Get AVX2 into WebP lossless

Change-Id: Ifad3102c9f899a46401985515cd98f3f7a21887f
This commit is contained in:
Vincent Rabaud 2025-03-28 11:44:03 +01:00
parent 7c70ff7a3b
commit f2b3f52733
15 changed files with 1297 additions and 5 deletions

View File

@ -231,6 +231,7 @@ DSP_DEC_OBJS = \
$(DIROBJ)\dsp\lossless_neon.obj \
$(DIROBJ)\dsp\lossless_sse2.obj \
$(DIROBJ)\dsp\lossless_sse41.obj \
$(DIROBJ)\dsp\lossless_avx2.obj \
$(DIROBJ)\dsp\rescaler.obj \
$(DIROBJ)\dsp\rescaler_mips32.obj \
$(DIROBJ)\dsp\rescaler_mips_dsp_r2.obj \
@ -270,6 +271,7 @@ DSP_ENC_OBJS = \
$(DIROBJ)\dsp\lossless_enc_neon.obj \
$(DIROBJ)\dsp\lossless_enc_sse2.obj \
$(DIROBJ)\dsp\lossless_enc_sse41.obj \
$(DIROBJ)\dsp\lossless_enc_avx2.obj \
$(DIROBJ)\dsp\ssim.obj \
$(DIROBJ)\dsp\ssim_sse2.obj \

View File

@ -94,6 +94,9 @@
/* Set to 1 if SSE4.1 is supported */
#cmakedefine WEBP_HAVE_SSE41 1
/* Set to 1 if AVX2 is supported */
#cmakedefine WEBP_HAVE_AVX2 1
/* Set to 1 if TIFF library is installed */
#cmakedefine WEBP_HAVE_TIFF 1

View File

@ -38,9 +38,9 @@ function(webp_check_compiler_flag WEBP_SIMD_FLAG ENABLE_SIMD)
endfunction()
# those are included in the names of WEBP_USE_* in c++ code.
set(WEBP_SIMD_FLAGS "SSE41;SSE2;MIPS32;MIPS_DSP_R2;NEON;MSA")
set(WEBP_SIMD_FLAGS "AVX2;SSE41;SSE2;MIPS32;MIPS_DSP_R2;NEON;MSA")
set(WEBP_SIMD_FILE_EXTENSIONS
"_sse41.c;_sse2.c;_mips32.c;_mips_dsp_r2.c;_neon.c;_msa.c")
"_avx2.c;_sse41.c;_sse2.c;_mips32.c;_mips_dsp_r2.c;_neon.c;_msa.c")
if(MSVC AND CMAKE_C_COMPILER_ID STREQUAL "MSVC")
# With at least Visual Studio 12 (2013)+ /arch is not necessary to build SSE2
# or SSE4 code unless a lesser /arch is forced. MSVC does not have a SSE4
@ -50,12 +50,12 @@ if(MSVC AND CMAKE_C_COMPILER_ID STREQUAL "MSVC")
if(MSVC_VERSION GREATER_EQUAL 1800 AND NOT CMAKE_C_FLAGS MATCHES "/arch:")
set(SIMD_ENABLE_FLAGS)
else()
set(SIMD_ENABLE_FLAGS "/arch:AVX;/arch:SSE2;;;;")
set(SIMD_ENABLE_FLAGS "/arch:AVX2;/arch:AVX;/arch:SSE2;;;;")
endif()
set(SIMD_DISABLE_FLAGS)
else()
set(SIMD_ENABLE_FLAGS "-msse4.1;-msse2;-mips32;-mdspr2;-mfpu=neon;-mmsa")
set(SIMD_DISABLE_FLAGS "-mno-sse4.1;-mno-sse2;;-mno-dspr2;;-mno-msa")
set(SIMD_ENABLE_FLAGS "-mavx2;-msse4.1;-msse2;-mips32;-mdspr2;-mfpu=neon;-mmsa")
set(SIMD_DISABLE_FLAGS "-mno-avx2;-mno-sse4.1;-mno-sse2;;-mno-dspr2;;-mno-msa")
endif()
set(WEBP_SIMD_FILES_TO_INCLUDE)

View File

@ -161,6 +161,25 @@ AS_IF([test "$GCC" = "yes" ], [
AC_SUBST([AM_CFLAGS])
dnl === Check for machine specific flags
AC_ARG_ENABLE([avx2],
AS_HELP_STRING([--disable-avx2],
[Disable detection of AVX2 support
@<:@default=auto@:>@]))
AS_IF([test "x$enable_avx2" != "xno" -a "x$enable_sse4_1" != "xno"
-a "x$enable_sse2" != "xno"], [
AVX2_FLAGS="$INTRINSICS_CFLAGS $AVX2_FLAGS"
TEST_AND_ADD_CFLAGS([AVX2_FLAGS], [-mavx2])
AS_IF([test -n "$AVX2_FLAGS"], [
SAVED_CFLAGS=$CFLAGS
CFLAGS="$CFLAGS $AVX2_FLAGS"
AC_CHECK_HEADER([immintrin.h],
[AC_DEFINE(WEBP_HAVE_AVX2, [1],
[Set to 1 if AVX2 is supported])],
[AVX2_FLAGS=""])
CFLAGS=$SAVED_CFLAGS])
AC_SUBST([AVX2_FLAGS])])
AC_ARG_ENABLE([sse4.1],
AS_HELP_STRING([--disable-sse4.1],
[Disable detection of SSE4.1 support

View File

@ -5,6 +5,8 @@ noinst_LTLIBRARIES += libwebpdsp_sse2.la
noinst_LTLIBRARIES += libwebpdspdecode_sse2.la
noinst_LTLIBRARIES += libwebpdsp_sse41.la
noinst_LTLIBRARIES += libwebpdspdecode_sse41.la
noinst_LTLIBRARIES += libwebpdsp_avx2.la
noinst_LTLIBRARIES += libwebpdspdecode_avx2.la
noinst_LTLIBRARIES += libwebpdsp_neon.la
noinst_LTLIBRARIES += libwebpdspdecode_neon.la
noinst_LTLIBRARIES += libwebpdsp_msa.la
@ -44,6 +46,11 @@ ENC_SOURCES += lossless_enc.c
ENC_SOURCES += quant.h
ENC_SOURCES += ssim.c
libwebpdspdecode_avx2_la_SOURCES =
libwebpdspdecode_avx2_la_SOURCES += lossless_avx2.c
libwebpdspdecode_avx2_la_CPPFLAGS = $(libwebpdsp_la_CPPFLAGS)
libwebpdspdecode_avx2_la_CFLAGS = $(AM_CFLAGS) $(AVX2_FLAGS)
libwebpdspdecode_sse41_la_SOURCES =
libwebpdspdecode_sse41_la_SOURCES += alpha_processing_sse41.c
libwebpdspdecode_sse41_la_SOURCES += dec_sse41.c
@ -123,6 +130,12 @@ libwebpdsp_sse41_la_CPPFLAGS = $(libwebpdsp_la_CPPFLAGS)
libwebpdsp_sse41_la_CFLAGS = $(AM_CFLAGS) $(SSE41_FLAGS)
libwebpdsp_sse41_la_LIBADD = libwebpdspdecode_sse41.la
libwebpdsp_avx2_la_SOURCES =
libwebpdsp_avx2_la_SOURCES += lossless_enc_avx2.c
libwebpdsp_avx2_la_CPPFLAGS = $(libwebpdsp_la_CPPFLAGS)
libwebpdsp_avx2_la_CFLAGS = $(AM_CFLAGS) $(AVX2_FLAGS)
libwebpdsp_avx2_la_LIBADD = libwebpdspdecode_avx2.la
libwebpdsp_neon_la_SOURCES =
libwebpdsp_neon_la_SOURCES += cost_neon.c
libwebpdsp_neon_la_SOURCES += enc_neon.c
@ -167,6 +180,7 @@ libwebpdsp_la_LDFLAGS = -lm
libwebpdsp_la_LIBADD =
libwebpdsp_la_LIBADD += libwebpdsp_sse2.la
libwebpdsp_la_LIBADD += libwebpdsp_sse41.la
libwebpdsp_la_LIBADD += libwebpdsp_avx2.la
libwebpdsp_la_LIBADD += libwebpdsp_neon.la
libwebpdsp_la_LIBADD += libwebpdsp_msa.la
libwebpdsp_la_LIBADD += libwebpdsp_mips32.la
@ -180,6 +194,7 @@ if BUILD_LIBWEBPDECODER
libwebpdspdecode_la_LIBADD =
libwebpdspdecode_la_LIBADD += libwebpdspdecode_sse2.la
libwebpdspdecode_la_LIBADD += libwebpdspdecode_sse41.la
libwebpdspdecode_la_LIBADD += libwebpdspdecode_avx2.la
libwebpdspdecode_la_LIBADD += libwebpdspdecode_neon.la
libwebpdspdecode_la_LIBADD += libwebpdspdecode_msa.la
libwebpdspdecode_la_LIBADD += libwebpdspdecode_mips32.la

View File

@ -56,6 +56,11 @@
(defined(_M_X64) || defined(_M_IX86))
#define WEBP_MSC_SSE41 // Visual C++ SSE4.1 targets
#endif
#if defined(_MSC_VER) && _MSC_VER >= 1700 && \
(defined(_M_X64) || defined(_M_IX86))
#define WEBP_MSC_AVX2 // Visual C++ AVX2 targets
#endif
#endif
// WEBP_HAVE_* are used to indicate the presence of the instruction set in dsp
@ -80,6 +85,16 @@
#define WEBP_HAVE_SSE41
#endif
#if (defined(__AVX2__) || defined(WEBP_MSC_AVX2)) && \
(!defined(HAVE_CONFIG_H) || defined(WEBP_HAVE_AVX2))
#define WEBP_USE_AVX2
#endif
#if defined(WEBP_USE_AVX2) && !defined(WEBP_HAVE_AVX2)
#define WEBP_HAVE_AVX2
#endif
#undef WEBP_MSC_AVX2
#undef WEBP_MSC_SSE41
#undef WEBP_MSC_SSE2

