Compare commits

..

11 Commits

Author SHA1 Message Date
4238bc0adb Update ChangeLog
Change-Id: I598aaf69c1a45a694c36f2f3166ed9adc20ace84
2012-08-15 22:49:03 -07:00
c655380c36 dec/io.c: cosmetics
- deindent EmitAlphaRGB*
- add some missing consts

Change-Id: I65f88da295e6a0afa383fadc2ef90a40613c2d62
2012-08-15 10:27:54 -07:00
fe1958f17d RGBA4444: harmonize lossless/lossy alpha values
lossy was rounding with a bias toward opaque:
[232+, 8] -> [15, 1]
now both paths use the range:
[240+, 16] -> [15, 1]

Change-Id: I3da2063b4959b9e9f45bae09e640acc1f43470c5
2012-08-14 14:02:30 -07:00
681cb30ad2 fix RGBA4444 output w/fancy upsampling
compensates for the 1-line delay in the upscaler, outputting the correct
alpha row

Change-Id: Ia9a65bcb3cfa19e42185523cc6e706101a39d45d
2012-08-14 13:11:53 -07:00
f06c1d8f7b Merge "Alignment fix" into 0.2.0 2012-08-09 16:09:58 -07:00
f56e98fd11 Alignment fix
Change-Id: Ia5475247f03456b01571ae7531da90f74c068045
2012-08-10 02:10:32 +05:30
6fe843baeb avoid rgb-premultiply if there's only trivial alpha values
With this, MODE_rgbA can safely be used without speed penalty
even in case of pure-lossy alpha-less input.
It's also an optimization when cropping a fully-opaque region from
an image with alpha: premultiply is then skipped

Change-Id: Ibee28c75744f193dacdfccd5a2e7cd1e44604db6
2012-08-09 11:33:29 -07:00
528a11af35 fix the ARGB4444 premultiply arithmetic
* green was not descaled properly
* alpha was over-dithered, making the value '0x0f' not be a fixed point
* alpha value was not restored ok.

Change-Id: Ia4a4d75bdad41257f7c07ef76a487065ac36fede
2012-08-09 11:32:30 -07:00
a0a488554d Lossless decoder fix for a special transform order
Fix the lossless decoder for the case when it has to apply other
inverse transforms before applying Color indexing inverse transform.

The main idea is to make ColorIndexingInverse virtually in-place: we
use the fact that the argb_cache is allocated to accommodate all
*unpacked* pixels of a macro-row, not just *packed* pixels.

Change-Id: I27f11f3043f863dfd753cc2580bc5b36376800c4
2012-08-08 23:52:08 -07:00
62dd9bb242 Update encoding heuristic w.r.t palette colors.
Added a threshold of MAX_COLORS_FOR_GRAPH for color-palettes, above
which the graph hint is ignored.

Change-Id: Ia5d7f45e52731b6eaf2806999d6be82861744fd3
2012-08-08 18:57:52 -07:00
6f4272b090 remove unused ApplyInverseTransform()
transforms are only allowed for is_level0

Change-Id: Iec8ce8bdbe024aae6cae2688e2934ab8f445000c
2012-08-07 22:41:25 -07:00
7 changed files with 150 additions and 108 deletions

View File

@ -1,3 +1,14 @@
c655380 dec/io.c: cosmetics
fe1958f RGBA4444: harmonize lossless/lossy alpha values
681cb30 fix RGBA4444 output w/fancy upsampling
f06c1d8 Merge "Alignment fix" into 0.2.0
f56e98f Alignment fix
6fe843b avoid rgb-premultiply if there's only trivial alpha values
528a11a fix the ARGB4444 premultiply arithmetic
a0a4885 Lossless decoder fix for a special transform order
62dd9bb Update encoding heuristic w.r.t palette colors.
6f4272b remove unused ApplyInverseTransform()
93bf0fa Update ChangeLog (v0.2.0-rc1)
5934fc5 update AUTHORS
014a711 update NEWS
43b0d61 add support for ARGB -> YUVA conversion for lossless decoder

