create a separate libwebpdsp under src/dsp

Gathers all DSP-related function (and SSE2 implementations).
Clean-up some unwanted symbolic dependencies so that webp_encode,
webp_decode and webp_dsp are truly independent libraries.

+ opportunistic clean-up:
  * remove unneeded VP8DspInitTables(), now integrated in VP8DspInit()
  * make consistent use of VP8GetCPUInfo() in the various DspInit() funcs
  * change OUT macro to DST
This commit is contained in:
Pascal Massimino 2011-09-02 21:30:08 +00:00 committed by James Zern
parent ebeb412aa5
commit e06ac0887f
28 changed files with 2217 additions and 500 deletions

View File

@ -14,8 +14,12 @@ LOCAL_SRC_FILES := \
src/dec/webp.c \
src/dec/io.c \
src/dec/buffer.c \
src/dec/yuv.c \
src/dec/thread.c \
src/dsp/yuv.c \
src/dsp/upsampling.c \
src/dsp/cpu.c \
src/dsp/dec.c \
src/dsp/enc.c \
src/enc/alpha.c \
src/enc/analysis.c \
src/enc/bit_writer.c \

View File

@ -133,17 +133,13 @@ CFGSET = TRUE
X_OBJS= \
$(DIROBJ)\dec\bits.obj \
$(DIROBJ)\dec\dsp.obj \
$(DIROBJ)\dec\dsp_sse2.obj \
$(DIROBJ)\dec\frame.obj \
$(DIROBJ)\dec\quant.obj \
$(DIROBJ)\dec\tree.obj \
$(DIROBJ)\dec\vp8.obj \
$(DIROBJ)\dec\webp.obj \
$(DIROBJ)\dec\io.obj \
$(DIROBJ)\dec\io_sse2.obj \
$(DIROBJ)\dec\buffer.obj \
$(DIROBJ)\dec\yuv.obj \
$(DIROBJ)\dec\idec.obj \
$(DIROBJ)\dec\alpha.obj \
$(DIROBJ)\dec\layer.obj \
@ -152,8 +148,6 @@ X_OBJS= \
$(DIROBJ)\enc\bit_writer.obj \
$(DIROBJ)\enc\config.obj \
$(DIROBJ)\enc\cost.obj \
$(DIROBJ)\enc\dsp.obj \
$(DIROBJ)\enc\dsp_sse2.obj \
$(DIROBJ)\enc\frame.obj \
$(DIROBJ)\enc\filter.obj \
$(DIROBJ)\enc\iterator.obj \
@ -164,6 +158,14 @@ X_OBJS= \
$(DIROBJ)\enc\webpenc.obj \
$(DIROBJ)\enc\alpha.obj \
$(DIROBJ)\enc\layer.obj \
$(DIROBJ)\dsp\enc.obj \
$(DIROBJ)\dsp\enc_sse2.obj \
$(DIROBJ)\dsp\upsampling.obj \
$(DIROBJ)\dsp\upsampling_sse2.obj \
$(DIROBJ)\dsp\dec.obj \
$(DIROBJ)\dsp\dec_sse2.obj \
$(DIROBJ)\dsp\cpu.obj \
$(DIROBJ)\dsp\yuv.obj \
$(RESOURCE)
EXAMPLES_OBJS = \
@ -185,7 +187,7 @@ $(DIRLIB)\$(TARGET): $(X_OBJS)
$(LNK) $(LFLAGS) $(X_OBJS)
-xcopy $(DIROBJ)\*.pdb $(DIRLIB) /y
$(X_OBJS): $(DIROBJ)\enc $(DIROBJ)\dec $(DIRLIB) $(DIRINC) $(DIRBIN)
$(X_OBJS): $(DIROBJ)\enc $(DIROBJ)\dec $(DIROBJ)\dsp $(DIRLIB) $(DIRINC) $(DIRBIN)
!IF "$(DLLBUILD)" == "TRUE"
$(X_OBJS): $(DIROBJ)\$(DLLINC)
clean::
@ -203,6 +205,9 @@ $(DIROBJ)\examples:
$(DIROBJ)\dec:
@if not exist "$(DIROBJ)\dec" mkdir $(DIROBJ)\dec
$(DIROBJ)\dsp:
@if not exist "$(DIROBJ)\dsp" mkdir $(DIROBJ)\dsp
$(DIRLIB):
@if not exist "$(DIRLIB)" mkdir $(DIRLIB)
@ -226,6 +231,8 @@ $(DIROBJ)\$(DLLINC):
$(CC) $(CFLAGS) /Fo"$@" $<
{src\enc}.c{$(DIROBJ)\enc}.obj:
$(CC) $(CFLAGS) /Fo"$@" $<
{src\dsp}.c{$(DIROBJ)\dsp}.obj:
$(CC) $(CFLAGS) /Fo"$@" $<
{$(DIROBJ)\examples}.obj{$(DIRBIN)}.exe:
$(LNKEXE) $(LDFLAGS) /OUT:"$@" $< ole32.lib windowscodecs.lib shlwapi.lib $(DIRLIB)\$(TARGET)

View File

@ -150,7 +150,10 @@ dnl =========================
AC_CONFIG_MACRO_DIR([m4])
AC_CONFIG_HEADERS([config.h])
AC_CONFIG_FILES([Makefile src/Makefile man/Makefile examples/Makefile src/dec/Makefile src/enc/Makefile src/libwebp.pc])
AC_CONFIG_FILES([Makefile src/Makefile man/Makefile \
examples/Makefile src/dec/Makefile \
src/enc/Makefile src/dsp/Makefile \
src/libwebp.pc])
AC_OUTPUT

View File

@ -54,7 +54,7 @@ DEFINE_GUID(GUID_WICPixelFormat32bppRGBA,
#include "webp/encode.h"
#include "stopwatch.h"
#ifndef WEBP_DLL
extern void* VP8EncGetCPUInfo; // opaque forward declaration.
extern void* VP8GetCPUInfo; // opaque forward declaration.
#endif
//------------------------------------------------------------------------------
@ -829,7 +829,7 @@ int main(int argc, const char *argv[]) {
resize_h = strtol(argv[++c], NULL, 0);
#ifndef WEBP_DLL
} else if (!strcmp(argv[c], "-noasm")) {
VP8EncGetCPUInfo = NULL;
VP8GetCPUInfo = NULL;
#endif
} else if (!strcmp(argv[c], "-version")) {
const int version = WebPGetEncoderVersion();

View File

@ -46,7 +46,7 @@ extern "C" {
static int verbose = 0;
#ifndef WEBP_DLL
extern void* VP8DecGetCPUInfo; // opaque forward declaration.
extern void* VP8GetCPUInfo; // opaque forward declaration.
#endif
//------------------------------------------------------------------------------
@ -389,7 +389,7 @@ int main(int argc, const char *argv[]) {
verbose = 1;
#ifndef WEBP_DLL
} else if (!strcmp(argv[c], "-noasm")) {
VP8DecGetCPUInfo = NULL;
VP8GetCPUInfo = NULL;
#endif
} else if (argv[c][0] == '-') {
printf("Unknown option '%s'\n", argv[c]);