View File

@ -577,16 +577,21 @@ void VP8LConvertFromBGRA(const uint32_t* const in_data, int num_pixels,
//------------------------------------------------------------------------------
VP8LProcessDecBlueAndRedFunc VP8LAddGreenToBlueAndRed;
VP8LProcessDecBlueAndRedFunc VP8LAddGreenToBlueAndRed_SSE;
VP8LPredictorAddSubFunc VP8LPredictorsAdd[16];
VP8LPredictorAddSubFunc VP8LPredictorsAdd_SSE[16];
VP8LPredictorFunc VP8LPredictors[16];
// exposed plain-C implementations
VP8LPredictorAddSubFunc VP8LPredictorsAdd_C[16];
VP8LTransformColorInverseFunc VP8LTransformColorInverse;
VP8LTransformColorInverseFunc VP8LTransformColorInverse_SSE;
VP8LConvertFunc VP8LConvertBGRAToRGB;
VP8LConvertFunc VP8LConvertBGRAToRGB_SSE;
VP8LConvertFunc VP8LConvertBGRAToRGBA;
VP8LConvertFunc VP8LConvertBGRAToRGBA_SSE;
VP8LConvertFunc VP8LConvertBGRAToRGBA4444;
VP8LConvertFunc VP8LConvertBGRAToRGB565;
VP8LConvertFunc VP8LConvertBGRAToBGR;
@ -597,6 +602,7 @@ VP8LMapAlphaFunc VP8LMapColor8b;
extern VP8CPUInfo VP8GetCPUInfo;
extern void VP8LDspInitSSE2(void);
extern void VP8LDspInitSSE41(void);
extern void VP8LDspInitAVX2(void);
extern void VP8LDspInitNEON(void);
extern void VP8LDspInitMIPSdspR2(void);
extern void VP8LDspInitMSA(void);
@ -649,6 +655,11 @@ WEBP_DSP_INIT_FUNC(VP8LDspInit) {
#if defined(WEBP_HAVE_SSE41)
if (VP8GetCPUInfo(kSSE4_1)) {
VP8LDspInitSSE41();
#if defined(WEBP_HAVE_AVX2)
if (VP8GetCPUInfo(kAVX2)) {
VP8LDspInitAVX2();
}
#endif
}
#endif
}

View File

@ -64,10 +64,12 @@ typedef void (*VP8LPredictorAddSubFunc)(const uint32_t* in,
uint32_t* WEBP_RESTRICT out);
extern VP8LPredictorAddSubFunc VP8LPredictorsAdd[16];
extern VP8LPredictorAddSubFunc VP8LPredictorsAdd_C[16];
extern VP8LPredictorAddSubFunc VP8LPredictorsAdd_SSE[16];
typedef void (*VP8LProcessDecBlueAndRedFunc)(const uint32_t* src,
int num_pixels, uint32_t* dst);
extern VP8LProcessDecBlueAndRedFunc VP8LAddGreenToBlueAndRed;
extern VP8LProcessDecBlueAndRedFunc VP8LAddGreenToBlueAndRed_SSE;
typedef struct {
// Note: the members are uint8_t, so that any negative values are
@ -80,6 +82,7 @@ typedef void (*VP8LTransformColorInverseFunc)(const VP8LMultipliers* const m,
const uint32_t* src,
int num_pixels, uint32_t* dst);
extern VP8LTransformColorInverseFunc VP8LTransformColorInverse;
extern VP8LTransformColorInverseFunc VP8LTransformColorInverse_SSE;
struct VP8LTransform; // Defined in dec/vp8li.h.
@ -99,6 +102,8 @@ extern VP8LConvertFunc VP8LConvertBGRAToRGBA;
extern VP8LConvertFunc VP8LConvertBGRAToRGBA4444;
extern VP8LConvertFunc VP8LConvertBGRAToRGB565;
extern VP8LConvertFunc VP8LConvertBGRAToBGR;
extern VP8LConvertFunc VP8LConvertBGRAToRGB_SSE;
extern VP8LConvertFunc VP8LConvertBGRAToRGBA_SSE;
// Converts from BGRA to other color spaces.
void VP8LConvertFromBGRA(const uint32_t* const in_data, int num_pixels,
@ -149,21 +154,25 @@ void VP8LDspInit(void);
typedef void (*VP8LProcessEncBlueAndRedFunc)(uint32_t* dst, int num_pixels);
extern VP8LProcessEncBlueAndRedFunc VP8LSubtractGreenFromBlueAndRed;
extern VP8LProcessEncBlueAndRedFunc VP8LSubtractGreenFromBlueAndRed_SSE;
typedef void (*VP8LTransformColorFunc)(
const VP8LMultipliers* WEBP_RESTRICT const m, uint32_t* WEBP_RESTRICT dst,
int num_pixels);
extern VP8LTransformColorFunc VP8LTransformColor;
extern VP8LTransformColorFunc VP8LTransformColor_SSE;
typedef void (*VP8LCollectColorBlueTransformsFunc)(
const uint32_t* WEBP_RESTRICT argb, int stride,
int tile_width, int tile_height,
int green_to_blue, int red_to_blue, uint32_t histo[]);
extern VP8LCollectColorBlueTransformsFunc VP8LCollectColorBlueTransforms;
extern VP8LCollectColorBlueTransformsFunc VP8LCollectColorBlueTransforms_SSE;
typedef void (*VP8LCollectColorRedTransformsFunc)(
const uint32_t* WEBP_RESTRICT argb, int stride,
int tile_width, int tile_height,
int green_to_red, uint32_t histo[]);
extern VP8LCollectColorRedTransformsFunc VP8LCollectColorRedTransforms;
extern VP8LCollectColorRedTransformsFunc VP8LCollectColorRedTransforms_SSE;
// Expose some C-only fallback functions
void VP8LTransformColor_C(const VP8LMultipliers* WEBP_RESTRICT const m,
@ -181,6 +190,7 @@ void VP8LCollectColorBlueTransforms_C(const uint32_t* WEBP_RESTRICT argb,
extern VP8LPredictorAddSubFunc VP8LPredictorsSub[16];
extern VP8LPredictorAddSubFunc VP8LPredictorsSub_C[16];
extern VP8LPredictorAddSubFunc VP8LPredictorsSub_SSE[16];
// -----------------------------------------------------------------------------
// Huffman-cost related functions.
@ -255,6 +265,7 @@ typedef void (*VP8LBundleColorMapFunc)(const uint8_t* WEBP_RESTRICT const row,
int width, int xbits,
uint32_t* WEBP_RESTRICT dst);
extern VP8LBundleColorMapFunc VP8LBundleColorMap;
extern VP8LBundleColorMapFunc VP8LBundleColorMap_SSE;
void VP8LBundleColorMap_C(const uint8_t* WEBP_RESTRICT const row,
int width, int xbits, uint32_t* WEBP_RESTRICT dst);