View File

@ -111,7 +111,7 @@ static int EmitFancyRGB(const VP8Io* const io, WebPDecParams* const p) {
const uint8_t* top_u = p->tmp_u;
const uint8_t* top_v = p->tmp_v;
int y = io->mb_y;
int y_end = io->mb_y + io->mb_h;
const int y_end = io->mb_y + io->mb_h;
const int mb_w = io->mb_w;
const int uv_w = (mb_w + 1) / 2;
@ -150,7 +150,7 @@ static int EmitFancyRGB(const VP8Io* const io, WebPDecParams* const p) {
// Process the very last row of even-sized picture
if (!(y_end & 1)) {
upsample(cur_y, NULL, cur_u, cur_v, cur_u, cur_v,
dst + buf->stride, NULL, mb_w);
dst + buf->stride, NULL, mb_w);
}
}
return num_lines_out;
@ -184,49 +184,60 @@ static int EmitAlphaYUV(const VP8Io* const io, WebPDecParams* const p) {
return 0;
}
static int GetAlphaSourceRow(const VP8Io* const io,
const uint8_t** alpha, int* const num_rows) {
int start_y = io->mb_y;
*num_rows = io->mb_h;
// Compensate for the 1-line delay of the fancy upscaler.
// This is similar to EmitFancyRGB().
if (io->fancy_upsampling) {
if (start_y == 0) {
// We don't process the last row yet. It'll be done during the next call.
--*num_rows;
} else {
--start_y;
// Fortunately, *alpha data is persistent, so we can go back
// one row and finish alpha blending, now that the fancy upscaler
// completed the YUV->RGB interpolation.
*alpha -= io->width;
}
if (io->crop_top + io->mb_y + io->mb_h == io->crop_bottom) {
// If it's the very last call, we process all the remaining rows!
*num_rows = io->crop_bottom - io->crop_top - start_y;
}
}
return start_y;
}
static int EmitAlphaRGB(const VP8Io* const io, WebPDecParams* const p) {
const uint8_t* alpha = io->a;
if (alpha != NULL) {
const int mb_w = io->mb_w;
const int mb_h = io->mb_h;
int i, j;
const WEBP_CSP_MODE colorspace = p->output->colorspace;
const int alpha_first =
(colorspace == MODE_ARGB || colorspace == MODE_Argb);
const WebPRGBABuffer* const buf = &p->output->u.RGBA;
int start_y = io->mb_y;
int num_rows = mb_h;
int num_rows;
const int start_y = GetAlphaSourceRow(io, &alpha, &num_rows);
uint8_t* const base_rgba = buf->rgba + start_y * buf->stride;
uint8_t* dst = base_rgba + (alpha_first ? 0 : 3);
uint32_t alpha_mask = 0xff;
int i, j;
// We compensate for the 1-line delay of fancy upscaler.
// This is similar to EmitFancyRGB().
if (io->fancy_upsampling) {
if (start_y == 0) {
// We don't process the last row yet. It'll be done during next call.
--num_rows;
} else {
--start_y;
// Fortunately, *alpha data is persistent, so we can go back
// one row and finish alpha blending, now that the fancy upscaler
// completed the YUV->RGB interpolation.
alpha -= io->width;
}
if (io->crop_top + io->mb_y + mb_h == io->crop_bottom) {
// If it's the very last call, we process all the remaing rows!
num_rows = io->crop_bottom - io->crop_top - start_y;
for (j = 0; j < num_rows; ++j) {
for (i = 0; i < mb_w; ++i) {
const uint32_t alpha_value = alpha[i];
dst[4 * i] = alpha_value;
alpha_mask &= alpha_value;
}
alpha += io->width;
dst += buf->stride;
}
{
uint8_t* const base_rgba = buf->rgba + start_y * buf->stride;
uint8_t* dst = base_rgba + (alpha_first ? 0 : 3);
for (j = 0; j < num_rows; ++j) {
for (i = 0; i < mb_w; ++i) dst[4 * i] = alpha[i];
alpha += io->width;
dst += buf->stride;
}
if (WebPIsPremultipliedMode(colorspace)) {
WebPApplyAlphaMultiply(base_rgba, alpha_first,
mb_w, num_rows, buf->stride);
}
// alpha_mask is < 0xff if there's non-trivial alpha to premultiply with.
if (alpha_mask != 0xff && WebPIsPremultipliedMode(colorspace)) {
WebPApplyAlphaMultiply(base_rgba, alpha_first,
mb_w, num_rows, buf->stride);
}
}
return 0;
@ -236,22 +247,27 @@ static int EmitAlphaRGBA4444(const VP8Io* const io, WebPDecParams* const p) {
const uint8_t* alpha = io->a;
if (alpha != NULL) {