View File

@ -57,17 +57,22 @@ INSTALL = install
LDFLAGS = $(EXTRA_LIBS) -lm
OBJS = src/enc/webpenc.o src/enc/bit_writer.o src/enc/syntax.o \
src/enc/dsp.o src/enc/dsp_sse2.o src/enc/alpha.o \
src/enc/alpha.o src/enc/layer.o \
src/enc/tree.o src/enc/config.o src/enc/frame.o \
src/enc/quant.o src/enc/iterator.o src/enc/analysis.o \
src/enc/cost.o src/enc/picture.o src/enc/filter.o \
src/enc/layer.o \
src/dec/bits.o src/dec/dsp.o src/dec/dsp_sse2.o src/dec/frame.o \
src/dec/bits.o src/dec/frame.o \
src/dec/webp.o src/dec/quant.o src/dec/tree.o src/dec/vp8.o \
src/dec/yuv.o src/dec/idec.o src/dec/alpha.o src/dec/layer.o \
src/dec/io.o src/dec/io_sse2.o src/dec/buffer.o src/dec/thread.o
src/dec/idec.o src/dec/alpha.o src/dec/layer.o \
src/dec/io.o src/dec/buffer.o src/dec/thread.o \
src/dsp/cpu.o src/dsp/enc.o src/dsp/enc_sse2.o \
src/dsp/dec.o src/dsp/dec_sse2.o \
src/dsp/upsampling.o src/dsp/upsampling_sse2.o \
src/dsp/yuv.o
HDRS = src/webp/encode.h src/enc/vp8enci.h src/enc/bit_writer.h \
src/enc/cost.h src/dec/bits.h src/dec/vp8i.h src/dec/yuv.h
src/enc/cost.h src/dec/bits.h src/dec/vp8i.h src/dsp/yuv.h \
src/dsp/dsp.h
OUTPUT = examples/cwebp examples/dwebp src/libwebp.a
all:ex
@ -105,6 +110,7 @@ clean:
$(RM) ${OUTPUT} *~ \
src/enc/*.o src/enc/*~ \
src/dec/*.o src/dec/*~ \
src/dsp/*.o src/dsp/*~ \
examples/*.o examples/*~
superclean: clean

View File

@ -1,11 +1,12 @@
SUBDIRS = dec enc
SUBDIRS = dec enc dsp
AM_CPPFLAGS = -I$(top_srcdir)/src
lib_LTLIBRARIES = libwebp.la
libwebp_la_SOURCES =
libwebp_la_LIBADD = dec/libwebpdecode.la \
enc/libwebpencode.la
enc/libwebpencode.la \
dsp/libwebpdsp.la
libwebp_la_LDFLAGS = -version-info 0:0:0
libwebpinclude_HEADERS = webp/types.h webp/decode.h webp/decode_vp8.h \
webp/encode.h

View File

@ -1,14 +1,14 @@
AM_CPPFLAGS = -I$(top_srcdir)/src
libwebpdecode_la_SOURCES = bits.h vp8i.h yuv.h bits.c dsp.c dsp_sse2.c frame.c \
quant.c tree.c vp8.c webp.c yuv.c idec.c alpha.c \
layer.c io.c io_sse2.c buffer.c thread.c
libwebpdecode_la_SOURCES = bits.h vp8i.h bits.c frame.c \
quant.c tree.c vp8.c webp.c idec.c alpha.c \
layer.c io.c buffer.c thread.c
libwebpdecode_la_LDFLAGS = -version-info 0:0:0
libwebpdecode_la_CPPFLAGS = $(USE_EXPERIMENTAL_CODE)
libwebpdecodeinclude_HEADERS = ../webp/decode.h ../webp/decode_vp8.h ../webp/types.h
libwebpdecodeincludedir = $(includedir)/webp
noinst_HEADERS = bits.h vp8i.h webpi.h yuv.h thread.h
noinst_HEADERS = bits.h vp8i.h webpi.h thread.h
noinst_LTLIBRARIES = libwebpdecode.la
# uncomment the following line (and comment the above) if you want

View File

@ -186,8 +186,7 @@ int VP8InitFrame(VP8Decoder* const dec, VP8Io* io) {
if (!InitThreadContext(dec)) return 0; // call first. Sets dec->num_caches_.
if (!AllocateMemory(dec)) return 0;
InitIo(dec, io);
VP8DspInitTables(); // Init critical function pointers and look-up tables.
VP8DspInit();
VP8DspInit(); // Init critical function pointers and look-up tables.
return 1;
}