442
src/dsp/lossless_avx2.c Normal file
View File

@ -0,0 +1,442 @@
// Copyright 2025 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// AVX2 variant of methods for lossless decoder
//
// Author: Vincent Rabaud (vrabaud@google.com)
#include "src/dsp/dsp.h"
#if defined(WEBP_USE_AVX2)
#include <immintrin.h>
#include "src/dsp/cpu.h"
#include "src/dsp/lossless.h"
#include "src/webp/format_constants.h"
#include "src/webp/types.h"
//------------------------------------------------------------------------------
// Predictor Transform
static WEBP_INLINE void Average2_m256i(const __m256i* const a0,
const __m256i* const a1,
__m256i* const avg) {
// (a + b) >> 1 = ((a + b + 1) >> 1) - ((a ^ b) & 1)
const __m256i ones = _mm256_set1_epi8(1);
const __m256i avg1 = _mm256_avg_epu8(*a0, *a1);
const __m256i one = _mm256_and_si256(_mm256_xor_si256(*a0, *a1), ones);
*avg = _mm256_sub_epi8(avg1, one);
}
// Batch versions of those functions.
// Predictor0: ARGB_BLACK.
static void PredictorAdd0_AVX2(const uint32_t* in, const uint32_t* upper,
int num_pixels, uint32_t* WEBP_RESTRICT out) {
int i;
const __m256i black = _mm256_set1_epi32((int)ARGB_BLACK);
for (i = 0; i + 8 <= num_pixels; i += 8) {
const __m256i src = _mm256_loadu_si256((const __m256i*)&in[i]);
const __m256i res = _mm256_add_epi8(src, black);
_mm256_storeu_si256((__m256i*)&out[i], res);
}
if (i != num_pixels) {
VP8LPredictorsAdd_SSE[0](in + i, NULL, num_pixels - i, out + i);
}
(void)upper;
}
// Predictor1: left.
static void PredictorAdd1_AVX2(const uint32_t* in, const uint32_t* upper,
int num_pixels, uint32_t* WEBP_RESTRICT out) {
int i;
__m256i prev = _mm256_set1_epi32((int)out[-1]);
for (i = 0; i + 8 <= num_pixels; i += 8) {
// h | g | f | e | d | c | b | a
const __m256i src = _mm256_loadu_si256((const __m256i*)&in[i]);
// g | f | e | 0 | c | b | a | 0
const __m256i shift0 = _mm256_slli_si256(src, 4);
// g + h | f + g | e + f | e | c + d | b + c | a + b | a
const __m256i sum0 = _mm256_add_epi8(src, shift0);
// e + f | e | 0 | 0 | a + b | a | 0 | 0
const __m256i shift1 = _mm256_slli_si256(sum0, 8);
// e + f + g + h | e + f + g | e + f | e | a + b + c + d | a + b + c | a + b
// | a
const __m256i sum1 = _mm256_add_epi8(sum0, shift1);
// Add a + b + c + d to the upper lane.
const int32_t sum_abcd = _mm256_extract_epi32(sum1, 3);
const __m256i sum2 = _mm256_add_epi8(
sum1,
_mm256_set_epi32(sum_abcd, sum_abcd, sum_abcd, sum_abcd, 0, 0, 0, 0));
const __m256i res = _mm256_add_epi8(sum2, prev);
_mm256_storeu_si256((__m256i*)&out[i], res);
// replicate last res output in prev.
prev = _mm256_permutevar8x32_epi32(
res, _mm256_set_epi32(7, 7, 7, 7, 7, 7, 7, 7));
}
if (i != num_pixels) {
VP8LPredictorsAdd_SSE[1](in + i, upper + i, num_pixels - i, out + i);
}
}
// Macro that adds 32-bit integers from IN using mod 256 arithmetic
// per 8 bit channel.
#define GENERATE_PREDICTOR_1(X, IN) \
static void PredictorAdd##X##_AVX2(const uint32_t* in, \
const uint32_t* upper, int num_pixels, \
uint32_t* WEBP_RESTRICT out) { \
int i; \
for (i = 0; i + 8 <= num_pixels; i += 8) { \
const __m256i src = _mm256_loadu_si256((const __m256i*)&in[i]); \
const __m256i other = _mm256_loadu_si256((const __m256i*)&(IN)); \
const __m256i res = _mm256_add_epi8(src, other); \
_mm256_storeu_si256((__m256i*)&out[i], res); \
} \
if (i != num_pixels) { \
VP8LPredictorsAdd_SSE[(X)](in + i, upper + i, num_pixels - i, out + i); \
} \
}
// Predictor2: Top.
GENERATE_PREDICTOR_1(2, upper[i])
// Predictor3: Top-right.
GENERATE_PREDICTOR_1(3, upper[i + 1])
// Predictor4: Top-left.
GENERATE_PREDICTOR_1(4, upper[i - 1])
#undef GENERATE_PREDICTOR_1
// Due to averages with integers, values cannot be accumulated in parallel for
// predictors 5 to 7.
#define GENERATE_PREDICTOR_2(X, IN) \
static void PredictorAdd##X##_AVX2(const uint32_t* in, \
const uint32_t* upper, int num_pixels, \
uint32_t* WEBP_RESTRICT out) { \
int i; \
for (i = 0; i + 8 <= num_pixels; i += 8) { \
const __m256i Tother = _mm256_loadu_si256((const __m256i*)&(IN)); \
const __m256i T = _mm256_loadu_si256((const __m256i*)&upper[i]); \
const __m256i src = _mm256_loadu_si256((const __m256i*)&in[i]); \
__m256i avg, res; \
Average2_m256i(&T, &Tother, &avg); \
res = _mm256_add_epi8(avg, src); \
_mm256_storeu_si256((__m256i*)&out[i], res); \
} \
if (i != num_pixels) { \
VP8LPredictorsAdd_SSE[(X)](in + i, upper + i, num_pixels - i, out + i); \
} \
}
// Predictor8: average TL T.
GENERATE_PREDICTOR_2(8, upper[i - 1])
// Predictor9: average T TR.
GENERATE_PREDICTOR_2(9, upper[i + 1])
#undef GENERATE_PREDICTOR_2
// Predictor10: average of (average of (L,TL), average of (T, TR)).
#define DO_PRED10(OUT) \
do { \
__m256i avgLTL, avg; \
Average2_m256i(&L, &TL, &avgLTL); \
Average2_m256i(&avgTTR, &avgLTL, &avg); \
L = _mm256_add_epi8(avg, src); \
out[i + (OUT)] = (uint32_t)_mm256_cvtsi256_si32(L); \
} while (0)
#define DO_PRED10_SHIFT \
do { \
/* Rotate the pre-computed values for the next iteration.*/ \
avgTTR = _mm256_srli_si256(avgTTR, 4); \
TL = _mm256_srli_si256(TL, 4); \
src = _mm256_srli_si256(src, 4); \
} while (0)
static void PredictorAdd10_AVX2(const uint32_t* in, const uint32_t* upper,
int num_pixels, uint32_t* WEBP_RESTRICT out) {
int i, j;
__m256i L = _mm256_setr_epi32((int)out[-1], 0, 0, 0, 0, 0, 0, 0);
for (i = 0; i + 8 <= num_pixels; i += 8) {
__m256i src = _mm256_loadu_si256((const __m256i*)&in[i]);
__m256i TL = _mm256_loadu_si256((const __m256i*)&upper[i - 1]);
const __m256i T = _mm256_loadu_si256((const __m256i*)&upper[i]);
const __m256i TR = _mm256_loadu_si256((const __m256i*)&upper[i + 1]);
__m256i avgTTR;
Average2_m256i(&T, &TR, &avgTTR);
{
const __m256i avgTTR_bak = avgTTR;
const __m256i TL_bak = TL;
const __m256i src_bak = src;
for (j = 0; j < 4; ++j) {
DO_PRED10(j);
DO_PRED10_SHIFT;
}
avgTTR = _mm256_permute2x128_si256(avgTTR_bak, avgTTR_bak, 1);
TL = _mm256_permute2x128_si256(TL_bak, TL_bak, 1);
src = _mm256_permute2x128_si256(src_bak, src_bak, 1);
for (; j < 8; ++j) {
DO_PRED10(j);
DO_PRED10_SHIFT;
}
}
}
if (i != num_pixels) {
VP8LPredictorsAdd_SSE[10](in + i, upper + i, num_pixels - i, out + i);
}
}
#undef DO_PRED10
#undef DO_PRED10_SHIFT
// Predictor11: select.
#define DO_PRED11(OUT) \
do { \
const __m256i L_lo = _mm256_unpacklo_epi32(L, T); \
const __m256i TL_lo = _mm256_unpacklo_epi32(TL, T); \
const __m256i pb = _mm256_sad_epu8(L_lo, TL_lo); /* pb = sum |L-TL|*/ \
const __m256i mask = _mm256_cmpgt_epi32(pb, pa); \
const __m256i A = _mm256_and_si256(mask, L); \
const __m256i B = _mm256_andnot_si256(mask, T); \
const __m256i pred = _mm256_or_si256(A, B); /* pred = (pa > b)? L : T*/ \
L = _mm256_add_epi8(src, pred); \
out[i + (OUT)] = (uint32_t)_mm256_cvtsi256_si32(L); \
} while (0)
#define DO_PRED11_SHIFT \
do { \
/* Shift the pre-computed value for the next iteration.*/ \
T = _mm256_srli_si256(T, 4); \
TL = _mm256_srli_si256(TL, 4); \
src = _mm256_srli_si256(src, 4); \
pa = _mm256_srli_si256(pa, 4); \
} while (0)
static void PredictorAdd11_AVX2(const uint32_t* in, const uint32_t* upper,
int num_pixels, uint32_t* WEBP_RESTRICT out) {
int i, j;
__m256i pa;
__m256i L = _mm256_setr_epi32((int)out[-1], 0, 0, 0, 0, 0, 0, 0);
for (i = 0; i + 8 <= num_pixels; i += 8) {
__m256i T = _mm256_loadu_si256((const __m256i*)&upper[i]);
__m256i TL = _mm256_loadu_si256((const __m256i*)&upper[i - 1]);
__m256i src = _mm256_loadu_si256((const __m256i*)&in[i]);
{
// We can unpack with any value on the upper 32 bits, provided it's the
// same on both operands (so that their sum of abs diff is zero). Here we
// use T.
const __m256i T_lo = _mm256_unpacklo_epi32(T, T);
const __m256i TL_lo = _mm256_unpacklo_epi32(TL, T);
const __m256i T_hi = _mm256_unpackhi_epi32(T, T);
const __m256i TL_hi = _mm256_unpackhi_epi32(TL, T);
const __m256i s_lo = _mm256_sad_epu8(T_lo, TL_lo);
const __m256i s_hi = _mm256_sad_epu8(T_hi, TL_hi);
pa = _mm256_packs_epi32(s_lo, s_hi); // pa = sum |T-TL|
}
{
const __m256i T_bak = T;
const __m256i TL_bak = TL;
const __m256i src_bak = src;
const __m256i pa_bak = pa;
for (j = 0; j < 4; ++j) {
DO_PRED11(j);
DO_PRED11_SHIFT;
}
T = _mm256_permute2x128_si256(T_bak, T_bak, 1);
TL = _mm256_permute2x128_si256(TL_bak, TL_bak, 1);
src = _mm256_permute2x128_si256(src_bak, src_bak, 1);
pa = _mm256_permute2x128_si256(pa_bak, pa_bak, 1);
for (; j < 8; ++j) {
DO_PRED11(j);
DO_PRED11_SHIFT;
}
}
}
if (i != num_pixels) {
VP8LPredictorsAdd_SSE[11](in + i, upper + i, num_pixels - i, out + i);
}
}
#undef DO_PRED11
#undef DO_PRED11_SHIFT
// Predictor12: ClampedAddSubtractFull.
#define DO_PRED12(DIFF, OUT) \
do { \
const __m256i all = _mm256_add_epi16(L, (DIFF)); \
const __m256i alls = _mm256_packus_epi16(all, all); \
const __m256i res = _mm256_add_epi8(src, alls); \
out[i + (OUT)] = (uint32_t)_mm256_cvtsi256_si32(res); \
L = _mm256_unpacklo_epi8(res, zero); \
} while (0)
#define DO_PRED12_SHIFT(DIFF, LANE) \
do { \
/* Shift the pre-computed value for the next iteration.*/ \
if ((LANE) == 0) (DIFF) = _mm256_srli_si256(DIFF, 8); \
src = _mm256_srli_si256(src, 4); \
} while (0)
static void PredictorAdd12_AVX2(const uint32_t* in, const uint32_t* upper,
int num_pixels, uint32_t* WEBP_RESTRICT out) {
int i;
const __m256i zero = _mm256_setzero_si256();
const __m256i L8 = _mm256_setr_epi32((int)out[-1], 0, 0, 0, 0, 0, 0, 0);
__m256i L = _mm256_unpacklo_epi8(L8, zero);
for (i = 0; i + 8 <= num_pixels; i += 8) {
// Load 8 pixels at a time.
__m256i src = _mm256_loadu_si256((const __m256i*)&in[i]);
const __m256i T = _mm256_loadu_si256((const __m256i*)&upper[i]);
const __m256i T_lo = _mm256_unpacklo_epi8(T, zero);
const __m256i T_hi = _mm256_unpackhi_epi8(T, zero);
const __m256i TL = _mm256_loadu_si256((const __m256i*)&upper[i - 1]);
const __m256i TL_lo = _mm256_unpacklo_epi8(TL, zero);
const __m256i TL_hi = _mm256_unpackhi_epi8(TL, zero);
__m256i diff_lo = _mm256_sub_epi16(T_lo, TL_lo);
__m256i diff_hi = _mm256_sub_epi16(T_hi, TL_hi);
const __m256i diff_lo_bak = diff_lo;
const __m256i diff_hi_bak = diff_hi;
const __m256i src_bak = src;
DO_PRED12(diff_lo, 0);
DO_PRED12_SHIFT(diff_lo, 0);
DO_PRED12(diff_lo, 1);
DO_PRED12_SHIFT(diff_lo, 0);
DO_PRED12(diff_hi, 2);
DO_PRED12_SHIFT(diff_hi, 0);
DO_PRED12(diff_hi, 3);
DO_PRED12_SHIFT(diff_hi, 0);
// Process the upper lane.
diff_lo = _mm256_permute2x128_si256(diff_lo_bak, diff_lo_bak, 1);
diff_hi = _mm256_permute2x128_si256(diff_hi_bak, diff_hi_bak, 1);
src = _mm256_permute2x128_si256(src_bak, src_bak, 1);
DO_PRED12(diff_lo, 4);
DO_PRED12_SHIFT(diff_lo, 0);
DO_PRED12(diff_lo, 5);
DO_PRED12_SHIFT(diff_lo, 1);
DO_PRED12(diff_hi, 6);
DO_PRED12_SHIFT(diff_hi, 0);
DO_PRED12(diff_hi, 7);
}
if (i != num_pixels) {
VP8LPredictorsAdd_SSE[12](in + i, upper + i, num_pixels - i, out + i);
}
}
#undef DO_PRED12
#undef DO_PRED12_SHIFT
// Due to averages with integers, values cannot be accumulated in parallel for
// predictors 13.
//------------------------------------------------------------------------------
// Subtract-Green Transform
static void AddGreenToBlueAndRed_AVX2(const uint32_t* const src, int num_pixels,
uint32_t* dst) {
int i;
const __m256i kCstShuffle = _mm256_set_epi8(
-1, 29, -1, 29, -1, 25, -1, 25, -1, 21, -1, 21, -1, 17, -1, 17, -1, 13,
-1, 13, -1, 9, -1, 9, -1, 5, -1, 5, -1, 1, -1, 1);
for (i = 0; i + 8 <= num_pixels; i += 8) {
const __m256i in = _mm256_loadu_si256((const __m256i*)&src[i]); // argb
const __m256i in_0g0g = _mm256_shuffle_epi8(in, kCstShuffle); // 0g0g
const __m256i out = _mm256_add_epi8(in, in_0g0g);
_mm256_storeu_si256((__m256i*)&dst[i], out);
}
// fallthrough and finish off with SSE.
if (i != num_pixels) {
VP8LAddGreenToBlueAndRed_SSE(src + i, num_pixels - i, dst + i);
}
}
//------------------------------------------------------------------------------
// Color Transform
static void TransformColorInverse_AVX2(const VP8LMultipliers* const m,
const uint32_t* const src,
int num_pixels, uint32_t* dst) {
// sign-extended multiplying constants, pre-shifted by 5.
#define CST(X) (((int16_t)(m->X << 8)) >> 5) // sign-extend
const __m256i mults_rb =
_mm256_set1_epi32((int)((uint32_t)CST(green_to_red_) << 16 |
(CST(green_to_blue_) & 0xffff)));
const __m256i mults_b2 = _mm256_set1_epi32(CST(red_to_blue_));
#undef CST
const __m256i mask_ag = _mm256_set1_epi32((int)0xff00ff00);
const __m256i perm1 = _mm256_setr_epi8(
-1, 1, -1, 1, -1, 5, -1, 5, -1, 9, -1, 9, -1, 13, -1, 13, -1, 17, -1, 17,
-1, 21, -1, 21, -1, 25, -1, 25, -1, 29, -1, 29);
const __m256i perm2 = _mm256_setr_epi8(
-1, 2, -1, -1, -1, 6, -1, -1, -1, 10, -1, -1, -1, 14, -1, -1, -1, 18, -1,
-1, -1, 22, -1, -1, -1, 26, -1, -1, -1, 30, -1, -1);
int i;
for (i = 0; i + 8 <= num_pixels; i += 8) {
const __m256i A = _mm256_loadu_si256((const __m256i*)(src + i));
const __m256i B = _mm256_shuffle_epi8(A, perm1); // argb -> g0g0
const __m256i C = _mm256_mulhi_epi16(B, mults_rb);
const __m256i D = _mm256_add_epi8(A, C);
const __m256i E = _mm256_shuffle_epi8(D, perm2);
const __m256i F = _mm256_mulhi_epi16(E, mults_b2);
const __m256i G = _mm256_add_epi8(D, F);
const __m256i out = _mm256_blendv_epi8(G, A, mask_ag);
_mm256_storeu_si256((__m256i*)&dst[i], out);
}
// Fall-back to SSE-version for left-overs.
if (i != num_pixels) {
VP8LTransformColorInverse_SSE(m, src + i, num_pixels - i, dst + i);
}
}
//------------------------------------------------------------------------------
// Color-space conversion functions
static void ConvertBGRAToRGBA_AVX2(const uint32_t* WEBP_RESTRICT src,
int num_pixels, uint8_t* WEBP_RESTRICT dst) {
const __m256i* in = (const __m256i*)src;
__m256i* out = (__m256i*)dst;
while (num_pixels >= 8) {
const __m256i A = _mm256_loadu_si256(in++);
const __m256i B = _mm256_shuffle_epi8(
A,
_mm256_set_epi8(15, 12, 13, 14, 11, 8, 9, 10, 7, 4, 5, 6, 3, 0, 1, 2,
15, 12, 13, 14, 11, 8, 9, 10, 7, 4, 5, 6, 3, 0, 1, 2));
_mm256_storeu_si256(out++, B);
num_pixels -= 8;
}
// left-overs
if (num_pixels > 0) {
VP8LConvertBGRAToRGBA_SSE((const uint32_t*)in, num_pixels, (uint8_t*)out);
}
}
//------------------------------------------------------------------------------
// Entry point
extern void VP8LDspInitAVX2(void);
WEBP_TSAN_IGNORE_FUNCTION void VP8LDspInitAVX2(void) {
VP8LPredictorsAdd[0] = PredictorAdd0_AVX2;
VP8LPredictorsAdd[1] = PredictorAdd1_AVX2;
VP8LPredictorsAdd[2] = PredictorAdd2_AVX2;
VP8LPredictorsAdd[3] = PredictorAdd3_AVX2;
VP8LPredictorsAdd[4] = PredictorAdd4_AVX2;
VP8LPredictorsAdd[8] = PredictorAdd8_AVX2;
VP8LPredictorsAdd[9] = PredictorAdd9_AVX2;
VP8LPredictorsAdd[10] = PredictorAdd10_AVX2;
VP8LPredictorsAdd[11] = PredictorAdd11_AVX2;
VP8LPredictorsAdd[12] = PredictorAdd12_AVX2;
VP8LAddGreenToBlueAndRed = AddGreenToBlueAndRed_AVX2;
VP8LTransformColorInverse = TransformColorInverse_AVX2;
VP8LConvertBGRAToRGBA = ConvertBGRAToRGBA_AVX2;
}
#else // !WEBP_USE_AVX2
WEBP_DSP_INIT_STUB(VP8LDspInitAVX2)
#endif // WEBP_USE_AVX2