const int mb_w = io->mb_w;
const int mb_h = io->mb_h;
int i, j;
const WEBP_CSP_MODE colorspace = p->output->colorspace;
const WebPRGBABuffer* const buf = &p->output->u.RGBA;
uint8_t* const base_rgba = buf->rgba + io->mb_y * buf->stride;
int num_rows;
const int start_y = GetAlphaSourceRow(io, &alpha, &num_rows);
uint8_t* const base_rgba = buf->rgba + start_y * buf->stride;
uint8_t* alpha_dst = base_rgba + 1;
for (j = 0; j < mb_h; ++j) {
uint32_t alpha_mask = 0x0f;
int i, j;
for (j = 0; j < num_rows; ++j) {
for (i = 0; i < mb_w; ++i) {
// Fill in the alpha value (converted to 4 bits).
const uint32_t alpha_val = VP8Clip4Bits(alpha[i]);
alpha_dst[2 * i] = (alpha_dst[2 * i] & 0xf0) | alpha_val;
const uint32_t alpha_value = alpha[i] >> 4;
alpha_dst[2 * i] = (alpha_dst[2 * i] & 0xf0) | alpha_value;
alpha_mask &= alpha_value;
}
alpha += io->width;
alpha_dst += buf->stride;
}
if (p->output->colorspace == MODE_rgbA_4444) {
WebPApplyAlphaMultiply4444(base_rgba, mb_w, mb_h, buf->stride);
if (alpha_mask != 0x0f && WebPIsPremultipliedMode(colorspace)) {
WebPApplyAlphaMultiply4444(base_rgba, mb_w, num_rows, buf->stride);
}
}
return 0;
@ -396,17 +412,22 @@ static int ExportAlpha(WebPDecParams* const p, int y_pos) {
uint8_t* dst = base_rgba + (alpha_first ? 0 : 3);
int num_lines_out = 0;
const int is_premult_alpha = WebPIsPremultipliedMode(colorspace);
uint32_t alpha_mask = 0xff;
const int width = p->scaler_a.dst_width;
while (WebPRescalerHasPendingOutput(&p->scaler_a)) {
int i;
assert(p->last_y + y_pos + num_lines_out < p->output->height);
WebPRescalerExportRow(&p->scaler_a);
for (i = 0; i < width; ++i) dst[4 * i] = p->scaler_a.dst[i];
for (i = 0; i < width; ++i) {
const uint32_t alpha_value = p->scaler_a.dst[i];
dst[4 * i] = alpha_value;
alpha_mask &= alpha_value;
}
dst += buf->stride;
++num_lines_out;
}
if (is_premult_alpha) {
if (is_premult_alpha && alpha_mask != 0xff) {
WebPApplyAlphaMultiply(base_rgba, alpha_first,
width, num_lines_out, buf->stride);
}
@ -421,6 +442,7 @@ static int ExportAlphaRGBA4444(WebPDecParams* const p, int y_pos) {
const WEBP_CSP_MODE colorspace = p->output->colorspace;
const int width = p->scaler_a.dst_width;
const int is_premult_alpha = WebPIsPremultipliedMode(colorspace);
uint32_t alpha_mask = 0x0f;
while (WebPRescalerHasPendingOutput(&p->scaler_a)) {
int i;
@ -428,13 +450,14 @@ static int ExportAlphaRGBA4444(WebPDecParams* const p, int y_pos) {
WebPRescalerExportRow(&p->scaler_a);
for (i = 0; i < width; ++i) {
// Fill in the alpha value (converted to 4 bits).
const uint32_t alpha_val = VP8Clip4Bits(p->scaler_a.dst[i]);
alpha_dst[2 * i] = (alpha_dst[2 * i] & 0xf0) | alpha_val;
const uint32_t alpha_value = p->scaler_a.dst[i] >> 4;
alpha_dst[2 * i] = (alpha_dst[2 * i] & 0xf0) | alpha_value;
alpha_mask &= alpha_value;
}
alpha_dst += buf->stride;
++num_lines_out;
}
if (is_premult_alpha) {
if (is_premult_alpha && alpha_mask != 0x0f) {
WebPApplyAlphaMultiply4444(base_rgba, width, num_lines_out, buf->stride);
}
return num_lines_out;
@ -471,8 +494,7 @@ static int InitRGBRescaler(const VP8Io* const io, WebPDecParams* const p) {
tmp_size1 += work_size;
tmp_size2 += out_width;
}
p->memory =
calloc(1, tmp_size1 * sizeof(*work) + tmp_size2 * sizeof(*tmp));
p->memory = calloc(1, tmp_size1 * sizeof(*work) + tmp_size2 * sizeof(*tmp));
if (p->memory == NULL) {
return 0; // memory error
}
@ -569,7 +591,7 @@ static int CustomSetup(VP8Io* io) {
//------------------------------------------------------------------------------
static int CustomPut(const VP8Io* io) {
WebPDecParams* p = (WebPDecParams*)io->opaque;
WebPDecParams* const p = (WebPDecParams*)io->opaque;
const int mb_w = io->mb_w;
const int mb_h = io->mb_h;
int num_lines_out;