View File

@ -11,224 +11,15 @@
#include <assert.h>
#include <stdlib.h>
#include "vp8i.h"
#include "webpi.h"
#include "yuv.h"
#include "../dec/vp8i.h"
#include "./webpi.h"
#include "../dsp/dsp.h"
#include "../dsp/yuv.h"
#if defined(__cplusplus) || defined(c_plusplus)
extern "C" {
#endif
#define FANCY_UPSAMPLING // undefined to remove fancy upsampling support
//------------------------------------------------------------------------------
// Fancy upsampler
#ifdef FANCY_UPSAMPLING
// Given samples laid out in a square as:
// [a b]
// [c d]
// we interpolate u/v as:
// ([9*a + 3*b + 3*c + d 3*a + 9*b + 3*c + d] + [8 8]) / 16
// ([3*a + b + 9*c + 3*d a + 3*b + 3*c + 9*d] [8 8]) / 16
// We process u and v together stashed into 32bit (16bit each).
#define LOAD_UV(u,v) ((u) | ((v) << 16))
#define UPSAMPLE_FUNC(FUNC_NAME, FUNC, XSTEP) \
static void FUNC_NAME(const uint8_t* top_y, const uint8_t* bottom_y, \
const uint8_t* top_u, const uint8_t* top_v, \
const uint8_t* cur_u, const uint8_t* cur_v, \
uint8_t* top_dst, uint8_t* bottom_dst, int len) { \
int x; \
const int last_pixel_pair = (len - 1) >> 1; \
uint32_t tl_uv = LOAD_UV(top_u[0], top_v[0]); /* top-left sample */ \
uint32_t l_uv = LOAD_UV(cur_u[0], cur_v[0]); /* left-sample */ \
if (top_y) { \
const uint32_t uv0 = (3 * tl_uv + l_uv + 0x00020002u) >> 2; \
FUNC(top_y[0], uv0 & 0xff, (uv0 >> 16), top_dst); \
} \
if (bottom_y) { \
const uint32_t uv0 = (3 * l_uv + tl_uv + 0x00020002u) >> 2; \
FUNC(bottom_y[0], uv0 & 0xff, (uv0 >> 16), bottom_dst); \
} \
for (x = 1; x <= last_pixel_pair; ++x) { \
const uint32_t t_uv = LOAD_UV(top_u[x], top_v[x]); /* top sample */ \
const uint32_t uv = LOAD_UV(cur_u[x], cur_v[x]); /* sample */ \
/* precompute invariant values associated with first and second diagonals*/\
const uint32_t avg = tl_uv + t_uv + l_uv + uv + 0x00080008u; \
const uint32_t diag_12 = (avg + 2 * (t_uv + l_uv)) >> 3; \
const uint32_t diag_03 = (avg + 2 * (tl_uv + uv)) >> 3; \
if (top_y) { \
const uint32_t uv0 = (diag_12 + tl_uv) >> 1; \
const uint32_t uv1 = (diag_03 + t_uv) >> 1; \
FUNC(top_y[2 * x - 1], uv0 & 0xff, (uv0 >> 16), \
top_dst + (2 * x - 1) * XSTEP); \
FUNC(top_y[2 * x - 0], uv1 & 0xff, (uv1 >> 16), \
top_dst + (2 * x - 0) * XSTEP); \
} \
if (bottom_y) { \
const uint32_t uv0 = (diag_03 + l_uv) >> 1; \
const uint32_t uv1 = (diag_12 + uv) >> 1; \
FUNC(bottom_y[2 * x - 1], uv0 & 0xff, (uv0 >> 16), \
bottom_dst + (2 * x - 1) * XSTEP); \
FUNC(bottom_y[2 * x + 0], uv1 & 0xff, (uv1 >> 16), \
bottom_dst + (2 * x + 0) * XSTEP); \
} \
tl_uv = t_uv; \
l_uv = uv; \
} \
if (!(len & 1)) { \
if (top_y) { \
const uint32_t uv0 = (3 * tl_uv + l_uv + 0x00020002u) >> 2; \
FUNC(top_y[len - 1], uv0 & 0xff, (uv0 >> 16), \
top_dst + (len - 1) * XSTEP); \
} \
if (bottom_y) { \
const uint32_t uv0 = (3 * l_uv + tl_uv + 0x00020002u) >> 2; \
FUNC(bottom_y[len - 1], uv0 & 0xff, (uv0 >> 16), \
bottom_dst + (len - 1) * XSTEP); \
} \
} \
}
// All variants implemented.
UPSAMPLE_FUNC(UpsampleRgbLinePair, VP8YuvToRgb, 3)
UPSAMPLE_FUNC(UpsampleBgrLinePair, VP8YuvToBgr, 3)
UPSAMPLE_FUNC(UpsampleRgbaLinePair, VP8YuvToRgba, 4)
UPSAMPLE_FUNC(UpsampleBgraLinePair, VP8YuvToBgra, 4)
UPSAMPLE_FUNC(UpsampleArgbLinePair, VP8YuvToArgb, 4)
UPSAMPLE_FUNC(UpsampleRgba4444LinePair, VP8YuvToRgba4444, 2)
UPSAMPLE_FUNC(UpsampleRgb565LinePair, VP8YuvToRgb565, 2)
// These two don't erase the alpha value
UPSAMPLE_FUNC(UpsampleRgbKeepAlphaLinePair, VP8YuvToRgb, 4)
UPSAMPLE_FUNC(UpsampleBgrKeepAlphaLinePair, VP8YuvToBgr, 4)
UPSAMPLE_FUNC(UpsampleArgbKeepAlphaLinePair, VP8YuvToArgbKeepA, 4)
UPSAMPLE_FUNC(UpsampleRgba4444KeepAlphaLinePair, VP8YuvToRgba4444KeepA, 2)
#undef LOAD_UV
#undef UPSAMPLE_FUNC
// Fancy upsampling functions to convert YUV to RGB
WebPUpsampleLinePairFunc WebPUpsamplers[MODE_LAST];
WebPUpsampleLinePairFunc WebPUpsamplersKeepAlpha[MODE_LAST];
static void InitUpsamplers(void) {
WebPUpsamplers[MODE_RGB] = UpsampleRgbLinePair;
WebPUpsamplers[MODE_RGBA] = UpsampleRgbaLinePair;
WebPUpsamplers[MODE_BGR] = UpsampleBgrLinePair;
WebPUpsamplers[MODE_BGRA] = UpsampleBgraLinePair;
WebPUpsamplers[MODE_ARGB] = UpsampleArgbLinePair;
WebPUpsamplers[MODE_RGBA_4444] = UpsampleRgba4444LinePair;
WebPUpsamplers[MODE_RGB_565] = UpsampleRgb565LinePair;
WebPUpsamplersKeepAlpha[MODE_RGB] = UpsampleRgbLinePair;
WebPUpsamplersKeepAlpha[MODE_RGBA] = UpsampleRgbKeepAlphaLinePair;
WebPUpsamplersKeepAlpha[MODE_BGR] = UpsampleBgrLinePair;
WebPUpsamplersKeepAlpha[MODE_BGRA] = UpsampleBgrKeepAlphaLinePair;
WebPUpsamplersKeepAlpha[MODE_ARGB] = UpsampleArgbKeepAlphaLinePair;
WebPUpsamplersKeepAlpha[MODE_RGBA_4444] = UpsampleRgba4444KeepAlphaLinePair;
WebPUpsamplersKeepAlpha[MODE_RGB_565] = UpsampleRgb565LinePair;
// If defined, use CPUInfo() to overwrite some pointers with faster versions.
if (VP8DecGetCPUInfo) {
if (VP8DecGetCPUInfo(kSSE2)) {
#if defined(__SSE2__) || defined(_MSC_VER)
WebPInitUpsamplersSSE2();
#endif
}
}
}
#endif // FANCY_UPSAMPLING
//------------------------------------------------------------------------------
// simple point-sampling
#define SAMPLE_FUNC(FUNC_NAME, FUNC, XSTEP) \
static void FUNC_NAME(const uint8_t* top_y, const uint8_t* bottom_y, \
const uint8_t* u, const uint8_t* v, \
uint8_t* top_dst, uint8_t* bottom_dst, int len) { \
int i; \
for (i = 0; i < len - 1; i += 2) { \
FUNC(top_y[0], u[0], v[0], top_dst); \
FUNC(top_y[1], u[0], v[0], top_dst + XSTEP); \
FUNC(bottom_y[0], u[0], v[0], bottom_dst); \
FUNC(bottom_y[1], u[0], v[0], bottom_dst + XSTEP); \
top_y += 2; \
bottom_y += 2; \
u++; \
v++; \
top_dst += 2 * XSTEP; \
bottom_dst += 2 * XSTEP; \
} \
if (i == len - 1) { /* last one */ \
FUNC(top_y[0], u[0], v[0], top_dst); \
FUNC(bottom_y[0], u[0], v[0], bottom_dst); \
} \
}
// All variants implemented.
SAMPLE_FUNC(SampleRgbLinePair, VP8YuvToRgb, 3)
SAMPLE_FUNC(SampleBgrLinePair, VP8YuvToBgr, 3)
SAMPLE_FUNC(SampleRgbaLinePair, VP8YuvToRgba, 4)
SAMPLE_FUNC(SampleBgraLinePair, VP8YuvToBgra, 4)
SAMPLE_FUNC(SampleArgbLinePair, VP8YuvToArgb, 4)
SAMPLE_FUNC(SampleRgba4444LinePair, VP8YuvToRgba4444, 2)
SAMPLE_FUNC(SampleRgb565LinePair, VP8YuvToRgb565, 2)
#undef SAMPLE_FUNC
// Main methods.
typedef void (*SampleLinePairFunc)(
const uint8_t* top_y, const uint8_t* bottom_y,
const uint8_t* u, const uint8_t* v,
uint8_t* top_dst, uint8_t* bottom_dst, int len);
static const SampleLinePairFunc kSamplers[MODE_LAST] = {
SampleRgbLinePair, // MODE_RGB
SampleRgbaLinePair, // MODE_RGBA
SampleBgrLinePair, // MODE_BGR
SampleBgraLinePair, // MODE_BGRA
SampleArgbLinePair, // MODE_ARGB
SampleRgba4444LinePair, // MODE_RGBA_4444
SampleRgb565LinePair // MODE_RGB_565
};
//------------------------------------------------------------------------------
// YUV444 converter
#define YUV444_FUNC(FUNC_NAME, FUNC, XSTEP) \
static void FUNC_NAME(const uint8_t* y, const uint8_t* u, const uint8_t* v, \
uint8_t* dst, int len) { \
int i; \
for (i = 0; i < len; ++i) FUNC(y[i], u[i], v[i], &dst[i * XSTEP]); \
}
YUV444_FUNC(Yuv444ToRgb, VP8YuvToRgb, 3)
YUV444_FUNC(Yuv444ToBgr, VP8YuvToBgr, 3)
YUV444_FUNC(Yuv444ToRgba, VP8YuvToRgba, 4)
YUV444_FUNC(Yuv444ToBgra, VP8YuvToBgra, 4)
YUV444_FUNC(Yuv444ToArgb, VP8YuvToArgb, 4)
YUV444_FUNC(Yuv444ToRgba4444, VP8YuvToRgba4444, 2)
YUV444_FUNC(Yuv444ToRgb565, VP8YuvToRgb565, 2)
#undef YUV444_FUNC
typedef void (*YUV444Func)(const uint8_t* y, const uint8_t* u, const uint8_t* v,
uint8_t* dst, int len);
static const YUV444Func kYUV444Converters[MODE_LAST] = {
Yuv444ToRgb, // MODE_RGB
Yuv444ToRgba, // MODE_RGBA
Yuv444ToBgr, // MODE_BGR
Yuv444ToBgra, // MODE_BGRA
Yuv444ToArgb, // MODE_ARGB
Yuv444ToRgba4444, // MODE_RGBA_4444
Yuv444ToRgb565 // MODE_RGB_565
};
//------------------------------------------------------------------------------
// Main YUV<->RGB conversion functions
@ -260,7 +51,7 @@ static int EmitSampledRGB(const VP8Io* const io, WebPDecParams* const p) {
const uint8_t* y_src = io->y;
const uint8_t* u_src = io->u;
const uint8_t* v_src = io->v;
const SampleLinePairFunc sample = kSamplers[output->colorspace];
const WebPSampleLinePairFunc sample = WebPSamplers[output->colorspace];
const int mb_w = io->mb_w;
const int last = io->mb_h - 1;
int j;
@ -289,7 +80,7 @@ static int EmitRGB(const VP8Io* const io, WebPDecParams* const p) {
const uint8_t* y_src = io->y;
const uint8_t* u_src = io->u;
const uint8_t* v_src = io->v;
const YUV444Func convert = kYUV444Converters[output->colorspace];
const WebPYUV444Converter convert = WebPYUV444Converters[output->colorspace];
const int mb_w = io->mb_w;
const int last = io->mb_h;
int j;
@ -608,7 +399,8 @@ static int Import(const uint8_t* src, int src_stride,
}
static int ExportRGB(WebPDecParams* const p, int y_pos) {
const YUV444Func convert = kYUV444Converters[p->output->colorspace];
const WebPYUV444Converter convert =
WebPYUV444Converters[p->output->colorspace];
const WebPRGBABuffer* const buf = &p->output->u.RGBA;
uint8_t* dst = buf->rgba + (p->last_y + y_pos) * buf->stride;
int num_lines_out = 0;
@ -811,7 +603,7 @@ static int CustomSetup(VP8Io* io) {
p->tmp_u = p->tmp_y + io->mb_w;
p->tmp_v = p->tmp_u + uv_width;
p->emit = EmitFancyRGB;
InitUpsamplers();
WebPInitUpsamplers();
}
#endif
} else {

