It will decode to raw (flat) YUV format, similar to what
cwebp can take as input. Makes the PSNR/SSIM calculation easier.
Change-Id: Iebfaedfc0bedc70c169b24ae4aabc701488d0644
retains the alpha channel rather than stripping it as with PPM.
display from ImageMagick can render the files
Change-Id: I4f3a5d332937e0aeaf4e3fbd214fdae3b5382fb8
escape '-'s
use consistent section names
webpmux.1:
document -loop
create subsections for each OPTION group
Change-Id: If41dc24d80e4a662024e82697d8d2cc4e194a35d
To be enabled with the flag WEBP_USE_THREAD.
For now it's only available on unix (pthread), when using Makefile.unix
Will be switched on more generally later.
In-loop filtering and output (=rescaling/yuv->rgb conversion)
is done in parallel to bitstream decoding, lagging 1 row behind.
Example:
examples/dwebp bryce.webp -v
Time to decode picture: 0.680s
examples/dwebp bryce.webp -v -mt
Time to decode picture: 0.515s
Change-Id: Ic30a897423137a3bdace9c4e30465ef758fe53f2
You can now use WebPDecBuffer, WebPBitstreamFeatures and WebPDecoderOptions
to have better control over the decoding process (and the speed/quality tradeoff).
WebPDecoderOptions allow to:
- turn fancy upsampler on/off
- turn in-loop filter on/off
- perform on-the-fly cropping
- perform on the-fly rescale
(and more to come. Not all features are implemented yet).
On-the-fly cropping and scaling allow to save quite some memory
(as the decoding operation will now scale with the output's size, not
the input's one). It saves some CPU too (since for instance,
in-loop filtering is partially turned off where it doesn't matter,
and some YUV->RGB conversion operations are ommitted too).
The scaler uses summed area, so is mainly meant to be used for
downscaling (like: for generating thumbnails or previews).
Incremental decoding works with these new options.
More doc to come soon.
dwebp is now using the new decoding interface, with the new flags:
-nofancy
-nofilter
-crop top left width height
-scale width height
Change-Id: I08baf2fa291941686f4ef70a9cc2e4137874e85e