// Copyright 2011 Google Inc. All Rights Reserved. // // Use of this source code is governed by a BSD-style license // that can be found in the COPYING file in the root of the source // tree. An additional intellectual property rights grant can be found // in the file PATENTS. All contributing project authors may // be found in the AUTHORS file in the root of the source tree. // ----------------------------------------------------------------------------- // // VP8Iterator: block iterator // // Author: Skal (pascal.massimino@gmail.com) #include #include "./vp8enci.h" //------------------------------------------------------------------------------ // VP8Iterator //------------------------------------------------------------------------------ static void InitLeft(VP8EncIterator* const it) { it->y_left_[-1] = it->u_left_[-1] = it->v_left_[-1] = (it->y_ > 0) ? 129 : 127; memset(it->y_left_, 129, 16); memset(it->u_left_, 129, 8); memset(it->v_left_, 129, 8); it->left_nz_[8] = 0; } static void InitTop(VP8EncIterator* const it) { const VP8Encoder* const enc = it->enc_; const size_t top_size = enc->mb_w_ * 16; memset(enc->y_top_, 127, 2 * top_size); memset(enc->nz_, 0, enc->mb_w_ * sizeof(*enc->nz_)); } void VP8IteratorSetRow(VP8EncIterator* const it, int y) { VP8Encoder* const enc = it->enc_; it->x_ = 0; it->y_ = y; it->bw_ = &enc->parts_[y & (enc->num_parts_ - 1)]; it->preds_ = enc->preds_ + y * 4 * enc->preds_w_; it->nz_ = enc->nz_; it->mb_ = enc->mb_info_ + y * enc->mb_w_; it->y_top_ = enc->y_top_; it->uv_top_ = enc->uv_top_; InitLeft(it); } void VP8IteratorReset(VP8EncIterator* const it) { VP8Encoder* const enc = it->enc_; VP8IteratorSetRow(it, 0); VP8IteratorSetCountDown(it, enc->mb_w_ * enc->mb_h_); // default InitTop(it); InitLeft(it); memset(it->bit_count_, 0, sizeof(it->bit_count_)); it->do_trellis_ = 0; } void VP8IteratorSetCountDown(VP8EncIterator* const it, int count_down) { it->count_down_ = it->count_down0_ = count_down; } int VP8IteratorIsDone(const VP8EncIterator* const it) { return (it->count_down_ <= 0); } void VP8IteratorInit(VP8Encoder* const enc, VP8EncIterator* const it) { it->enc_ = enc; it->y_stride_ = enc->pic_->y_stride; it->uv_stride_ = enc->pic_->uv_stride; it->yuv_in_ = (uint8_t*)DO_ALIGN(it->yuv_mem_); it->yuv_out_ = it->yuv_in_ + YUV_SIZE_ENC; it->yuv_out2_ = it->yuv_out_ + YUV_SIZE_ENC; it->yuv_p_ = it->yuv_out2_ + YUV_SIZE_ENC; it->lf_stats_ = enc->lf_stats_; it->percent0_ = enc->percent_; it->y_left_ = (uint8_t*)DO_ALIGN(it->yuv_left_mem_ + 1); it->u_left_ = it->y_left_ + 16 + 16; it->v_left_ = it->u_left_ + 16; VP8IteratorReset(it); } int VP8IteratorProgress(const VP8EncIterator* const it, int delta) { VP8Encoder* const enc = it->enc_; if (delta && enc->pic_->progress_hook != NULL) { const int done = it->count_down0_ - it->count_down_; const int percent = (it->count_down0_ <= 0) ? it->percent0_ : it->percent0_ + delta * done / it->count_down0_; return WebPReportProgress(enc->pic_, percent, &enc->percent_); } return 1; } //------------------------------------------------------------------------------ // Import the source samples into the cache. Takes care of replicating // boundary pixels if necessary. static WEBP_INLINE int MinSize(int a, int b) { return (a < b) ? a : b; } static void