View File

@ -15,6 +15,7 @@
#include <string.h> // for memcpy()
#include "./bits.h"
#include "./thread.h"
#include "../dsp/dsp.h"
#if defined(__cplusplus) || defined(c_plusplus)
extern "C" {
@ -359,58 +360,6 @@ const uint8_t* VP8DecompressAlphaRows(VP8Decoder* const dec,
// in layer.c
int VP8DecodeLayer(VP8Decoder* const dec);
// in dsp.c
typedef void (*VP8Idct)(const int16_t* coeffs, uint8_t* dst);
// when doing two transforms, coeffs is actually int16_t[2][16].
typedef void (*VP8Idct2)(const int16_t* coeffs, uint8_t* dst, int do_two);
extern VP8Idct2 VP8Transform;
extern VP8Idct VP8TransformUV;
extern VP8Idct VP8TransformDC;
extern VP8Idct VP8TransformDCUV;
extern void (*VP8TransformWHT)(const int16_t* in, int16_t* out);
// *dst is the destination block, with stride BPS. Boundary samples are
// assumed accessible when needed.
typedef void (*VP8PredFunc)(uint8_t* dst);
extern VP8PredFunc VP8PredLuma16[NUM_B_DC_MODES];
extern VP8PredFunc VP8PredChroma8[NUM_B_DC_MODES];
extern VP8PredFunc VP8PredLuma4[NUM_BMODES];
void VP8DspInit(void); // must be called before anything using the above
void VP8DspInitTables(void); // needs to be called no matter what.
// simple filter (only for luma)
typedef void (*VP8SimpleFilterFunc)(uint8_t* p, int stride, int thresh);
extern VP8SimpleFilterFunc VP8SimpleVFilter16;
extern VP8SimpleFilterFunc VP8SimpleHFilter16;
extern VP8SimpleFilterFunc VP8SimpleVFilter16i; // filter 3 inner edges
extern VP8SimpleFilterFunc VP8SimpleHFilter16i;
// regular filter (on both macroblock edges and inner edges)
typedef void (*VP8LumaFilterFunc)(uint8_t* luma, int stride,
int thresh, int ithresh, int hev_t);
typedef void (*VP8ChromaFilterFunc)(uint8_t* u, uint8_t* v, int stride,
int thresh, int ithresh, int hev_t);
// on outter edge
extern VP8LumaFilterFunc VP8VFilter16;
extern VP8LumaFilterFunc VP8HFilter16;
extern VP8ChromaFilterFunc VP8VFilter8;
extern VP8ChromaFilterFunc VP8HFilter8;
// on inner edge
extern VP8LumaFilterFunc VP8VFilter16i; // filtering 3 inner edges altogether
extern VP8LumaFilterFunc VP8HFilter16i;
extern VP8ChromaFilterFunc VP8VFilter8i; // filtering u and v altogether
extern VP8ChromaFilterFunc VP8HFilter8i;
typedef enum {
kSSE2,
kSSE3
} CPUFeature;
// returns true if the CPU supports the feature.
typedef int (*VP8CPUInfo)(CPUFeature feature);
extern VP8CPUInfo VP8DecGetCPUInfo;
//------------------------------------------------------------------------------
#if defined(__cplusplus) || defined(c_plusplus)

View File

@ -57,22 +57,6 @@ struct WebPDecParams {
// Should be called first, before any use of the WebPDecParams object.
void WebPResetDecParams(WebPDecParams* const params);
//------------------------------------------------------------------------------
// Upsampler function to overwrite fancy upsampler.
typedef void (*WebPUpsampleLinePairFunc)(
const uint8_t* top_y, const uint8_t* bottom_y,
const uint8_t* top_u, const uint8_t* top_v,
const uint8_t* cur_u, const uint8_t* cur_v,
uint8_t* top_dst, uint8_t* bottom_dst, int len);
// Upsampler functions to be used to convert YUV to RGB(A) modes
extern WebPUpsampleLinePairFunc WebPUpsamplers[MODE_LAST];
extern WebPUpsampleLinePairFunc WebPUpsamplersKeepAlpha[MODE_LAST];
// Initializes SSE2 version of the fancy upsamplers.
void WebPInitUpsamplersSSE2(void);
//------------------------------------------------------------------------------
// Misc utils