View File

@ -615,20 +615,22 @@ static WEBP_INLINE HTreeGroup* GetHtreeGroupForPos(VP8LMetadata* const hdr,
typedef void (*ProcessRowsFunc)(VP8LDecoder* const dec, int row);
static void ApplyTransforms(VP8LDecoder* const dec, int num_rows,
const uint32_t* const rows) {
static void ApplyInverseTransforms(VP8LDecoder* const dec, int num_rows,
const uint32_t* const rows) {
int n = dec->next_transform_;
const int cache_pixs = dec->width_ * num_rows;
uint32_t* rows_data = dec->argb_cache_;
const int start_row = dec->last_row_;
const int end_row = start_row + num_rows;
const uint32_t* rows_in = rows;
uint32_t* const rows_out = dec->argb_cache_;
// Inverse transforms.
// TODO: most transforms only need to operate on the cropped region only.
memcpy(rows_data, rows, cache_pixs * sizeof(*rows_data));
memcpy(rows_out, rows_in, cache_pixs * sizeof(*rows_out));
while (n-- > 0) {
VP8LTransform* const transform = &dec->transforms_[n];
VP8LInverseTransform(transform, start_row, end_row, rows, rows_data);
VP8LInverseTransform(transform, start_row, end_row, rows_in, rows_out);
rows_in = rows_out;
}
}
@ -639,7 +641,7 @@ static void ProcessRows(VP8LDecoder* const dec, int row) {
const int num_rows = row - dec->last_row_;
if (num_rows <= 0) return; // Nothing to be done.
ApplyTransforms(dec, num_rows, rows);
ApplyInverseTransforms(dec, num_rows, rows);
// Emit output.
{
@ -797,19 +799,6 @@ static void ClearTransform(VP8LTransform* const transform) {
transform->data_ = NULL;
}
static void ApplyInverseTransforms(VP8LDecoder* const dec, int start_idx,
uint32_t* const decoded_data) {
int n = dec->next_transform_;
assert(start_idx >= 0);
while (n-- > start_idx) {
VP8LTransform* const transform = &dec->transforms_[n];
VP8LInverseTransform(transform, 0, transform->ysize_,
decoded_data, decoded_data);
ClearTransform(transform);
}
dec->next_transform_ = start_idx;
}
// For security reason, we need to remap the color map to span
// the total possible bundled values, and not just the num_colors.
static int ExpandColorMap(int num_colors, VP8LTransform* const transform) {
@ -964,7 +953,6 @@ static int DecodeImageStream(int xsize, int ysize,
VP8LBitReader* const br = &dec->br_;
VP8LMetadata* const hdr = &dec->hdr_;
uint32_t* data = NULL;
const int transform_start_idx = dec->next_transform_;
int color_cache_bits = 0;
// Read the transforms (may recurse).
@ -1024,9 +1012,6 @@ static int DecodeImageStream(int xsize, int ysize,
ok = DecodeImageData(dec, data, transform_xsize, transform_ysize, NULL);
ok = ok && !br->error_;
// Apply transforms on the decoded data.
if (ok) ApplyInverseTransforms(dec, transform_start_idx, data);
End:
if (!ok) {
@ -1083,7 +1068,7 @@ static void ExtractAlphaRows(VP8LDecoder* const dec, int row) {
const uint32_t* const in = dec->argb_ + dec->width_ * dec->last_row_;
if (num_rows <= 0) return; // Nothing to be done.
ApplyTransforms(dec, num_rows, in);
ApplyInverseTransforms(dec, num_rows, in);
// Extract alpha (which is stored in the green plane).
{