ImportBlock(const uint8_t* src, int src_stride, uint8_t* dst, int w, int h, int size) { int i; for (i = 0; i < h; ++i) { memcpy(dst, src, w); if (w < size) { memset(dst + w, dst[w - 1], size - w); } dst += BPS; src += src_stride; } for (i = h; i < size; ++i) { memcpy(dst, dst - BPS, size); dst += BPS; } } static void ImportLine(const uint8_t* src, int src_stride, uint8_t* dst, int len, int total_len) { int i; for (i = 0; i < len; ++i, src += src_stride) dst[i] = *src; for (; i < total_len; ++i) dst[i] = dst[len - 1]; } void VP8IteratorImport(VP8EncIterator* const it, uint8_t* tmp_32) { const VP8Encoder* const enc = it->enc_; const int x = it->x_, y = it->y_; const WebPPicture* const pic = enc->pic_; const uint8_t* const ysrc = pic->y + (y * pic->y_stride + x) * 16; const uint8_t* const usrc = pic->u + (y * pic->uv_stride + x) * 8; const uint8_t* const vsrc = pic->v + (y * pic->uv_stride + x) * 8; const int w = MinSize(pic->width - x * 16, 16); const int h = MinSize(pic->height - y * 16, 16); const int uv_w = (w + 1) >> 1; const int uv_h = (h + 1) >> 1; ImportBlock(ysrc, pic->y_stride, it->yuv_in_ + Y_OFF_ENC, w, h, 16); ImportBlock(usrc, pic->uv_stride, it->yuv_in_ + U_OFF_ENC, uv_w, uv_h, 8); ImportBlock(vsrc, pic->uv_stride, it->yuv_in_ + V_OFF_ENC, uv_w, uv_h, 8); if (tmp_32 == NULL) return; // Import source (uncompressed) samples into boundary. if (x == 0) { InitLeft(it); } else { if (y == 0) { it->y_left_[-1] = it->u_left_[-1] = it->v_left_[-1] = 127; } else { it->y_left_[-1] = ysrc[- 1 - pic->y_stride]; it->u_left_[-1] = usrc[- 1 - pic->uv_stride]; it->v_left_[-1] = vsrc[- 1 - pic->uv_stride]; } ImportLine(ysrc - 1, pic->y_stride, it->y_left_, h, 16); ImportLine(usrc - 1, pic->uv_stride, it->u_left_, uv_h, 8); ImportLine(vsrc - 1, pic->uv_stride, it->v_left_, uv_h, 8); } it->y_top_ = tmp_32 + 0; it->uv_top_ = tmp_32 + 16; if (y == 0) { memset(tmp_32, 127, 32 * sizeof(*tmp_32)); } else { ImportLine(ysrc - pic->y_stride, 1, tmp_32, w, 16); ImportLine(usrc - pic->uv_stride, 1, tmp_32 + 16, uv_w, 8); ImportLine(vsrc - pic->uv_stride, 1, tmp_32 + 16 + 8, uv_w, 8); } } //------------------------------------------------------------------------------ // Copy back the compressed samples into user space if requested. static void ExportBlock(const uint8_t* src, uint8_t* dst, int dst_stride, int w, int h) { while (h-- > 0) { memcpy(dst, src, w); dst += dst_stride; src += BPS; } } void VP8IteratorExport(const VP8EncIterator* const it) { const VP8Encoder* const enc = it->enc_; if (enc->config_->show_compressed) { const int x = it->x_, y = it->y_; const uint8_t* const ysrc = it->yuv_out_ + Y_OFF_ENC; const uint8_t* const usrc = it->yuv_out_ + U_OFF_ENC; const uint8_t* const vsrc = it->yuv_out_ + V_OFF_ENC; const WebPPicture* const pic = enc->pic_; uint8_t* const ydst = pic->y + (y * pic->y_stride + x) * 16; uint8_t* const udst = pic->u + (y * pic->uv_stride + x) * 8; uint8_t* const vdst = pic->v + (y * pic->uv_stride + x) * 8; int w = (pic->width - x * 16); int h = (pic->height - y * 16); if (w > 16) w = 16; if (h > 16) h = 16; // Luma plane ExportBlock(ysrc, ydst, pic->y_stride, w, h); { // U/V planes const int uv_w = (w + 1) >> 1; const int uv_h = (h + 1) >> 1; ExportBlock(usrc, udst, pic->uv_stride, uv_w, uv_h); ExportBlock(vsrc, vdst, pic->uv_stride, uv_w, uv_h); } } } //------------------------------------------------------------------------------ // Non-zero contexts setup/teardown // Nz bits: // 0 1 2 3 Y // 4 5 6 7 // 8 9 10 11 // 12 13 14 15 // 16 17 U // 18 19 // 20 21 V // 22 23 // 24 DC-intra16 // Convert packed context to byte array #define BIT(nz, n) (!!