View File

@ -713,11 +713,15 @@ GENERATE_PREDICTOR_SUB(13)
//------------------------------------------------------------------------------
VP8LProcessEncBlueAndRedFunc VP8LSubtractGreenFromBlueAndRed;
VP8LProcessEncBlueAndRedFunc VP8LSubtractGreenFromBlueAndRed_SSE;
VP8LTransformColorFunc VP8LTransformColor;
VP8LTransformColorFunc VP8LTransformColor_SSE;
VP8LCollectColorBlueTransformsFunc VP8LCollectColorBlueTransforms;
VP8LCollectColorBlueTransformsFunc VP8LCollectColorBlueTransforms_SSE;
VP8LCollectColorRedTransformsFunc VP8LCollectColorRedTransforms;
VP8LCollectColorRedTransformsFunc VP8LCollectColorRedTransforms_SSE;
VP8LFastLog2SlowFunc VP8LFastLog2Slow;
VP8LFastSLog2SlowFunc VP8LFastSLog2Slow;
@ -735,13 +739,16 @@ VP8LAddVectorEqFunc VP8LAddVectorEq;
VP8LVectorMismatchFunc VP8LVectorMismatch;
VP8LBundleColorMapFunc VP8LBundleColorMap;
VP8LBundleColorMapFunc VP8LBundleColorMap_SSE;
VP8LPredictorAddSubFunc VP8LPredictorsSub[16];
VP8LPredictorAddSubFunc VP8LPredictorsSub_C[16];
VP8LPredictorAddSubFunc VP8LPredictorsSub_SSE[16];
extern VP8CPUInfo VP8GetCPUInfo;
extern void VP8LEncDspInitSSE2(void);
extern void VP8LEncDspInitSSE41(void);
extern void VP8LEncDspInitAVX2(void);
extern void VP8LEncDspInitNEON(void);
extern void VP8LEncDspInitMIPS32(void);
extern void VP8LEncDspInitMIPSdspR2(void);
@ -818,6 +825,11 @@ WEBP_DSP_INIT_FUNC(VP8LEncDspInit) {
#if defined(WEBP_HAVE_SSE41)
if (VP8GetCPUInfo(kSSE4_1)) {
VP8LEncDspInitSSE41();
#if defined(WEBP_HAVE_AVX2)
if (VP8GetCPUInfo(kAVX2)) {
VP8LEncDspInitAVX2();
}
#endif
}
#endif
}