View File

@ -935,7 +935,7 @@ static void ColorIndexInverseTransform(
uint32_t packed_pixels = 0;
int x;
for (x = 0; x < width; ++x) {
// We need to load fresh 'packed_pixels' once every 'bytes_per_pixels'
// We need to load fresh 'packed_pixels' once every 'pixels_per_byte'
// increments of x. Fortunately, pixels_per_byte is a power of 2, so
// can just use a mask for that, instead of decrementing a counter.
if ((x & count_mask) == 0) packed_pixels = ((*src++) >> 8) & 0xff;
@ -976,7 +976,21 @@ void VP8LInverseTransform(const VP8LTransform* const transform,
ColorSpaceInverseTransform(transform, row_start, row_end, out);
break;
case COLOR_INDEXING_TRANSFORM:
ColorIndexInverseTransform(transform, row_start, row_end, in, out);
if (in == out && transform->bits_ > 0) {
// Move packed pixels to the end of unpacked region, so that unpacking
// can occur seamlessly.
// Also, note that this is the only transform that applies on
// the effective width of VP8LSubSampleSize(xsize_, bits_). All other
// transforms work on effective width of xsize_.
const int out_stride = (row_end - row_start) * transform->xsize_;
const int in_stride = (row_end - row_start) *
VP8LSubSampleSize(transform->xsize_, transform->bits_);
uint32_t* const src = out + out_stride - in_stride;
memmove(src, out, in_stride * sizeof(*src));
ColorIndexInverseTransform(transform, row_start, row_end, src, out);
} else {
ColorIndexInverseTransform(transform, row_start, row_end, in, out);
}
break;
}
}

View File

@ -271,8 +271,7 @@ static void ApplyAlphaMultiply(uint8_t* rgba, int alpha_first,
// rgbA4444
#define MULTIPLIER(a) ((a) * 0x11)
#define PREMULTIPLY(x, m) (((x) * (m)) >> 12)
#define MULTIPLIER(a) ((a) * 0x1111) // 0x1111 ~= (1 << 16) / 15
static WEBP_INLINE uint8_t dither_hi(uint8_t x) {
return (x & 0xf0) | (x >> 4);
@ -282,24 +281,27 @@ static WEBP_INLINE uint8_t dither_lo(uint8_t x) {
return (x & 0x0f) | (x << 4);
}
static WEBP_INLINE uint8_t multiply(uint8_t x, uint32_t m) {
return (x * m) >> 16;
}
static void ApplyAlphaMultiply4444(uint8_t* rgba4444,
int w, int h, int stride) {
while (h-- > 0) {
int i;
for (i = 0; i < w; ++i) {
const uint8_t a = dither_lo(rgba4444[2 * i + 1]);
const uint8_t a = (rgba4444[2 * i + 1] & 0x0f);
const uint32_t mult = MULTIPLIER(a);
const uint8_t r = PREMULTIPLY(dither_hi(rgba4444[2 * i + 0]), mult);
const uint8_t g = PREMULTIPLY(dither_lo(rgba4444[2 * i + 0]), mult);
const uint8_t b = PREMULTIPLY(dither_hi(rgba4444[2 * i + 1]), mult);
rgba4444[2 * i + 0] = (r & 0xf0) | (g & 0x0f);
const uint8_t r = multiply(dither_hi(rgba4444[2 * i + 0]), mult);
const uint8_t g = multiply(dither_lo(rgba4444[2 * i + 0]), mult);
const uint8_t b = multiply(dither_hi(rgba4444[2 * i + 1]), mult);
rgba4444[2 * i + 0] = (r & 0xf0) | ((g >> 4) & 0x0f);
rgba4444[2 * i + 1] = (b & 0xf0) | a;
}
rgba4444 += stride;
}
}
#undef MULTIPLIER
#undef PREMULTIPLY
void (*WebPApplyAlphaMultiply)(uint8_t*, int, int, int, int)
= ApplyAlphaMultiply;