14
src/dsp/Makefile.am Normal file
View File

@ -0,0 +1,14 @@
AM_CPPFLAGS = -I$(top_srcdir)/src
libwebpdsp_la_SOURCES = dsp.h cpu.c \
enc.c enc_sse2.c \
dec.c dec_sse2.c \
upsampling.c upsampling_sse2.c \
yuv.h yuv.c
libwebpdsp_la_LDFLAGS = -version-info 0:0:0 -lm
libwebpdsp_la_CPPFLAGS = $(USE_EXPERIMENTAL_CODE)
libwebpdspinclude_HEADERS = ../webp/types.h
libwebpdspincludedir = $(includedir)/webp
noinst_HEADERS = dsp.h yuv.h
noinst_LTLIBRARIES = libwebpdsp.la

61
src/dsp/cpu.c Normal file
View File

@ -0,0 +1,61 @@
// Copyright 2011 Google Inc.
//
// This code is licensed under the same terms as WebM:
// Software License Agreement: http://www.webmproject.org/license/software/
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
// -----------------------------------------------------------------------------
//
// CPU detection
//
// Author: Christian Duvivier (cduvivier@google.com)
#include "./dsp.h"
#if defined(__cplusplus) || defined(c_plusplus)
extern "C" {
#endif
//------------------------------------------------------------------------------
// SSE2 detection.
//
#if defined(__pic__) && defined(__i386__)
static inline void GetCPUInfo(int cpu_info[4], int info_type) {
__asm__ volatile (
"mov %%ebx, %%edi\n"
"cpuid\n"
"xchg %%edi, %%ebx\n"
: "=a"(cpu_info[0]), "=D"(cpu_info[1]), "=c"(cpu_info[2]), "=d"(cpu_info[3])
: "a"(info_type));
}
#elif defined(__i386__) || defined(__x86_64__)
static inline void GetCPUInfo(int cpu_info[4], int info_type) {
__asm__ volatile (
"cpuid\n"
: "=a"(cpu_info[0]), "=b"(cpu_info[1]), "=c"(cpu_info[2]), "=d"(cpu_info[3])
: "a"(info_type));
}
#elif defined(_MSC_VER) // Visual C++
#define GetCPUInfo __cpuid
#endif
#if defined(__i386__) || defined(__x86_64__) || defined(_MSC_VER)
static int x86CPUInfo(CPUFeature feature) {
int cpu_info[4];
GetCPUInfo(cpu_info, 1);
if (feature == kSSE2) {
return 0 != (cpu_info[3] & 0x04000000);
}
if (feature == kSSE3) {
return 0 != (cpu_info[2] & 0x00000001);
}
return 0;
}
VP8CPUInfo VP8GetCPUInfo = x86CPUInfo;
#else
VP8CPUInfo VP8GetCPUInfo = NULL;
#endif
#if defined(__cplusplus) || defined(c_plusplus)
} // extern "C"
#endif

