size, int thresh, int ithresh, int hev_thresh) { while (size-- > 0) { if (needs_filter2(p, hstride, thresh, ithresh)) { if (hev(p, hstride, hev_thresh)) { do_filter2(p, hstride); } else { do_filter4(p, hstride); } } p += vstride; } } // on macroblock edges static void VFilter16(uint8_t* p, int stride, int thresh, int ithresh, int hev_thresh) { FilterLoop26(p, stride, 1, 16, thresh, ithresh, hev_thresh); } static void HFilter16(uint8_t* p, int stride, int thresh, int ithresh, int hev_thresh) { FilterLoop26(p, 1, stride, 16, thresh, ithresh, hev_thresh); } // on three inner edges static void VFilter16i(uint8_t* p, int stride, int thresh, int ithresh, int hev_thresh) { int k; for (k = 3; k > 0; --k) { p += 4 * stride; FilterLoop24(p, stride, 1, 16, thresh, ithresh, hev_thresh); } } static void HFilter16i(uint8_t* p, int stride, int thresh, int ithresh, int hev_thresh) { int k; for (k = 3; k > 0; --k) { p += 4; FilterLoop24(p, 1, stride, 16, thresh, ithresh, hev_thresh); } } // 8-pixels wide variant, for chroma filtering static void VFilter8(uint8_t* u, uint8_t* v, int stride, int thresh, int ithresh, int hev_thresh) { FilterLoop26(u, stride, 1, 8, thresh, ithresh, hev_thresh); FilterLoop26(v, stride, 1, 8, thresh, ithresh, hev_thresh); } static void HFilter8(uint8_t* u, uint8_t* v, int stride, int thresh, int ithresh, int hev_thresh) { FilterLoop26(u, 1, stride, 8, thresh, ithresh, hev_thresh); FilterLoop26(v, 1, stride, 8, thresh, ithresh, hev_thresh); } static void VFilter8i(uint8_t* u, uint8_t* v, int stride, int thresh, int ithresh, int hev_thresh) { FilterLoop24(u + 4 * stride, stride, 1, 8, thresh, ithresh, hev_thresh); FilterLoop24(v + 4 * stride, stride, 1, 8, thresh, ithresh, hev_thresh); } static void HFilter8i(uint8_t* u, uint8_t* v, int stride, int thresh, int ithresh, int hev_thresh) { FilterLoop24(u + 4, 1, stride, 8, thresh, ithresh, hev_thresh); FilterLoop24(v + 4, 1, stride, 8, thresh, ithresh, hev_thresh); } //----------------------------------------------------------------------------- void (*VP8VFilter16)(uint8_t*, int, int, int, int) = VFilter16; void (*VP8HFilter16)(uint8_t*, int, int, int, int) = HFilter16; void (*VP8VFilter8)(uint8_t*, uint8_t*, int, int, int, int) = VFilter8; void (*VP8HFilter8)(uint8_t*, uint8_t*, int, int, int, int) = HFilter8; void (*VP8VFilter16i)(uint8_t*, int, int, int, int) = VFilter16i; void (*VP8HFilter16i)(uint8_t*, int, int, int, int) = HFilter16i; void (*VP8VFilter8i)(uint8_t*, uint8_t*, int, int, int, int) = VFilter8i; void (*VP8HFilter8i)(uint8_t*, uint8_t*, int, int, int, int) = HFilter8i; void (*VP8SimpleVFilter16)(uint8_t*, int, int) = SimpleVFilter16; void (*VP8SimpleHFilter16)(uint8_t*, int, int) = SimpleHFilter16; void (*VP8SimpleVFilter16i)(uint8_t*, int, int) = SimpleVFilter16i; void (*VP8SimpleHFilter16i)(uint8_t*, int, int) = SimpleHFilter16i; //----------------------------------------------------------------------------- // SSE2 detection. // #if defined(__pic__) && defined(__i386__) static inline void GetCPUInfo(int cpu_info[4], int info_type) { __asm__ volatile ( "mov %%ebx, %%edi\n" "cpuid\n" "xchg %%edi, %%ebx\n" : "=a"(cpu_info[0]), "=D"(cpu_info[1]), "=c"(cpu_info[2]), "=d"(cpu_info[3]) : "a"(info_type)); } #elif defined(__i386__) || defined(__x86_64__) static inline void GetCPUInfo(int cpu_info[4], int info_type) { __asm__ volatile ( "cpuid\n" : "=a"(cpu_info[0]), "=b"(cpu_info[1]), "=c"(cpu_info[2]), "=d"(cpu_info[3]) : "a"(info_type)); } #elif defined(_MSC_VER) // Visual C++ #define GetCPUInfo __cpuid #endif #if defined(__i386__) || defined(__x86_64__) || defined(_MSC_VER) static int x86CPUInfo(CPUFeature feature) { int cpu_info[4]; GetCPUInfo(cpu_info, 1); if (feature == kSSE2) { return 0 != (cpu_info[3] & 0x04000000); } if (feature == kSSE3) { return 0 != (cpu_info[2] & 0x00000001); } return 0; } VP8CPUInfo VP8DecGetCPUInfo = x86CPUInfo; #else VP8CPUInfo VP8DecGetCPUInfo = NULL; #endif //----------------------------------------------------------------------------- extern void VP8DspInitSSE2(void); void VP8DspInit(void) { // If defined, use CPUInfo() to overwrite some pointers with faster versions. if (VP8DecGetCPUInfo) { if (VP8DecGetCPUInfo(kSSE2)) { #if defined(__SSE2__) || defined(_MSC_VER) VP8DspInitSSE2(); #endif } if (VP8DecGetCPUInfo(kSSE3)) { // later we'll plug some SSE3 variant here } } } #if defined(__cplusplus) || defined(c_plusplus) } // extern "C" #endif