733
src/dsp/lossless_enc_avx2.c Normal file
View File

@ -0,0 +1,733 @@
// Copyright 2025 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// AVX2 variant of methods for lossless encoder
//
// Author: Vincent Rabaud (vrabaud@google.com)
#include "src/dsp/dsp.h"
#if defined(WEBP_USE_AVX2)
#include <assert.h>
#include <immintrin.h>
#include "src/dsp/cpu.h"
#include "src/dsp/lossless.h"
#include "src/dsp/lossless_common.h"
#include "src/utils/utils.h"
#include "src/webp/format_constants.h"
#include "src/webp/types.h"
//------------------------------------------------------------------------------
// Subtract-Green Transform
static void SubtractGreenFromBlueAndRed_AVX2(uint32_t* argb_data,
int num_pixels) {
int i;
const __m256i kCstShuffle = _mm256_set_epi8(
-1, 29, -1, 29, -1, 25, -1, 25, -1, 21, -1, 21, -1, 17, -1, 17, -1, 13,
-1, 13, -1, 9, -1, 9, -1, 5, -1, 5, -1, 1, -1, 1);
for (i = 0; i + 8 <= num_pixels; i += 8) {
const __m256i in = _mm256_loadu_si256((__m256i*)&argb_data[i]); // argb
const __m256i in_0g0g = _mm256_shuffle_epi8(in, kCstShuffle);
const __m256i out = _mm256_sub_epi8(in, in_0g0g);
_mm256_storeu_si256((__m256i*)&argb_data[i], out);
}
// fallthrough and finish off with plain-SSE
if (i != num_pixels) {
VP8LSubtractGreenFromBlueAndRed_SSE(argb_data + i, num_pixels - i);
}
}
//------------------------------------------------------------------------------
// Color Transform
// For sign-extended multiplying constants, pre-shifted by 5:
#define CST_5b(X) (((int16_t)((uint16_t)(X) << 8)) >> 5)
#define MK_CST_16(HI, LO) \
_mm256_set1_epi32((int)(((uint32_t)(HI) << 16) | ((LO) & 0xffff)))
static void TransformColor_AVX2(const VP8LMultipliers* WEBP_RESTRICT const m,
uint32_t* WEBP_RESTRICT argb_data,
int num_pixels) {
const __m256i mults_rb =
MK_CST_16(CST_5b(m->green_to_red_), CST_5b(m->green_to_blue_));
const __m256i mults_b2 = MK_CST_16(CST_5b(m->red_to_blue_), 0);
const __m256i mask_rb = _mm256_set1_epi32(0x00ff00ff); // red-blue masks
const __m256i kCstShuffle = _mm256_set_epi8(
29, -1, 29, -1, 25, -1, 25, -1, 21, -1, 21, -1, 17, -1, 17, -1, 13, -1,
13, -1, 9, -1, 9, -1, 5, -1, 5, -1, 1, -1, 1, -1);
int i;
for (i = 0; i + 8 <= num_pixels; i += 8) {
const __m256i in = _mm256_loadu_si256((__m256i*)&argb_data[i]); // argb
const __m256i A = _mm256_shuffle_epi8(in, kCstShuffle); // g0g0
const __m256i B = _mm256_mulhi_epi16(A, mults_rb); // x dr x db1
const __m256i C = _mm256_slli_epi16(in, 8); // r 0 b 0
const __m256i D = _mm256_mulhi_epi16(C, mults_b2); // x db2 0 0
const __m256i E = _mm256_srli_epi32(D, 16); // 0 0 x db2
const __m256i F = _mm256_add_epi8(E, B); // x dr x db
const __m256i G = _mm256_and_si256(F, mask_rb); // 0 dr 0 db
const __m256i out = _mm256_sub_epi8(in, G);
_mm256_storeu_si256((__m256i*)&argb_data[i], out);
}
// fallthrough and finish off with plain-C
if (i != num_pixels) {
VP8LTransformColor_SSE(m, argb_data + i, num_pixels - i);
}
}
//------------------------------------------------------------------------------
#define SPAN 16
static void CollectColorBlueTransforms_AVX2(const uint32_t* WEBP_RESTRICT argb,
int stride, int tile_width,
int tile_height, int green_to_blue,
int red_to_blue, uint32_t histo[]) {
const __m256i mult =
MK_CST_16(CST_5b(red_to_blue) + 256, CST_5b(green_to_blue));
const __m256i perm = _mm256_setr_epi8(
-1, 1, -1, 2, -1, 5, -1, 6, -1, 9, -1, 10, -1, 13, -1, 14, -1, 17, -1, 18,
-1, 21, -1, 22, -1, 25, -1, 26, -1, 29, -1, 30);
if (tile_width >= 8) {
int y, i;
for (y = 0; y < tile_height; ++y) {
uint8_t values[32];
const uint32_t* const src = argb + y * stride;
const __m256i A1 = _mm256_loadu_si256((const __m256i*)src);
const __m256i B1 = _mm256_shuffle_epi8(A1, perm);
const __m256i C1 = _mm256_mulhi_epi16(B1, mult);
const __m256i D1 = _mm256_sub_epi16(A1, C1);
__m256i E = _mm256_add_epi16(_mm256_srli_epi32(D1, 16), D1);
int x;
for (x = 8; x + 8 <= tile_width; x += 8) {
const __m256i A2 = _mm256_loadu_si256((const __m256i*)(src + x));
__m256i B2, C2, D2;
_mm256_storeu_si256((__m256i*)values, E);
for (i = 0; i < 32; i += 4) ++histo[values[i]];
B2 = _mm256_shuffle_epi8(A2, perm);
C2 = _mm256_mulhi_epi16(B2, mult);
D2 = _mm256_sub_epi16(A2, C2);
E = _mm256_add_epi16(_mm256_srli_epi32(D2, 16), D2);
}
_mm256_storeu_si256((__m256i*)values, E);
for (i = 0; i < 32; i += 4) ++histo[values[i]];
}
}
{
const int left_over = tile_width & 7;
if (left_over > 0) {
VP8LCollectColorBlueTransforms_SSE(argb + tile_width - left_over, stride,
left_over, tile_height, green_to_blue,
red_to_blue, histo);
}
}
}
static void CollectColorRedTransforms_AVX2(const uint32_t* WEBP_RESTRICT argb,
int stride, int tile_width,
int tile_height, int green_to_red,
uint32_t histo[]) {
const __m256i mult = MK_CST_16(0, CST_5b(green_to_red));
const __m256i mask_g = _mm256_set1_epi32(0x0000ff00);
if (tile_width >= 8) {
int y, i;
for (y = 0; y < tile_height; ++y) {
uint8_t values[32];
const uint32_t* const src = argb + y * stride;
const __m256i A1 = _mm256_loadu_si256((const __m256i*)src);
const __m256i B1 = _mm256_and_si256(A1, mask_g);
const __m256i C1 = _mm256_madd_epi16(B1, mult);
__m256i D = _mm256_sub_epi16(A1, C1);
int x;
for (x = 8; x + 8 <= tile_width; x += 8) {
const __m256i A2 = _mm256_loadu_si256((const __m256i*)(src + x));
__m256i B2, C2;
_mm256_storeu_si256((__m256i*)values, D);
for (i = 2; i < 32; i += 4) ++histo[values[i]];
B2 = _mm256_and_si256(A2, mask_g);
C2 = _mm256_madd_epi16(B2, mult);
D = _mm256_sub_epi16(A2, C2);
}
_mm256_storeu_si256((__m256i*)values, D);
for (i = 2; i < 32; i += 4) ++histo[values[i]];
}
}
{
const int left_over = tile_width & 7;
if (left_over > 0) {
VP8LCollectColorRedTransforms_SSE(argb + tile_width - left_over, stride,
left_over, tile_height, green_to_red,
histo);
}
}
}
#undef SPAN
#undef MK_CST_16
//------------------------------------------------------------------------------
// Note we are adding uint32_t's as *signed* int32's (using _mm256_add_epi32).
// But that's ok since the histogram values are less than 1<<28 (max picture
// size).
static void AddVector_AVX2(const uint32_t* WEBP_RESTRICT a,
const uint32_t* WEBP_RESTRICT b,
uint32_t* WEBP_RESTRICT out, int size) {
int i = 0;
int aligned_size = size & ~31;
// Size is, at minimum, NUM_DISTANCE_CODES (40) and may be as large as
// NUM_LITERAL_CODES (256) + NUM_LENGTH_CODES (24) + (0 or a non-zero power of
// 2). See the usage in VP8LHistogramAdd().
assert(size >= 32);
assert(size % 2 == 0);
do {
const __m256i a0 = _mm256_loadu_si256((const __m256i*)&a[i + 0]);
const __m256i a1 = _mm256_loadu_si256((const __m256i*)&a[i + 8]);
const __m256i a2 = _mm256_loadu_si256((const __m256i*)&a[i + 16]);
const __m256i a3 = _mm256_loadu_si256((const __m256i*)&a[i + 24]);
const __m256i b0 = _mm256_loadu_si256((const __m256i*)&b[i + 0]);
const __m256i b1 = _mm256_loadu_si256((const __m256i*)&b[i + 8]);
const __m256i b2 = _mm256_loadu_si256((const __m256i*)&b[i + 16]);
const __m256i b3 = _mm256_loadu_si256((const __m256i*)&b[i + 24]);
_mm256_storeu_si256((__m256i*)&out[i + 0], _mm256_add_epi32(a0, b0));
_mm256_storeu_si256((__m256i*)&out[i + 8], _mm256_add_epi32(a1, b1));
_mm256_storeu_si256((__m256i*)&out[i + 16], _mm256_add_epi32(a2, b2));
_mm256_storeu_si256((__m256i*)&out[i + 24], _mm256_add_epi32(a3, b3));
i += 32;
} while (i != aligned_size);
if ((size & 16) != 0) {
const __m256i a0 = _mm256_loadu_si256((const __m256i*)&a[i + 0]);
const __m256i a1 = _mm256_loadu_si256((const __m256i*)&a[i + 8]);
const __m256i b0 = _mm256_loadu_si256((const __m256i*)&b[i + 0]);
const __m256i b1 = _mm256_loadu_si256((const __m256i*)&b[i + 8]);
_mm256_storeu_si256((__m256i*)&out[i + 0], _mm256_add_epi32(a0, b0));
_mm256_storeu_si256((__m256i*)&out[i + 8], _mm256_add_epi32(a1, b1));
i += 16;
}
size &= 15;
if (size == 8) {
const __m256i a0 = _mm256_loadu_si256((const __m256i*)&a[i]);
const __m256i b0 = _mm256_loadu_si256((const __m256i*)&b[i]);
_mm256_storeu_si256((__m256i*)&out[i], _mm256_add_epi32(a0, b0));
} else {
for (; size--; ++i) {
out[i] = a[i] + b[i];
}
}
}
static void AddVectorEq_AVX2(const uint32_t* WEBP_RESTRICT a,
uint32_t* WEBP_RESTRICT out, int size) {
int i = 0;
int aligned_size = size & ~31;
// Size is, at minimum, NUM_DISTANCE_CODES (40) and may be as large as
// NUM_LITERAL_CODES (256) + NUM_LENGTH_CODES (24) + (0 or a non-zero power of
// 2). See the usage in VP8LHistogramAdd().
assert(size >= 32);
assert(size % 2 == 0);
do {
const __m256i a0 = _mm256_loadu_si256((const __m256i*)&a[i + 0]);
const __m256i a1 = _mm256_loadu_si256((const __m256i*)&a[i + 8]);
const __m256i a2 = _mm256_loadu_si256((const __m256i*)&a[i + 16]);
const __m256i a3 = _mm256_loadu_si256((const __m256i*)&a[i + 24]);
const __m256i b0 = _mm256_loadu_si256((const __m256i*)&out[i + 0]);
const __m256i b1 = _mm256_loadu_si256((const __m256i*)&out[i + 8]);
const __m256i b2 = _mm256_loadu_si256((const __m256i*)&out[i + 16]);
const __m256i b3 = _mm256_loadu_si256((const __m256i*)&out[i + 24]);
_mm256_storeu_si256((__m256i*)&out[i + 0], _mm256_add_epi32(a0, b0));
_mm256_storeu_si256((__m256i*)&out[i + 8], _mm256_add_epi32(a1, b1));
_mm256_storeu_si256((__m256i*)&out[i + 16], _mm256_add_epi32(a2, b2));