View File

@ -5,11 +5,12 @@
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
// -----------------------------------------------------------------------------
//
// speed-critical functions.
// Speed-critical decoding functions.
//
// Author: Skal (pascal.massimino@gmail.com)
#include "vp8i.h"
#include "./dsp.h"
#include "../dec/vp8i.h"
#if defined(__cplusplus) || defined(c_plusplus)
extern "C" {
@ -28,7 +29,7 @@ static uint8_t clip1[255 + 510 + 1]; // clips [-255,510] to [0,255]
// and make sure it's set to true _last_ (so as to be thread-safe)
static volatile int tables_ok = 0;
void VP8DspInitTables(void) {
static void DspInitTables(void) {
if (!tables_ok) {
int i;
for (i = -255; i <= 255; ++i) {
@ -168,8 +169,7 @@ void (*VP8TransformWHT)(const int16_t* in, int16_t* out) = TransformWHT;
//------------------------------------------------------------------------------
// Intra predictions
#undef OUT
#define OUT(x, y) dst[(x) + (y) * BPS]
#define DST(x, y) dst[(x) + (y) * BPS]
static inline void TrueMotion(uint8_t *dst, int size) {
const uint8_t* top = dst - BPS;
@ -294,13 +294,13 @@ static void RD4(uint8_t *dst) { // Down-right
const int B = dst[1 - BPS];
const int C = dst[2 - BPS];
const int D = dst[3 - BPS];
OUT(0, 3) = AVG3(J, K, L);
OUT(0, 2) = OUT(1, 3) = AVG3(I, J, K);
OUT(0, 1) = OUT(1, 2) = OUT(2, 3) = AVG3(X, I, J);
OUT(0, 0) = OUT(1, 1) = OUT(2, 2) = OUT(3, 3) = AVG3(A, X, I);
OUT(1, 0) = OUT(2, 1) = OUT(3, 2) = AVG3(B, A, X);
OUT(2, 0) = OUT(3, 1) = AVG3(C, B, A);
OUT(3, 0) = AVG3(D, C, B);
DST(0, 3) = AVG3(J, K, L);
DST(0, 2) = DST(1, 3) = AVG3(I, J, K);
DST(0, 1) = DST(1, 2) = DST(2, 3) = AVG3(X, I, J);
DST(0, 0) = DST(1, 1) = DST(2, 2) = DST(3, 3) = AVG3(A, X, I);
DST(1, 0) = DST(2, 1) = DST(3, 2) = AVG3(B, A, X);
DST(2, 0) = DST(3, 1) = AVG3(C, B, A);
DST(3, 0) = AVG3(D, C, B);
}
static void LD4(uint8_t *dst) { // Down-Left
@ -312,13 +312,13 @@ static void LD4(uint8_t *dst) { // Down-Left
const int F = dst[5 - BPS];
const int G = dst[6 - BPS];
const int H = dst[7 - BPS];
OUT(0, 0) = AVG3(A, B, C);
OUT(1, 0) = OUT(0, 1) = AVG3(B, C, D);
OUT(2, 0) = OUT(1, 1) = OUT(0, 2) = AVG3(C, D, E);
OUT(3, 0) = OUT(2, 1) = OUT(1, 2) = OUT(0, 3) = AVG3(D, E, F);
OUT(3, 1) = OUT(2, 2) = OUT(1, 3) = AVG3(E, F, G);
OUT(3, 2) = OUT(2, 3) = AVG3(F, G, H);
OUT(3, 3) = AVG3(G, H, H);
DST(0, 0) = AVG3(A, B, C);
DST(1, 0) = DST(0, 1) = AVG3(B, C, D);
DST(2, 0) = DST(1, 1) = DST(0, 2) = AVG3(C, D, E);
DST(3, 0) = DST(2, 1) = DST(1, 2) = DST(0, 3) = AVG3(D, E, F);
DST(3, 1) = DST(2, 2) = DST(1, 3) = AVG3(E, F, G);
DST(3, 2) = DST(2, 3) = AVG3(F, G, H);
DST(3, 3) = AVG3(G, H, H);
}
static void VR4(uint8_t *dst) { // Vertical-Right
@ -330,17 +330,17 @@ static void VR4(uint8_t *dst) { // Vertical-Right
const int B = dst[1 - BPS];
const int C = dst[2 - BPS];
const int D = dst[3 - BPS];
OUT(0, 0) = OUT(1, 2) = AVG2(X, A);
OUT(1, 0) = OUT(2, 2) = AVG2(A, B);
OUT(2, 0) = OUT(3, 2) = AVG2(B, C);
OUT(3, 0) = AVG2(C, D);
DST(0, 0) = DST(1, 2) = AVG2(X, A);
DST(1, 0) = DST(2, 2) = AVG2(A, B);
DST(2, 0) = DST(3, 2) = AVG2(B, C);
DST(3, 0) = AVG2(C, D);
OUT(0, 3) = AVG3(K, J, I);
OUT(0, 2) = AVG3(J, I, X);
OUT(0, 1) = OUT(1, 3) = AVG3(I, X, A);
OUT(1, 1) = OUT(2, 3) = AVG3(X, A, B);
OUT(2, 1) = OUT(3, 3) = AVG3(A, B, C);
OUT(3, 1) = AVG3(B, C, D);
DST(0, 3) = AVG3(K, J, I);
DST(0, 2) = AVG3(J, I, X);
DST(0, 1) = DST(1, 3) = AVG3(I, X, A);
DST(1, 1) = DST(2, 3) = AVG3(X, A, B);
DST(2, 1) = DST(3, 3) = AVG3(A, B, C);
DST(3, 1) = AVG3(B, C, D);
}
static void VL4(uint8_t *dst) { // Vertical-Left
@ -352,17 +352,17 @@ static void VL4(uint8_t *dst) { // Vertical-Left
const int F = dst[5 - BPS];
const int G = dst[6 - BPS];
const int H = dst[7 - BPS];
OUT(0, 0) = AVG2(A, B);
OUT(1, 0) = OUT(0, 2) = AVG2(B, C);
OUT(2, 0) = OUT(1, 2) = AVG2(C, D);
OUT(3, 0) = OUT(2, 2) = AVG2(D, E);
DST(0, 0) = AVG2(A, B);
DST(1, 0) = DST(0, 2) = AVG2(B, C);
DST(2, 0) = DST(1, 2) = AVG2(C, D);
DST(3, 0) = DST(2, 2) = AVG2(D, E);
OUT(0, 1) = AVG3(A, B, C);
OUT(1, 1) = OUT(0, 3) = AVG3(B, C, D);
OUT(2, 1) = OUT(1, 3) = AVG3(C, D, E);
OUT(3, 1) = OUT(2, 3) = AVG3(D, E, F);
OUT(3, 2) = AVG3(E, F, G);
OUT(3, 3) = AVG3(F, G, H);
DST(0, 1) = AVG3(A, B, C);
DST(1, 1) = DST(0, 3) = AVG3(B, C, D);
DST(2, 1) = DST(1, 3) = AVG3(C, D, E);
DST(3, 1) = DST(2, 3) = AVG3(D, E, F);
DST(3, 2) = AVG3(E, F, G);
DST(3, 3) = AVG3(F, G, H);
}
static void HU4(uint8_t *dst) { // Horizontal-Up
@ -370,14 +370,14 @@ static void HU4(uint8_t *dst) { // Horizontal-Up
const int J = dst[-1 + 1 * BPS];
const int K = dst[-1 + 2 * BPS];
const int L = dst[-1 + 3 * BPS];
OUT(0, 0) = AVG2(I, J);
OUT(2, 0) = OUT(0, 1) = AVG2(J, K);
OUT(2, 1) = OUT(0, 2) = AVG2(K, L);
OUT(1, 0) = AVG3(I, J, K);
OUT(3, 0) = OUT(1, 1) = AVG3(J, K, L);
OUT(3, 1) = OUT(1, 2) = AVG3(K, L, L);
OUT(3, 2) = OUT(2, 2) =
OUT(0, 3) = OUT(1, 3) = OUT(2, 3) = OUT(3, 3) = L;
DST(0, 0) = AVG2(I, J);
DST(2, 0) = DST(0, 1) = AVG2(J, K);
DST(2, 1) = DST(0, 2) = AVG2(K, L);
DST(1, 0) = AVG3(I, J, K);
DST(3, 0) = DST(1, 1) = AVG3(J, K, L);
DST(3, 1) = DST(1, 2) = AVG3(K, L, L);
DST(3, 2) = DST(2, 2) =
DST(0, 3) = DST(1, 3) = DST(2, 3) = DST(3, 3) = L;
}
static void HD4(uint8_t *dst) { // Horizontal-Down
@ -390,19 +390,20 @@ static void HD4(uint8_t *dst) { // Horizontal-Down
const int B = dst[1 - BPS];
const int C = dst[2 - BPS];
OUT(0, 0) = OUT(2, 1) = AVG2(I, X);
OUT(0, 1) = OUT(2, 2) = AVG2(J, I);
OUT(0, 2) = OUT(2, 3) = AVG2(K, J);
OUT(0, 3) = AVG2(L, K);
DST(0, 0) = DST(2, 1) = AVG2(I, X);
DST(0, 1) = DST(2, 2) = AVG2(J, I);
DST(0, 2) = DST(2, 3) = AVG2(K, J);
DST(0, 3) = AVG2(L, K);
OUT(3, 0) = AVG3(A, B, C);
OUT(2, 0) = AVG3(X, A, B);
OUT(1, 0) = OUT(3, 1) = AVG3(I, X, A);
OUT(1, 1) = OUT(3, 2) = AVG3(J, I, X);
OUT(1, 2) = OUT(3, 3) = AVG3(K, J, I);
OUT(1, 3) = AVG3(L, K, J);
DST(3, 0) = AVG3(A, B, C);
DST(2, 0) = AVG3(X, A, B);
DST(1, 0) = DST(3, 1) = AVG3(I, X, A);
DST(1, 1) = DST(3, 2) = AVG3(J, I, X);
DST(1, 2) = DST(3, 3) = AVG3(K, J, I);
DST(1, 3) = AVG3(L, K, J);
}
#undef DST
#undef AVG3
#undef AVG2
@ -466,16 +467,16 @@ static void DC8uvNoTopLeft(uint8_t *dst) { // DC with nothing
//------------------------------------------------------------------------------
// default C implementations
VP8PredFunc VP8PredLuma4[NUM_BMODES] = {
VP8PredFunc VP8PredLuma4[/* NUM_BMODES */] = {
DC4, TM4, VE4, HE4, RD4, VR4, LD4, VL4, HD4, HU4
};
VP8PredFunc VP8PredLuma16[NUM_B_DC_MODES] = {
VP8PredFunc VP8PredLuma16[/*NUM_B_DC_MODES */] = {
DC16, TM16, VE16, HE16,
DC16NoTop, DC16NoLeft, DC16NoTopLeft
};
VP8PredFunc VP8PredChroma8[NUM_B_DC_MODES] = {
VP8PredFunc VP8PredChroma8[/*NUM_B_DC_MODES */] = {
DC8uv, TM8uv, VE8uv, HE8uv,
DC8uvNoTop, DC8uvNoLeft, DC8uvNoTopLeft
};
@ -666,52 +667,11 @@ static void HFilter8i(uint8_t* u, uint8_t* v, int stride,
}
//------------------------------------------------------------------------------
// SSE2 detection.
//
#if defined(__pic__) && defined(__i386__)
static inline void GetCPUInfo(int cpu_info[4], int info_type) {
__asm__ volatile (
"mov %%ebx, %%edi\n"
"cpuid\n"
"xchg %%edi, %%ebx\n"
: "=a"(cpu_info[0]), "=D"(cpu_info[1]), "=c"(cpu_info[2]), "=d"(cpu_info[3])
: "a"(info_type));
}
#elif defined(__i386__) || defined(__x86_64__)
static inline void GetCPUInfo(int cpu_info[4], int info_type) {
__asm__ volatile (
"cpuid\n"
: "=a"(cpu_info[0]), "=b"(cpu_info[1]), "=c"(cpu_info[2]), "=d"(cpu_info[3])
: "a"(info_type));
}
#elif defined(_MSC_VER) // Visual C++
#define GetCPUInfo __cpuid
#endif
#if defined(__i386__) || defined(__x86_64__) || defined(_MSC_VER)
static int x86CPUInfo(CPUFeature feature) {
int cpu_info[4];
GetCPUInfo(cpu_info, 1);
if (feature == kSSE2) {
return 0 != (cpu_info[3] & 0x04000000);
}
if (feature == kSSE3) {
return 0 != (cpu_info[2] & 0x00000001);
}
return 0;
}
VP8CPUInfo VP8DecGetCPUInfo = x86CPUInfo;
#else
VP8CPUInfo VP8DecGetCPUInfo = NULL;
#endif
//------------------------------------------------------------------------------
VP8Idct2 VP8Transform;
VP8Idct VP8TransformUV;
VP8Idct VP8TransformDC;
VP8Idct VP8TransformDCUV;
VP8DecIdct2 VP8Transform;
VP8DecIdct VP8TransformUV;
VP8DecIdct VP8TransformDC;
VP8DecIdct VP8TransformDCUV;
VP8LumaFilterFunc VP8VFilter16;
VP8LumaFilterFunc VP8HFilter16;
@ -729,6 +689,8 @@ VP8SimpleFilterFunc VP8SimpleHFilter16i;
extern void VP8DspInitSSE2(void);
void VP8DspInit(void) {
DspInitTables();
VP8Transform = TransformTwo;
VP8TransformUV = TransformUV;
VP8TransformDC = TransformDC;
@ -748,9 +710,9 @@ void VP8DspInit(void) {
VP8SimpleHFilter16i = SimpleHFilter16i;
// If defined, use CPUInfo() to overwrite some pointers with faster versions.
if (VP8DecGetCPUInfo) {
if (VP8GetCPUInfo) {
#if defined(__SSE2__) || defined(_MSC_VER)
if (VP8DecGetCPUInfo(kSSE2)) {
if (VP8GetCPUInfo(kSSE2)) {
VP8DspInitSSE2();
}
#endif