((nz) & (1 << (n)))) void VP8IteratorNzToBytes(VP8EncIterator* const it) { const int tnz = it->nz_[0], lnz = it->nz_[-1]; int* const top_nz = it->top_nz_; int* const left_nz = it->left_nz_; // Top-Y top_nz[0] = BIT(tnz, 12); top_nz[1] = BIT(tnz, 13); top_nz[2] = BIT(tnz, 14); top_nz[3] = BIT(tnz, 15); // Top-U top_nz[4] = BIT(tnz, 18); top_nz[5] = BIT(tnz, 19); // Top-V top_nz[6] = BIT(tnz, 22); top_nz[7] = BIT(tnz, 23); // DC top_nz[8] = BIT(tnz, 24); // left-Y left_nz[0] = BIT(lnz, 3); left_nz[1] = BIT(lnz, 7); left_nz[2] = BIT(lnz, 11); left_nz[3] = BIT(lnz, 15); // left-U left_nz[4] = BIT(lnz, 17); left_nz[5] = BIT(lnz, 19); // left-V left_nz[6] = BIT(lnz, 21); left_nz[7] = BIT(lnz, 23); // left-DC is special, iterated separately } void VP8IteratorBytesToNz(VP8EncIterator* const it) { uint32_t nz = 0; const int* const top_nz = it->top_nz_; const int* const left_nz = it->left_nz_; // top nz |= (top_nz[0] << 12) | (top_nz[1] << 13); nz |= (top_nz[2] << 14) | (top_nz[3] << 15); nz |= (top_nz[4] << 18) | (top_nz[5] << 19); nz |= (top_nz[6] << 22) | (top_nz[7] << 23); nz |= (top_nz[8] << 24); // we propagate the _top_ bit, esp. for intra4 // left nz |= (left_nz[0] << 3) | (left_nz[1] << 7); nz |= (left_nz[2] << 11); nz |= (left_nz[4] << 17) | (left_nz[6] << 21); *it->nz_ = nz; } #undef BIT //------------------------------------------------------------------------------ // Advance to the next position, doing the bookkeeping. void VP8IteratorSaveBoundary(VP8EncIterator* const it) { VP8Encoder* const enc = it->enc_; const int x = it->x_, y = it->y_; const uint8_t* const ysrc = it->yuv_out_ + Y_OFF_ENC; const uint8_t* const uvsrc = it->yuv_out_ + U_OFF_ENC; if (x < enc->mb_w_ - 1) { // left int i; for (i = 0; i < 16; ++i) { it->y_left_[i] = ysrc[15 + i * BPS]; } for (i = 0; i < 8; ++i) { it->u_left_[i] = uvsrc[7 + i * BPS]; it->v_left_[i] = uvsrc[15 + i * BPS]; } // top-left (before 'top'!) it->y_left_[-1] = it->y_top_[15]; it->u_left_[-1] = it->uv_top_[0 + 7]; it->v_left_[-1] = it->uv_top_[8 + 7]; } if (y < enc->mb_h_ - 1) { // top memcpy(it->y_top_, ysrc + 15 * BPS, 16); memcpy(it->uv_top_, uvsrc + 7 * BPS, 8 + 8); } } int VP8IteratorNext(VP8EncIterator* const it) { it->preds_ += 4; it->mb_ += 1; it->nz_ += 1; it->y_top_ += 16; it->uv_top_ += 16; it->x_ += 1; if (it->x_ == it->enc_->mb_w_) { VP8IteratorSetRow(it, ++it->y_); } return (0 < --it->count_down_); } //------------------------------------------------------------------------------ // Helper function to set mode properties void VP8SetIntra16Mode(const VP8EncIterator* const it, int mode) { uint8_t* preds = it->preds_; int y; for (y = 0; y < 4; ++y) { memset(preds, mode, 4); preds += it->enc_->preds_w_; } it->mb_->type_ = 1; } void VP8SetIntra4Mode(const VP8EncIterator* const it, const uint8_t* modes) { uint8_t* preds = it->preds_; int y; for (y = 4; y > 0; --y) { memcpy(preds, modes, 4 * sizeof(*modes)); preds += it->enc_->preds_w_; modes += 4; } it->mb_->type_ = 0; } void VP8SetIntraUVMode(const VP8EncIterator* const it, int mode) { it->mb_->uv_mode_ = mode; } void VP8SetSkip(const VP8EncIterator* const it, int skip) { it->mb_->skip_ = skip; } void VP8SetSegment(const VP8EncIterator* const it, int segment) { it->mb_->segment_ = segment; } //------------------------------------------------------------------------------ // Intra4x4 sub-blocks iteration // // We store and update the boundary samples into an array of 37 pixels. They // are updated as we iterate and reconstructs each intra4x4 blocks in turn. // The position of the samples has the following snake pattern: // // 16|17 18 19 20|21 22 23 24|25 26 27 28|29 30 31 32|33 34 35 36 <- Top-right // --+-----------+-----------+-----------+-----------+ // 15| 19| 23| 27| 31| // 14| 18| 22| 26| 30| // 13| 17| 21| 25| 29| // 12|13 14 15 16|17 18 19 20|21 22 23 24|25 26 27 28| // --+-----------+-----------+-----------+-----------+ // 11| 15| 19| 23| 27| // 10| 14| 18| 22| 26| // 9| 13| 17| 21| 25| // 8| 9 10 11 12|13 14 15 16|17 18 19 20|21 22 23 24| // --+-----------+-----------+-----------+-----------+ // 7| 11| 15| 19| 23| // 6| 10| 14| 18| 22| // 5| 9| 13| 17| 21| // 4| 5 6 7 8| 9 10 11 12|13 14 15 16|17 18 19 20| // --+-----------+-----------+-----------+-----------+ // 3| 7| 11| 15| 19| // 2| 6| 10| 14| 18| // 1| 5| 9| 13| 17| // 0| 1 2 3 4| 5 6 7 8| 9 10 11 12|13 14 15 16| // --+-----------+-----------+-----------+-----------+ // Array to record the position of the top sample to pass to the prediction // functions in dsp.c. static const uint8_t VP8TopLeftI4[16] = { 17, 21, 25, 29, 13, 17, 21, 25, 9, 13, 17, 21, 5, 9, 13, 17 }; void VP8IteratorStartI4(VP8EncIterator* const it) { const VP8Encoder* const enc = it->enc_; int i; it->i4_ = 0; // first 4x4 sub-block it->i4_top_ = it->i4_boundary_ + VP8TopLeftI4[0]; // Import the boundary samples for (i = 0; i < 17; ++i) { // left it->i4_boundary_[i] = it->y_left_[15 - i]; } for (i = 0; i < 16; ++i) { // top it->i4_boundary_[17 + i] = it->y_top_[i]; } // top-right samples have a special case on the far right of the picture if (it->x_ < enc->mb_w_ - 1) { for (i = 16; i < 16 + 4; ++i) { it->i4_boundary_[17 + i] = it->y_top_[i]; } } else { // else, replicate the last valid pixel four times for (i = 16; i < 16 + 4; ++i) { it->i4_boundary_[17 + i] = it->i4_boundary_[17 + 15]; } } VP8IteratorNzToBytes(it); // import the non-zero context } int VP8IteratorRotateI4(VP8EncIterator* const it, const uint8_t* const yuv_out) { const uint8_t* const blk = yuv_out + VP8Scan[it->i4_]; uint8_t* const top = it->i4_top_; int i; // Update the cache with 7 fresh samples for (i = 0; i <= 3; ++i) { top[-4 + i] = blk[i + 3 * BPS]; // store future top samples } if ((it->i4_ & 3) != 3) { // if not on the right sub-blocks #3, #7, #11, #15 for (i = 0; i <= 2; ++i) { // store future left samples top[i] = blk[3 + (2 - i) * BPS]; } } else { // else replicate top-right samples, as says the specs. for (i = 0; i <= 3; ++i) { top[i] = top[i + 4]; } } // move pointers to next sub-block ++it->i4_; if (it->i4_ == 16) { // we're done return 0; } it->i4_top_ = it->i4_boundary_ + VP8TopLeftI4[it->i4_]; return 1; } //------------------------------------------------------------------------------