_mm256_storeu_si256((__m256i*)&out[i + 24], _mm256_add_epi32(a3, b3));
i += 32;
} while (i != aligned_size);
if ((size & 16) != 0) {
const __m256i a0 = _mm256_loadu_si256((const __m256i*)&a[i + 0]);
const __m256i a1 = _mm256_loadu_si256((const __m256i*)&a[i + 8]);
const __m256i b0 = _mm256_loadu_si256((const __m256i*)&out[i + 0]);
const __m256i b1 = _mm256_loadu_si256((const __m256i*)&out[i + 8]);
_mm256_storeu_si256((__m256i*)&out[i + 0], _mm256_add_epi32(a0, b0));
_mm256_storeu_si256((__m256i*)&out[i + 8], _mm256_add_epi32(a1, b1));
i += 16;
}
size &= 15;
if (size == 8) {
const __m256i a0 = _mm256_loadu_si256((const __m256i*)&a[i]);
const __m256i b0 = _mm256_loadu_si256((const __m256i*)&out[i]);
_mm256_storeu_si256((__m256i*)&out[i], _mm256_add_epi32(a0, b0));
} else {
for (; size--; ++i) {
out[i] += a[i];
}
}
}
//------------------------------------------------------------------------------
// Entropy
#if !defined(WEBP_HAVE_SLOW_CLZ_CTZ)
static uint64_t CombinedShannonEntropy_AVX2(const uint32_t X[256],
const uint32_t Y[256]) {
int i;
uint64_t retval = 0;
uint32_t sumX = 0, sumXY = 0;
const __m256i zero = _mm256_setzero_si256();
for (i = 0; i < 256; i += 32) {
const __m256i x0 = _mm256_loadu_si256((const __m256i*)(X + i + 0));
const __m256i y0 = _mm256_loadu_si256((const __m256i*)(Y + i + 0));
const __m256i x1 = _mm256_loadu_si256((const __m256i*)(X + i + 8));
const __m256i y1 = _mm256_loadu_si256((const __m256i*)(Y + i + 8));
const __m256i x2 = _mm256_loadu_si256((const __m256i*)(X + i + 16));
const __m256i y2 = _mm256_loadu_si256((const __m256i*)(Y + i + 16));
const __m256i x3 = _mm256_loadu_si256((const __m256i*)(X + i + 24));
const __m256i y3 = _mm256_loadu_si256((const __m256i*)(Y + i + 24));
const __m256i x4 = _mm256_packs_epi16(_mm256_packs_epi32(x0, x1),
_mm256_packs_epi32(x2, x3));
const __m256i y4 = _mm256_packs_epi16(_mm256_packs_epi32(y0, y1),
_mm256_packs_epi32(y2, y3));
// Packed pixels are actually in order: ... 17 16 12 11 10 9 8 3 2 1 0
const __m256i x5 = _mm256_permutevar8x32_epi32(
x4, _mm256_set_epi32(7, 3, 6, 2, 5, 1, 4, 0));
const __m256i y5 = _mm256_permutevar8x32_epi32(
y4, _mm256_set_epi32(7, 3, 6, 2, 5, 1, 4, 0));
const uint32_t mx =
(uint32_t)_mm256_movemask_epi8(_mm256_cmpgt_epi8(x5, zero));
uint32_t my =
(uint32_t)_mm256_movemask_epi8(_mm256_cmpgt_epi8(y5, zero)) | mx;
while (my) {
const int32_t j = BitsCtz(my);
uint32_t xy;
if ((mx >> j) & 1) {
const int x = X[i + j];
sumXY += x;
retval += VP8LFastSLog2(x);
}
xy = X[i + j] + Y[i + j];
sumX += xy;
retval += VP8LFastSLog2(xy);
my &= my - 1;
}
}
retval = VP8LFastSLog2(sumX) + VP8LFastSLog2(sumXY) - retval;
return retval;
}
#else
#define DONT_USE_COMBINED_SHANNON_ENTROPY_SSE2_FUNC // won't be faster
#endif
//------------------------------------------------------------------------------
static int VectorMismatch_AVX2(const uint32_t* const array1,
const uint32_t* const array2, int length) {
int match_len;
if (length >= 24) {
__m256i A0 = _mm256_loadu_si256((const __m256i*)&array1[0]);
__m256i A1 = _mm256_loadu_si256((const __m256i*)&array2[0]);
match_len = 0;
do {
// Loop unrolling and early load both provide a speedup of 10% for the
// current function. Also, max_limit can be MAX_LENGTH=4096 at most.
const __m256i cmpA = _mm256_cmpeq_epi32(A0, A1);
const __m256i B0 =
_mm256_loadu_si256((const __m256i*)&array1[match_len + 8]);
const __m256i B1 =
_mm256_loadu_si256((const __m256i*)&array2[match_len + 8]);
if ((uint32_t)_mm256_movemask_epi8(cmpA) != 0xffffffff) break;
match_len += 8;
{
const __m256i cmpB = _mm256_cmpeq_epi32(B0, B1);
A0 = _mm256_loadu_si256((const __m256i*)&array1[match_len + 8]);
A1 = _mm256_loadu_si256((const __m256i*)&array2[match_len + 8]);
if ((uint32_t)_mm256_movemask_epi8(cmpB) != 0xffffffff) break;
match_len += 8;
}
} while (match_len + 24 < length);
} else {
match_len = 0;
// Unroll the potential first two loops.
if (length >= 8 &&
(uint32_t)_mm256_movemask_epi8(_mm256_cmpeq_epi32(
_mm256_loadu_si256((const __m256i*)&array1[0]),
_mm256_loadu_si256((const __m256i*)&array2[0]))) == 0xffffffff) {
match_len = 8;
if (length >= 16 &&
(uint32_t)_mm256_movemask_epi8(_mm256_cmpeq_epi32(
_mm256_loadu_si256((const __m256i*)&array1[8]),
_mm256_loadu_si256((const __m256i*)&array2[8]))) == 0xffffffff) {
match_len = 16;
}
}
}
while (match_len < length && array1[match_len] == array2[match_len]) {
++match_len;
}
return match_len;
}
// Bundles multiple (1, 2, 4 or 8) pixels into a single pixel.
static void BundleColorMap_AVX2(const uint8_t* WEBP_RESTRICT const row,
int width, int xbits,
uint32_t* WEBP_RESTRICT dst) {
int x = 0;
assert(xbits >= 0);
assert(xbits <= 3);
switch (xbits) {
case 0: {
const __m256i ff = _mm256_set1_epi16((short)0xff00);
const __m256i zero = _mm256_setzero_si256();
// Store 0xff000000 | (row[x] << 8).
for (x = 0; x + 32 <= width; x += 32, dst += 32) {
const __m256i in = _mm256_loadu_si256((const __m256i*)&row[x]);
const __m256i in_lo = _mm256_unpacklo_epi8(zero, in);
const __m256i dst0 = _mm256_unpacklo_epi16(in_lo, ff);
const __m256i dst1 = _mm256_unpackhi_epi16(in_lo, ff);
const __m256i in_hi = _mm256_unpackhi_epi8(zero, in);
const __m256i dst2 = _mm256_unpacklo_epi16(in_hi, ff);
const __m256i dst3 = _mm256_unpackhi_epi16(in_hi, ff);
_mm256_storeu2_m128i((__m128i*)&dst[16], (__m128i*)&dst[0], dst0);
_mm256_storeu2_m128i((__m128i*)&dst[20], (__m128i*)&dst[4], dst1);
_mm256_storeu2_m128i((__m128i*)&dst[24], (__m128i*)&dst[8], dst2);
_mm256_storeu2_m128i((__m128i*)&dst[28], (__m128i*)&dst[12], dst3);
}
break;
}
case 1: {
const __m256i ff = _mm256_set1_epi16((short)0xff00);
const __m256i mul = _mm256_set1_epi16(0x110);
for (x = 0; x + 32 <= width; x += 32, dst += 16) {
// 0a0b | (where a/b are 4 bits).
const __m256i in = _mm256_loadu_si256((const __m256i*)&row[x]);
const __m256i tmp = _mm256_mullo_epi16(in, mul); // aba0
const __m256i pack = _mm256_and_si256(tmp, ff); // ab00
const __m256i dst0 = _mm256_unpacklo_epi16(pack, ff);
const __m256i dst1 = _mm256_unpackhi_epi16(pack, ff);
_mm256_storeu2_m128i((__m128i*)&dst[8], (__m128i*)&dst[0], dst0);
_mm256_storeu2_m128i((__m128i*)&dst[12], (__m128i*)&dst[4], dst1);
}
break;
}
case 2: {
const __m256i mask_or = _mm256_set1_epi32((int)0xff000000);
const __m256i mul_cst = _mm256_set1_epi16(0x0104);
const __m256i mask_mul = _mm256_set1_epi16(0x0f00);
for (x = 0; x + 32 <= width; x += 32, dst += 8) {
// 000a000b000c000d | (where a/b/c/d are 2 bits).
const __m256i in = _mm256_loadu_si256((const __m256i*)&row[x]);
const __m256i mul =
_mm256_mullo_epi16(in, mul_cst); // 00ab00b000cd00d0
const __m256i tmp =
_mm256_and_si256(mul, mask_mul); // 00ab000000cd0000
const __m256i shift = _mm256_srli_epi32(tmp, 12); // 00000000ab000000
const __m256i pack = _mm256_or_si256(shift, tmp); // 00000000abcd0000
// Convert to 0xff00**00.
const __m256i res = _mm256_or_si256(pack, mask_or);
_mm256_storeu_si256((__m256i*)dst, res);
}
break;
}
default: {
assert(xbits == 3);
for (x = 0; x + 32 <= width; x += 32, dst += 4) {
// 0000000a00000000b... | (where a/b are 1 bit).
const __m256i in = _mm256_loadu_si256((const __m256i*)&row[x]);
const __m256i shift = _mm256_slli_epi64(in, 7);
const uint32_t move = _mm256_movemask_epi8(shift);
dst[0] = 0xff000000 | ((move & 0xff) << 8);
dst[1] = 0xff000000 | (move & 0xff00);
dst[2] = 0xff000000 | ((move & 0xff0000) >> 8);
dst[3] = 0xff000000 | ((move & 0xff000000) >> 16);
}
break;
}
}
if (x != width) {
VP8LBundleColorMap_SSE(row + x, width - x, xbits, dst);
}
}
//------------------------------------------------------------------------------
// Batch version of Predictor Transform subtraction
static WEBP_INLINE void Average2_m256i(const __m256i* const a0,
const __m256i* const a1,
__m256i* const avg) {
// (a + b) >> 1 = ((a + b + 1) >> 1) - ((a ^ b) & 1)
const __m256i ones = _mm256_set1_epi8(1);
const __m256i avg1 = _mm256_avg_epu8(*a0, *a1);
const __m256i one = _mm256_and_si256(_mm256_xor_si256(*a0, *a1), ones);
*avg = _mm256_sub_epi8(avg1, one);
}
// Predictor0: ARGB_BLACK.
static void PredictorSub0_AVX2(const uint32_t* in, const uint32_t* upper,
int num_pixels, uint32_t* WEBP_RESTRICT out) {
int i;
const __m256i black = _mm256_set1_epi32((int)ARGB_BLACK);
for (i = 0; i + 8 <= num_pixels; i += 8) {
const __m256i src = _mm256_loadu_si256((const __m256i*)&in[i]);
const __m256i res = _mm256_sub_epi8(src, black);
_mm256_storeu_si256((__m256i*)&out[i], res);
}
if (i != num_pixels) {
VP8LPredictorsSub_SSE[0](in + i, NULL, num_pixels - i, out + i);
}
(void)upper;
}
#define GENERATE_PREDICTOR_1(X, IN) \
static void PredictorSub##X##_AVX2( \
const uint32_t* const in, const uint32_t* const upper, int num_pixels, \
uint32_t* WEBP_RESTRICT const out) { \
int i; \
for (i = 0; i + 8 <= num_pixels; i += 8) { \
const __m256i src = _mm256_loadu_si256((const __m256i*)&in[i]); \
const __m256i pred = _mm256_loadu_si256((const __m256i*)&(IN)); \
const __m256i res = _mm256_sub_epi8(src, pred); \
_mm256_storeu_si256((__m256i*)&out[i], res); \
} \
if (i != num_pixels) { \
VP8LPredictorsSub_SSE[(X)](in + i, WEBP_OFFSET_PTR(upper, i), \
num_pixels - i, out + i); \
} \