View File

@ -90,11 +90,6 @@ static WEBP_INLINE void VP8YuvToRgba(uint8_t y, uint8_t u, uint8_t v,
rgba[3] = 0xff;
}
static WEBP_INLINE uint32_t VP8Clip4Bits(uint8_t c) {
const uint32_t v = (c + 8) >> 4;
return (v > 15) ? 15 : v;
}
// Must be called before everything, to initialize the tables.
void VP8YUVInit(void);

View File

@ -29,6 +29,7 @@ extern "C" {
#define PALETTE_KEY_RIGHT_SHIFT 22 // Key for 1K buffer.
#define MAX_HUFF_IMAGE_SIZE (16 * 1024 * 1024)
#define MAX_COLORS_FOR_GRAPH 64
// -----------------------------------------------------------------------------
// Palette
@ -98,11 +99,11 @@ static int AnalyzeAndCreatePalette(const WebPPicture* const pic,
return 1;
}
static int AnalyzeEntropy(const WebPPicture* const pic,
static int AnalyzeEntropy(const uint32_t* argb,
int width, int height, int argb_stride,
double* const nonpredicted_bits,
double* const predicted_bits) {
int x, y;
const uint32_t* argb = pic->argb;
const uint32_t* last_line = NULL;
uint32_t last_pix = argb[0]; // so we're sure that pix_diff == 0
@ -114,8 +115,8 @@ static int AnalyzeEntropy(const WebPPicture* const pic,
VP8LHistogramInit(predicted, 0);
VP8LHistogramInit(nonpredicted, 0);
for (y = 0; y < pic->height; ++y) {
for (x = 0; x < pic->width; ++x) {
for (y = 0; y < height; ++y) {
for (x = 0; x < width; ++x) {
const uint32_t pix = argb[x];
const uint32_t pix_diff = VP8LSubPixels(pix, last_pix);
if (pix_diff == 0) continue;
@ -131,7 +132,7 @@ static int AnalyzeEntropy(const WebPPicture* const pic,
}
}
last_line = argb;
argb += pic->argb_stride;
argb += argb_stride;
}
*nonpredicted_bits = VP8LHistogramEstimateBitsBulk(nonpredicted);
*predicted_bits = VP8LHistogramEstimateBitsBulk(predicted);
@ -143,24 +144,35 @@ static int VP8LEncAnalyze(VP8LEncoder* const enc, WebPImageHint image_hint) {
const WebPPicture* const pic = enc->pic_;
assert(pic != NULL && pic->argb != NULL);
enc->use_palette_ = (image_hint == WEBP_HINT_GRAPH) ? 0 :
enc->use_palette_ =
AnalyzeAndCreatePalette(pic, enc->palette_, &enc->palette_size_);
if (!enc->use_palette_) {
if (image_hint == WEBP_HINT_DEFAULT) {
double non_pred_entropy, pred_entropy;
if (!AnalyzeEntropy(pic, &non_pred_entropy, &pred_entropy)) {
return 0;
}
if (pred_entropy < 0.95 * non_pred_entropy) {
enc->use_predict_ = 1;
enc->use_cross_color_ = 1;
}
} else if (image_hint == WEBP_HINT_PHOTO) {
enc->use_predict_ = 1;
enc->use_cross_color_ = 1;
if (image_hint == WEBP_HINT_GRAPH) {
if (enc->use_palette_ && enc->palette_size_ < MAX_COLORS_FOR_GRAPH) {
enc->use_palette_ = 0;
}
}
if (!enc->use_palette_) {
if (image_hint == WEBP_HINT_PHOTO) {
enc->use_predict_ = 1;
enc->use_cross_color_ = 1;
} else {
double non_pred_entropy, pred_entropy;
if (!AnalyzeEntropy(pic->argb, pic->width, pic->height, pic->argb_stride,
&non_pred_entropy, &pred_entropy)) {
return 0;
}
if (pred_entropy < 0.95 * non_pred_entropy) {
enc->use_predict_ = 1;
// TODO(vikasa): Observed some correlation of cross_color transform with
// predict. Need to investigate this further and add separate heuristic
// for setting use_cross_color flag.
enc->use_cross_color_ = 1;
}
}
}
return 1;
}
@ -961,6 +973,7 @@ WebPEncodingError VP8LEncodeStream(const WebPConfig* const config,
if (enc->use_palette_) {
err = ApplyPalette(bw, enc, quality);
if (err != VP8_ENC_OK) goto Error;
// Color cache is disabled for palette.
enc->cache_bits_ = 0;
}