SSE2 version is 2.1x faster
This is used to transfer the alpha plane to green channel before lossless compression.
Change-Id: I01d9df0051c183b1ff5d6eb69961d4f43e33141a
if ALPHA_LOSSLESS_COMPRESSION produces a too big file (very rare!),
we fall-back to no-compression automatically.
Change-Id: I5f3f509c635ce43a5e7c23f5d0f0c8329a5f24b7
there's still some malloc/free in the external example
This is an encoder API change because of the introduction
of WebPMemoryWriterClear() for symmetry reasons.
The MemoryWriter object should probably go in examples/ instead
of being in the main lib, though.
mux_types.h stil contain some inlined free()/malloc() that are
harder to remove (we need to put them in the libwebputils lib
and make sure link is ok). Left as a TODO for now.
Also: WebPDecodeRGB*() function are still returning a pointer
that needs to be free()'d. We should call WebPSafeFree() on
these, but it means exposing the whole mechanism. TODO(later).
Change-Id: Iad2c9060f7fa6040e3ba489c8b07f4caadfab77b
Disable costly 'BackwardReferencesTraceBackwards' for encoding Alpha plane.
Increase the threshold for triggering 'BackwardReferencesTraceBackwards' to
quality 25 and above. Also lower the Alpha quality (at method 3) to be
lesser than this threshold (25).
Change-Id: Ic29fb2e6943472c564223df9fe099b19ccda0f31
+ some revamp and cleanup of the alpha-filter trial loop
+ EncodeAlphaInternal() now just takes a FilterTrial param
Change-Id: Ief84385083b1cba02678bbcd3dbf707245ee962f
rather than symlink the webm/vpx terms, use the same header as libvpx to
reference in-tree files
based on the discussion in:
https://codereview.chromium.org/12771026/
Change-Id: Ia3067ecddefaa7ee01550136e00f7b3f086d4af4
This is required for WebP lossy+Alpha images, where Alpha channel is taking
60-70% of the compression (CPU) cycles.
Also evaluated on 1000 PNG corpus and overall compression speed
is 15-40% better for lossy (PNG+Alpha) compression.
The pure lossless compression numbers are almost same (or little
better) with this change.
Change-Id: I9e5ae7372ed6227a9a5b64cd9cff84c747195a57
new option: 'cwebp -mt ...'
new config flag: config.thread_level
(allowed thread_level are 0 or 1 for now. Maybe more later...)
If -mt is activated (and WEBP_USE_THREAD is used for compile), the alpha-compression
will be done in parallel to RGB coding for lossy. Can save quite a bit of latency...
Has no effect for lossless encoding.
Change-Id: I769d0bf90e7380cf99344ad62cd77277f4df5a46
spurious in this case, but addresses e.g.,
... potentially uninitialized local variable 'weighted_average' used
Change-Id: Ib99998bf49e4af7a82ee66f13fb850ca5b17dc71
* Extend AuxStats with new fields
it's slightly ABI-incompatible, but i guess it's ok for 0.1.99+
I expect to add more stats later, possibly (predictor stats, etc.)
* Have cwebp report the features used by lossless
compression (either for alpha or full lossless coding)
* Print the PSNR for alpha (useful in case of -alpha_q)
* clean-up alpha.c signatures
+ misc cleanup (added const '* const ptr', etc.)
Change-Id: I157a21581f1793cb0c6cc0882e7b0a2dde68a970
Evaluated the impact of this change over 1000 image corpus.
The compression density is up (on average) by 1.2% and encoding time has
gone down considerably from 716 ms (per file) to 146 ms (per file)
(4.9X improvement in encoding time).
Change-Id: Ida562cc0bfe18c9d6f5f00873c95f8396b480eab
VP8-lossy will now avoid writing an ALPH chunk if the
alpha values are trivial.
+ changed DumpPicture() accordingly in cwebp
+ prevented the -d option to be active with lossless
(DumpPicture wouldn't work).
Change-Id: I34fdb108a2b6207e93fa6cd00b1d2509a8e1dc4b
Take picture and percent value storage location instead of VP8Encoder.
This will allow reuse by the lossless encoder.
Change-Id: Ic49dbc800cc3e2df60d20f4ebac277f68ed6031b
we vary linearly lossless-method between 0 and 6,
and lossless-quality between 50 and 100, so that encoding
speed can go from 'quite fast' to 'rather slow'.
Impact on size is moderate, but visible.
Change-Id: I0b7917e7170eb50258afb1a4e248028cd9e9207d
This saves ~26 bytes of headers.
* introduce new VP8LDecodeAlphaImageStream() for decoding
* use VP8LEncodeStream() for encoding
* refactor code a bit
still TODO: make the alpha-quality/enc-method user-configurable
Change-Id: I23e599bebe335cfb5868e746e076c3358ef12e71
now, we only use 2 bits for the filtering method, and 2 bits
for the compression method.
There's two additional bits which are INFORMATIVE, to specify
whether the source has been pre-processed (level reduction)
during compression. This can be used at decompression time
for some post-processing (see DequantizeLevels()).
New relevant spec excerpt:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ChunkHeader('ALPH') |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Rsv| P | F | C | Alpha Bitstream... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Compression method (C): 2 bits
: The compression method used:
* `0`: No compression.
* `1`: Backward reference counts encoded with arithmetic encoder.
Filtering method (F): 2 bits
: The filtering method used:
* `0`: None.
* `1`: Horizontal filter.
* `2`: Vertical filter.
* `3`: Gradient filter.
Pre-processing (P): 2 bits
: These INFORMATIVE bits are used to signal the pre-processing that has
been performed during compression. The decoder can use this information to
e.g. dither the values or smooth the gradients prior to display.
* `0`: no pre-processing
* `1`: level reduction
Decoders are not required to use this information in any specified way.
Reserved (Rsv): 2 bits
: SHOULD be `0`.
Alpha bitstream: _Chunk Size_ - `1` bytes
: Encoded alpha bitstream.
This optional chunk contains encoded alpha data for a single tile.
Either **ALL or NONE** of the tiles must contain this chunk.
The alpha channel data is losslessly stored as raw data (when
compression method is '0') or compressed using the lossless format
(when the compression method is '1').
Change-Id: Ied8f5fb922707a953e6a2b601c69c73e552dda6b
* Method #1 is now calling the lossless encoder on the alpha plane.
Format is not final, it's just a first draft. We need ad-hoc functions.
* removed now useless utils/alpha.*
* added utils/quant_levels.h instead
* removed the TCoder code altogether
Change-Id: I636840b6129a43171b74860e0a0fc5bb1bcffc6a
.. where only 2 filtering modes are potentially
tried, instead of all of them. This is fast than the exhaustive 'best'
mode, and not much worse.
Options for cwebp are:
-alpha_filter none
-alpha_filter fast (<- default)
-alpha_filter best (<- slow)
Change-Id: I8cb90ee11b8f981811e013ea4ad5bf72ba3ea7d4
Add predictive filtering option for Alpha plane.
Valid range for filter option is [0, 5] corresponding to prediction
methods none, horizontal, vertical, gradient & paeth filter.
The prediction method 5 will try all the prediction methods (0 to 4)
and pick the prediction method that gives best compression.
Change-Id: I9244d4a9c5017501a9696c7cec5045f04c16d49b