}
GENERATE_PREDICTOR_1(1, in[i - 1]) // Predictor1: L
GENERATE_PREDICTOR_1(2, upper[i]) // Predictor2: T
GENERATE_PREDICTOR_1(3, upper[i + 1]) // Predictor3: TR
GENERATE_PREDICTOR_1(4, upper[i - 1]) // Predictor4: TL
#undef GENERATE_PREDICTOR_1
// Predictor5: avg2(avg2(L, TR), T)
static void PredictorSub5_AVX2(const uint32_t* in, const uint32_t* upper,
int num_pixels, uint32_t* WEBP_RESTRICT out) {
int i;
for (i = 0; i + 8 <= num_pixels; i += 8) {
const __m256i L = _mm256_loadu_si256((const __m256i*)&in[i - 1]);
const __m256i T = _mm256_loadu_si256((const __m256i*)&upper[i]);
const __m256i TR = _mm256_loadu_si256((const __m256i*)&upper[i + 1]);
const __m256i src = _mm256_loadu_si256((const __m256i*)&in[i]);
__m256i avg, pred, res;
Average2_m256i(&L, &TR, &avg);
Average2_m256i(&avg, &T, &pred);
res = _mm256_sub_epi8(src, pred);
_mm256_storeu_si256((__m256i*)&out[i], res);
}
if (i != num_pixels) {
VP8LPredictorsSub_SSE[5](in + i, upper + i, num_pixels - i, out + i);
}
}
#define GENERATE_PREDICTOR_2(X, A, B) \
static void PredictorSub##X##_AVX2(const uint32_t* in, \
const uint32_t* upper, int num_pixels, \
uint32_t* WEBP_RESTRICT out) { \
int i; \
for (i = 0; i + 8 <= num_pixels; i += 8) { \
const __m256i tA = _mm256_loadu_si256((const __m256i*)&(A)); \
const __m256i tB = _mm256_loadu_si256((const __m256i*)&(B)); \
const __m256i src = _mm256_loadu_si256((const __m256i*)&in[i]); \
__m256i pred, res; \
Average2_m256i(&tA, &tB, &pred); \
res = _mm256_sub_epi8(src, pred); \
_mm256_storeu_si256((__m256i*)&out[i], res); \
} \
if (i != num_pixels) { \
VP8LPredictorsSub_SSE[(X)](in + i, upper + i, num_pixels - i, out + i); \
} \
}
GENERATE_PREDICTOR_2(6, in[i - 1], upper[i - 1]) // Predictor6: avg(L, TL)
GENERATE_PREDICTOR_2(7, in[i - 1], upper[i]) // Predictor7: avg(L, T)
GENERATE_PREDICTOR_2(8, upper[i - 1], upper[i]) // Predictor8: avg(TL, T)
GENERATE_PREDICTOR_2(9, upper[i], upper[i + 1]) // Predictor9: average(T, TR)
#undef GENERATE_PREDICTOR_2
// Predictor10: avg(avg(L,TL), avg(T, TR)).
static void PredictorSub10_AVX2(const uint32_t* in, const uint32_t* upper,
int num_pixels, uint32_t* WEBP_RESTRICT out) {
int i;
for (i = 0; i + 8 <= num_pixels; i += 8) {
const __m256i L = _mm256_loadu_si256((const __m256i*)&in[i - 1]);
const __m256i src = _mm256_loadu_si256((const __m256i*)&in[i]);
const __m256i TL = _mm256_loadu_si256((const __m256i*)&upper[i - 1]);
const __m256i T = _mm256_loadu_si256((const __m256i*)&upper[i]);
const __m256i TR = _mm256_loadu_si256((const __m256i*)&upper[i + 1]);
__m256i avgTTR, avgLTL, avg, res;
Average2_m256i(&T, &TR, &avgTTR);
Average2_m256i(&L, &TL, &avgLTL);
Average2_m256i(&avgTTR, &avgLTL, &avg);
res = _mm256_sub_epi8(src, avg);
_mm256_storeu_si256((__m256i*)&out[i], res);
}
if (i != num_pixels) {
VP8LPredictorsSub_SSE[10](in + i, upper + i, num_pixels - i, out + i);
}
}
// Predictor11: select.
static void GetSumAbsDiff32_AVX2(const __m256i* const A, const __m256i* const B,
__m256i* const out) {
// We can unpack with any value on the upper 32 bits, provided it's the same
// on both operands (to that their sum of abs diff is zero). Here we use *A.
const __m256i A_lo = _mm256_unpacklo_epi32(*A, *A);
const __m256i B_lo = _mm256_unpacklo_epi32(*B, *A);
const __m256i A_hi = _mm256_unpackhi_epi32(*A, *A);
const __m256i B_hi = _mm256_unpackhi_epi32(*B, *A);
const __m256i s_lo = _mm256_sad_epu8(A_lo, B_lo);
const __m256i s_hi = _mm256_sad_epu8(A_hi, B_hi);
*out = _mm256_packs_epi32(s_lo, s_hi);
}
static void PredictorSub11_AVX2(const uint32_t* in, const uint32_t* upper,
int num_pixels, uint32_t* WEBP_RESTRICT out) {
int i;
for (i = 0; i + 8 <= num_pixels; i += 8) {
const __m256i L = _mm256_loadu_si256((const __m256i*)&in[i - 1]);
const __m256i T = _mm256_loadu_si256((const __m256i*)&upper[i]);
const __m256i TL = _mm256_loadu_si256((const __m256i*)&upper[i - 1]);
const __m256i src = _mm256_loadu_si256((const __m256i*)&in[i]);
__m256i pa, pb;
GetSumAbsDiff32_AVX2(&T, &TL, &pa); // pa = sum |T-TL|
GetSumAbsDiff32_AVX2(&L, &TL, &pb); // pb = sum |L-TL|
{
const __m256i mask = _mm256_cmpgt_epi32(pb, pa);
const __m256i A = _mm256_and_si256(mask, L);
const __m256i B = _mm256_andnot_si256(mask, T);
const __m256i pred = _mm256_or_si256(A, B); // pred = (L > T)? L : T
const __m256i res = _mm256_sub_epi8(src, pred);
_mm256_storeu_si256((__m256i*)&out[i], res);
}
}
if (i != num_pixels) {
VP8LPredictorsSub_SSE[11](in + i, upper + i, num_pixels - i, out + i);
}
}
// Predictor12: ClampedSubSubtractFull.
static void PredictorSub12_AVX2(const uint32_t* in, const uint32_t* upper,
int num_pixels, uint32_t* WEBP_RESTRICT out) {
int i;
const __m256i zero = _mm256_setzero_si256();
for (i = 0; i + 8 <= num_pixels; i += 8) {
const __m256i src = _mm256_loadu_si256((const __m256i*)&in[i]);
const __m256i L = _mm256_loadu_si256((const __m256i*)&in[i - 1]);
const __m256i L_lo = _mm256_unpacklo_epi8(L, zero);
const __m256i L_hi = _mm256_unpackhi_epi8(L, zero);
const __m256i T = _mm256_loadu_si256((const __m256i*)&upper[i]);
const __m256i T_lo = _mm256_unpacklo_epi8(T, zero);
const __m256i T_hi = _mm256_unpackhi_epi8(T, zero);
const __m256i TL = _mm256_loadu_si256((const __m256i*)&upper[i - 1]);
const __m256i TL_lo = _mm256_unpacklo_epi8(TL, zero);
const __m256i TL_hi = _mm256_unpackhi_epi8(TL, zero);
const __m256i diff_lo = _mm256_sub_epi16(T_lo, TL_lo);
const __m256i diff_hi = _mm256_sub_epi16(T_hi, TL_hi);
const __m256i pred_lo = _mm256_add_epi16(L_lo, diff_lo);
const __m256i pred_hi = _mm256_add_epi16(L_hi, diff_hi);
const __m256i pred = _mm256_packus_epi16(pred_lo, pred_hi);
const __m256i res = _mm256_sub_epi8(src, pred);
_mm256_storeu_si256((__m256i*)&out[i], res);
}
if (i != num_pixels) {
VP8LPredictorsSub_SSE[12](in + i, upper + i, num_pixels - i, out + i);
}
}
// Predictors13: ClampedAddSubtractHalf
static void PredictorSub13_AVX2(const uint32_t* in, const uint32_t* upper,
int num_pixels, uint32_t* WEBP_RESTRICT out) {
int i;
const __m256i zero = _mm256_setzero_si256();
for (i = 0; i + 8 <= num_pixels; i += 8) {
const __m256i L = _mm256_loadu_si256((const __m256i*)&in[i - 1]);
const __m256i src = _mm256_loadu_si256((const __m256i*)&in[i]);
const __m256i T = _mm256_loadu_si256((const __m256i*)&upper[i]);
const __m256i TL = _mm256_loadu_si256((const __m256i*)&upper[i - 1]);
// lo.
const __m256i L_lo = _mm256_unpacklo_epi8(L, zero);
const __m256i T_lo = _mm256_unpacklo_epi8(T, zero);
const __m256i TL_lo = _mm256_unpacklo_epi8(TL, zero);
const __m256i sum_lo = _mm256_add_epi16(T_lo, L_lo);
const __m256i avg_lo = _mm256_srli_epi16(sum_lo, 1);
const __m256i A1_lo = _mm256_sub_epi16(avg_lo, TL_lo);
const __m256i bit_fix_lo = _mm256_cmpgt_epi16(TL_lo, avg_lo);
const __m256i A2_lo = _mm256_sub_epi16(A1_lo, bit_fix_lo);
const __m256i A3_lo = _mm256_srai_epi16(A2_lo, 1);
const __m256i A4_lo = _mm256_add_epi16(avg_lo, A3_lo);
// hi.
const __m256i L_hi = _mm256_unpackhi_epi8(L, zero);
const __m256i T_hi = _mm256_unpackhi_epi8(T, zero);
const __m256i TL_hi = _mm256_unpackhi_epi8(TL, zero);
const __m256i sum_hi = _mm256_add_epi16(T_hi, L_hi);
const __m256i avg_hi = _mm256_srli_epi16(sum_hi, 1);
const __m256i A1_hi = _mm256_sub_epi16(avg_hi, TL_hi);
const __m256i bit_fix_hi = _mm256_cmpgt_epi16(TL_hi, avg_hi);
const __m256i A2_hi = _mm256_sub_epi16(A1_hi, bit_fix_hi);
const __m256i A3_hi = _mm256_srai_epi16(A2_hi, 1);
const __m256i A4_hi = _mm256_add_epi16(avg_hi, A3_hi);
const __m256i pred = _mm256_packus_epi16(A4_lo, A4_hi);
const __m256i res = _mm256_sub_epi8(src, pred);
_mm256_storeu_si256((__m256i*)&out[i], res);
}
if (i != num_pixels) {
VP8LPredictorsSub_SSE[13](in + i, upper + i, num_pixels - i, out + i);
}
}
//------------------------------------------------------------------------------
// Entry point
extern void VP8LEncDspInitAVX2(void);
WEBP_TSAN_IGNORE_FUNCTION void VP8LEncDspInitAVX2(void) {
VP8LSubtractGreenFromBlueAndRed = SubtractGreenFromBlueAndRed_AVX2;
VP8LTransformColor = TransformColor_AVX2;
VP8LCollectColorBlueTransforms = CollectColorBlueTransforms_AVX2;
VP8LCollectColorRedTransforms = CollectColorRedTransforms_AVX2;
VP8LAddVector = AddVector_AVX2;
VP8LAddVectorEq = AddVectorEq_AVX2;
VP8LCombinedShannonEntropy = CombinedShannonEntropy_AVX2;
VP8LVectorMismatch = VectorMismatch_AVX2;
VP8LBundleColorMap = BundleColorMap_AVX2;
VP8LPredictorsSub[0] = PredictorSub0_AVX2;
VP8LPredictorsSub[1] = PredictorSub1_AVX2;
VP8LPredictorsSub[2] = PredictorSub2_AVX2;
VP8LPredictorsSub[3] = PredictorSub3_AVX2;
VP8LPredictorsSub[4] = PredictorSub4_AVX2;
VP8LPredictorsSub[5] = PredictorSub5_AVX2;
VP8LPredictorsSub[6] = PredictorSub6_AVX2;
VP8LPredictorsSub[7] = PredictorSub7_AVX2;
VP8LPredictorsSub[8] = PredictorSub8_AVX2;
VP8LPredictorsSub[9] = PredictorSub9_AVX2;
VP8LPredictorsSub[10] = PredictorSub10_AVX2;
VP8LPredictorsSub[11] = PredictorSub11_AVX2;
VP8LPredictorsSub[12] = PredictorSub12_AVX2;
VP8LPredictorsSub[13] = PredictorSub13_AVX2;
VP8LPredictorsSub[14] = PredictorSub0_AVX2; // <- padding security sentinels
VP8LPredictorsSub[15] = PredictorSub0_AVX2;
}
#else // !WEBP_USE_AVX2
WEBP_DSP_INIT_STUB(VP8LEncDspInitAVX2)
#endif // WEBP_USE_AVX2