View File

@ -5,7 +5,7 @@
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
// -----------------------------------------------------------------------------
//
// SSE2 version of dsp functions and loop filtering.
// SSE2 version of some decoding functions (idct, loop filtering).
//
// Author: somnath@google.com (Somnath Banerjee)
// cduvivier@google.com (Christian Duvivier)
@ -13,7 +13,7 @@
#if defined(__SSE2__) || defined(_MSC_VER)
#include <emmintrin.h>
#include "vp8i.h"
#include "../dec/vp8i.h"
#if defined(__cplusplus) || defined(c_plusplus)
extern "C" {

174
src/dsp/dsp.h Normal file
View File

@ -0,0 +1,174 @@
// Copyright 2011 Google Inc.
//
// This code is licensed under the same terms as WebM:
// Software License Agreement: http://www.webmproject.org/license/software/
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
// -----------------------------------------------------------------------------
//
// Speed-critical functions.
//
// Author: Skal (pascal.massimino@gmail.com)
#ifndef WEBP_DSP_DSP_H_
#define WEBP_DSP_DSP_H_
#include "../webp/types.h"
#if defined(__cplusplus) || defined(c_plusplus)
extern "C" {
#endif
//------------------------------------------------------------------------------
// CPU detection
typedef enum {
kSSE2,
kSSE3
} CPUFeature;
// returns true if the CPU supports the feature.
typedef int (*VP8CPUInfo)(CPUFeature feature);
extern VP8CPUInfo VP8GetCPUInfo;
//------------------------------------------------------------------------------
// Encoding
int VP8GetAlpha(const int histo[]);
// Transforms
// VP8Idct: Does one of two inverse transforms. If do_two is set, the transforms
// will be done for (ref, in, dst) and (ref + 4, in + 16, dst + 4).
typedef void (*VP8Idct)(const uint8_t* ref, const int16_t* in, uint8_t* dst,
int do_two);
typedef void (*VP8Fdct)(const uint8_t* src, const uint8_t* ref, int16_t* out);
typedef void (*VP8WHT)(const int16_t* in, int16_t* out);
extern VP8Idct VP8ITransform;
extern VP8Fdct VP8FTransform;
extern VP8WHT VP8ITransformWHT;
extern VP8WHT VP8FTransformWHT;
// Predictions
// *dst is the destination block. *top and *left can be NULL.
typedef void (*VP8IntraPreds)(uint8_t *dst, const uint8_t* left,
const uint8_t* top);
typedef void (*VP8Intra4Preds)(uint8_t *dst, const uint8_t* top);
extern VP8Intra4Preds VP8EncPredLuma4;
extern VP8IntraPreds VP8EncPredLuma16;
extern VP8IntraPreds VP8EncPredChroma8;
typedef int (*VP8Metric)(const uint8_t* pix, const uint8_t* ref);
extern VP8Metric VP8SSE16x16, VP8SSE16x8, VP8SSE8x8, VP8SSE4x4;
typedef int (*VP8WMetric)(const uint8_t* pix, const uint8_t* ref,
const uint16_t* const weights);
extern VP8WMetric VP8TDisto4x4, VP8TDisto16x16;
typedef void (*VP8BlockCopy)(const uint8_t* src, uint8_t* dst);
extern VP8BlockCopy VP8Copy4x4;
extern VP8BlockCopy VP8Copy8x8;
extern VP8BlockCopy VP8Copy16x16;
// Quantization
struct VP8Matrix; // forward declaration
typedef int (*VP8QuantizeBlock)(int16_t in[16], int16_t out[16],
int n, const struct VP8Matrix* const mtx);
extern VP8QuantizeBlock VP8EncQuantizeBlock;
// Compute susceptibility based on DCT-coeff histograms:
// the higher, the "easier" the macroblock is to compress.
typedef int (*VP8CHisto)(const uint8_t* ref, const uint8_t* pred,
int start_block, int end_block);
extern const int VP8DspScan[16 + 4 + 4];
extern VP8CHisto VP8CollectHistogram;
void VP8EncDspInit(void); // must be called before using any of the above
//------------------------------------------------------------------------------
// Decoding
typedef void (*VP8DecIdct)(const int16_t* coeffs, uint8_t* dst);
// when doing two transforms, coeffs is actually int16_t[2][16].
typedef void (*VP8DecIdct2)(const int16_t* coeffs, uint8_t* dst, int do_two);
extern VP8DecIdct2 VP8Transform;
extern VP8DecIdct VP8TransformUV;
extern VP8DecIdct VP8TransformDC;
extern VP8DecIdct VP8TransformDCUV;
extern void (*VP8TransformWHT)(const int16_t* in, int16_t* out);
// *dst is the destination block, with stride BPS. Boundary samples are
// assumed accessible when needed.
typedef void (*VP8PredFunc)(uint8_t* dst);
extern VP8PredFunc VP8PredLuma16[/* NUM_B_DC_MODES */];
extern VP8PredFunc VP8PredChroma8[/* NUM_B_DC_MODES */];
extern VP8PredFunc VP8PredLuma4[/* NUM_BMODES */];
// simple filter (only for luma)
typedef void (*VP8SimpleFilterFunc)(uint8_t* p, int stride, int thresh);
extern VP8SimpleFilterFunc VP8SimpleVFilter16;
extern VP8SimpleFilterFunc VP8SimpleHFilter16;
extern VP8SimpleFilterFunc VP8SimpleVFilter16i; // filter 3 inner edges
extern VP8SimpleFilterFunc VP8SimpleHFilter16i;
// regular filter (on both macroblock edges and inner edges)
typedef void (*VP8LumaFilterFunc)(uint8_t* luma, int stride,
int thresh, int ithresh, int hev_t);
typedef void (*VP8ChromaFilterFunc)(uint8_t* u, uint8_t* v, int stride,
int thresh, int ithresh, int hev_t);
// on outer edge
extern VP8LumaFilterFunc VP8VFilter16;
extern VP8LumaFilterFunc VP8HFilter16;
extern VP8ChromaFilterFunc VP8VFilter8;
extern VP8ChromaFilterFunc VP8HFilter8;
// on inner edge
extern VP8LumaFilterFunc VP8VFilter16i; // filtering 3 inner edges altogether
extern VP8LumaFilterFunc VP8HFilter16i;
extern VP8ChromaFilterFunc VP8VFilter8i; // filtering u and v altogether
extern VP8ChromaFilterFunc VP8HFilter8i;
// must be called before anything using the above
extern void VP8DspInit(void);
//------------------------------------------------------------------------------
// WebP I/O
#define FANCY_UPSAMPLING // undefined to remove fancy upsampling support
#ifdef FANCY_UPSAMPLING
typedef void (*WebPUpsampleLinePairFunc)(
const uint8_t* top_y, const uint8_t* bottom_y,
const uint8_t* top_u, const uint8_t* top_v,
const uint8_t* cur_u, const uint8_t* cur_v,
uint8_t* top_dst, uint8_t* bottom_dst, int len);
// Fancy upsampling functions to convert YUV to RGB(A) modes
extern WebPUpsampleLinePairFunc WebPUpsamplers[/* MODE_LAST */];
extern WebPUpsampleLinePairFunc WebPUpsamplersKeepAlpha[/* MODE_LAST */];
// Initializes SSE2 version of the fancy upsamplers.
void WebPInitUpsamplersSSE2(void);
#endif // FANCY_UPSAMPLING
// Point-sampling methods.
typedef void (*WebPSampleLinePairFunc)(
const uint8_t* top_y, const uint8_t* bottom_y,
const uint8_t* u, const uint8_t* v,
uint8_t* top_dst, uint8_t* bottom_dst, int len);
extern const WebPSampleLinePairFunc WebPSamplers[/* MODE_LAST */];
// YUV444->RGB converters
typedef void (*WebPYUV444Converter)(const uint8_t* y,
const uint8_t* u, const uint8_t* v,
uint8_t* dst, int len);
extern const WebPYUV444Converter WebPYUV444Converters[/* MODE_LAST */];
// Main function to be called
void WebPInitUpsamplers(void);
//------------------------------------------------------------------------------
#if defined(__cplusplus) || defined(c_plusplus)
} // extern "C"
#endif
#endif // WEBP_DSP_DSP_H_

