Changed the code (again) to process 4 pixels at a time. Loop is more
involved, but overall it's faster.
Removed the SSE4.1 implementation which is now slower than SSE2.
Change-Id: I7734e371033ad8929ace7f7e1373ba930d9bb5f1
New implementations: SubtractGreenFromBlueAndRed and TransformColor
around 1-2% faster lossless encoding.
Change-Id: I1668e36fdc316ba55b3b798b91b4a3e36ce62861
DispatchAlpha* functions are hard to speed up, compared to SSE2.
ExtractAlpha sees a ~15% speed-up though.
Change-Id: I8715c2defecbc832f469eed7e6ffd012146b52de
over a 1000 image corpus
Single photograph benchmark:
Before:
Q=20: 2.560 MP/s
Q=40: 2.593 MP/s
Q=60: 1.795 MP/s
Q=80: 1.603 MP/s
Q=99: 1.122 MP/s
After:
Q=20: 3.334 MP/s
Q=40: 2.464 MP/s
Q=60: 2.009 MP/s
Q=80: 1.871 MP/s
Q=99: 1.163 MP/s
This CL allows for some further improvements that would not be possible
otherwise.
Change-Id: I61ba154beca2266cb96469281cf96e84a4412586
use vld1_dup_u8() rather than a separate ld+dup after the values were
zero extended; mildly faster at the function level
Change-Id: I1b3666a6aeb465722a1214dbc6d71c27689a7f89
VP8EncPredChroma8 improvements over ~20M pixels
left/top: ~67%
left-only: ~52%
top-only: ~57%
none: ~61%
based on dec_sse2 versions with minor changes to benefit from the linear
storage of the left boundary
Change-Id: Iee7e387fb2570b4eb5af5bfd123e9c2e9ea49c76
VP8EncPredLuma16 improvements over ~20M pixels
left/top: ~75%
left-only: ~47%
top-only: ~59%
none: ~63%
based on dec_sse2 versions with minor changes to benefit from the linear
storage of the left boundary
Change-Id: I7548be7214fa85c38fd11d30f5b8b271f437657d
structured extended feature flags require eax = 7; avoids incorrectly
detecting avx2 on some older processors that support avx.
for completeness also check for value=1 support used by the other
checks.
from [1]:
INPUT EAX = 0: Returns CPUID’s Highest Value for Basic Processor
Information and the Vendor Identification String
[1]
http://www.intel.com/content/www/us/en/processors/processor-identification-cpuid-instruction-note.html
Change-Id: I60b20d661a978d551614dbf7acdc25db19cb6046
use psadbw to perform top row summation; left remains in C as repacking
it into a vector to apply the same operation is too costly.
DC8uv: ~19% faster
DC8uvNoLeft: ~12% faster
Change-Id: I707c4f6177a65b5d1f2d3deeca87d2bb740185e2
use psadbw to perform top row summation; left remains in C as repacking
it into a vector to apply the same operation is too costly.
DC16: ~20% faster
DC16NoLeft: ~14% faster
Change-Id: I7ec3f8a6e5923f88a530f79fceb88d5001bef691
generates a stub function when the specific architecture is not enabled,
exposing a symbol in the module, avoiding a compiler warning
Change-Id: Ia9336e57466a9b5241b85c1c95838e91c9283147
Visible speed-up, thanks to pshufb and pabsw and psignw use.
had to tweak configure.ac to make "smmintri.h" presence correctly
detected (we need to set the CPPFLAGS instead of the CFLAGS!)
Change-Id: I2ab99e16a27a64fdf1f09b2b4e30a5e74ccca080
allows the former to be inlined; negligible speed-up in most cases,
however this is structure is consistent with the rest of the optimized
modules
Change-Id: Ib080240b06f7a995b47f1906627850c355b82901