View File

@ -17,6 +17,7 @@
#include <assert.h>
#include <emmintrin.h>
#include <string.h>
#include "src/dsp/cpu.h"
#include "src/dsp/lossless.h"
@ -726,6 +727,15 @@ WEBP_TSAN_IGNORE_FUNCTION void VP8LEncDspInitSSE2(void) {
VP8LPredictorsSub[13] = PredictorSub13_SSE2;
VP8LPredictorsSub[14] = PredictorSub0_SSE2; // <- padding security sentinels
VP8LPredictorsSub[15] = PredictorSub0_SSE2;
// SSE exports for AVX and above.
VP8LSubtractGreenFromBlueAndRed_SSE = SubtractGreenFromBlueAndRed_SSE2;
VP8LTransformColor_SSE = TransformColor_SSE2;
VP8LCollectColorBlueTransforms_SSE = CollectColorBlueTransforms_SSE2;
VP8LCollectColorRedTransforms_SSE = CollectColorRedTransforms_SSE2;
VP8LBundleColorMap_SSE = BundleColorMap_SSE2;
memcpy(VP8LPredictorsSub_SSE, VP8LPredictorsSub, sizeof(VP8LPredictorsSub));
}
#else // !WEBP_USE_SSE2

View File

@ -203,6 +203,11 @@ WEBP_TSAN_IGNORE_FUNCTION void VP8LEncDspInitSSE41(void) {
VP8LSubtractGreenFromBlueAndRed = SubtractGreenFromBlueAndRed_SSE41;
VP8LCollectColorBlueTransforms = CollectColorBlueTransforms_SSE41;
VP8LCollectColorRedTransforms = CollectColorRedTransforms_SSE41;
// SSE exports for AVX and above.
VP8LSubtractGreenFromBlueAndRed_SSE = SubtractGreenFromBlueAndRed_SSE41;
VP8LCollectColorBlueTransforms_SSE = CollectColorBlueTransforms_SSE41;
VP8LCollectColorRedTransforms_SSE = CollectColorRedTransforms_SSE41;
}
#else // !WEBP_USE_SSE41

View File

@ -16,6 +16,7 @@
#if defined(WEBP_USE_SSE2)
#include <emmintrin.h>
#include <string.h>
#include "src/dsp/common_sse2.h"
#include "src/dsp/cpu.h"
@ -710,6 +711,15 @@ WEBP_TSAN_IGNORE_FUNCTION void VP8LDspInitSSE2(void) {
VP8LConvertBGRAToRGBA4444 = ConvertBGRAToRGBA4444_SSE2;
VP8LConvertBGRAToRGB565 = ConvertBGRAToRGB565_SSE2;
VP8LConvertBGRAToBGR = ConvertBGRAToBGR_SSE2;
// SSE exports for AVX and above.
memcpy(VP8LPredictorsAdd_SSE, VP8LPredictorsAdd, sizeof(VP8LPredictorsAdd));
VP8LAddGreenToBlueAndRed_SSE = AddGreenToBlueAndRed_SSE2;
VP8LTransformColorInverse_SSE = TransformColorInverse_SSE2;
VP8LConvertBGRAToRGB_SSE = ConvertBGRAToRGB_SSE2;
VP8LConvertBGRAToRGBA_SSE = ConvertBGRAToRGBA_SSE2;
}
#else // !WEBP_USE_SSE2

View File

@ -125,6 +125,10 @@ WEBP_TSAN_IGNORE_FUNCTION void VP8LDspInitSSE41(void) {
VP8LTransformColorInverse = TransformColorInverse_SSE41;
VP8LConvertBGRAToRGB = ConvertBGRAToRGB_SSE41;
VP8LConvertBGRAToBGR = ConvertBGRAToBGR_SSE41;
// SSE exports for AVX and above.
VP8LTransformColorInverse_SSE = TransformColorInverse_SSE41;
VP8LConvertBGRAToRGB_SSE = ConvertBGRAToRGB_SSE41;
}
#else // !WEBP_USE_SSE41