744
src/dsp/enc.c Normal file
View File

@ -0,0 +1,744 @@
// Copyright 2011 Google Inc.
//
// This code is licensed under the same terms as WebM:
// Software License Agreement: http://www.webmproject.org/license/software/
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
// -----------------------------------------------------------------------------
//
// Speed-critical encoding functions.
//
// Author: Skal (pascal.massimino@gmail.com)
#include "../enc/vp8enci.h"
#if defined(__cplusplus) || defined(c_plusplus)
extern "C" {
#endif
//------------------------------------------------------------------------------
// Compute susceptibility based on DCT-coeff histograms:
// the higher, the "easier" the macroblock is to compress.
static int ClipAlpha(int alpha) {
return alpha < 0 ? 0 : alpha > 255 ? 255 : alpha;
}
int VP8GetAlpha(const int histo[MAX_COEFF_THRESH + 1]) {
int num = 0, den = 0, val = 0;
int k;
int alpha;
// note: changing this loop to avoid the numerous "k + 1" slows things down.
for (k = 0; k < MAX_COEFF_THRESH; ++k) {
if (histo[k + 1]) {
val += histo[k + 1];
num += val * (k + 1);
den += (k + 1) * (k + 1);
}
}
// we scale the value to a usable [0..255] range
alpha = den ? 10 * num / den - 5 : 0;
return ClipAlpha(alpha);
}
const int VP8DspScan[16 + 4 + 4] = {
// Luma
0 + 0 * BPS, 4 + 0 * BPS, 8 + 0 * BPS, 12 + 0 * BPS,
0 + 4 * BPS, 4 + 4 * BPS, 8 + 4 * BPS, 12 + 4 * BPS,
0 + 8 * BPS, 4 + 8 * BPS, 8 + 8 * BPS, 12 + 8 * BPS,
0 + 12 * BPS, 4 + 12 * BPS, 8 + 12 * BPS, 12 + 12 * BPS,
0 + 0 * BPS, 4 + 0 * BPS, 0 + 4 * BPS, 4 + 4 * BPS, // U
8 + 0 * BPS, 12 + 0 * BPS, 8 + 4 * BPS, 12 + 4 * BPS // V
};
static int CollectHistogram(const uint8_t* ref, const uint8_t* pred,
int start_block, int end_block) {
int histo[MAX_COEFF_THRESH + 1] = { 0 };
int16_t out[16];
int j, k;
for (j = start_block; j < end_block; ++j) {
VP8FTransform(ref + VP8DspScan[j], pred + VP8DspScan[j], out);
// Convert coefficients to bin (within out[]).
for (k = 0; k < 16; ++k) {
const int v = abs(out[k]) >> 2;
out[k] = (v > MAX_COEFF_THRESH) ? MAX_COEFF_THRESH : v;
}
// Use bin to update histogram.
for (k = 0; k < 16; ++k) {
histo[out[k]]++;
}
}
return VP8GetAlpha(histo);
}
//------------------------------------------------------------------------------
// run-time tables (~4k)
static uint8_t clip1[255 + 510 + 1]; // clips [-255,510] to [0,255]
// We declare this variable 'volatile' to prevent instruction reordering
// and make sure it's set to true _last_ (so as to be thread-safe)
static volatile int tables_ok = 0;
static void InitTables(void) {
if (!tables_ok) {
int i;
for (i = -255; i <= 255 + 255; ++i) {
clip1[255 + i] = (i < 0) ? 0 : (i > 255) ? 255 : i;
}
tables_ok = 1;
}
}
static inline uint8_t clip_8b(int v) {
return (!(v & ~0xff)) ? v : v < 0 ? 0 : 255;
}
//------------------------------------------------------------------------------
// Transforms (Paragraph 14.4)
#define STORE(x, y, v) \
dst[(x) + (y) * BPS] = clip_8b(ref[(x) + (y) * BPS] + ((v) >> 3))
static const int kC1 = 20091 + (1 << 16);
static const int kC2 = 35468;
#define MUL(a, b) (((a) * (b)) >> 16)
static inline void ITransformOne(const uint8_t* ref, const int16_t* in,
uint8_t* dst) {
int C[4 * 4], *tmp;
int i;
tmp = C;
for (i = 0; i < 4; ++i) { // vertical pass
const int a = in[0] + in[8];
const int b = in[0] - in[8];
const int c = MUL(in[4], kC2) - MUL(in[12], kC1);
const int d = MUL(in[4], kC1) + MUL(in[12], kC2);
tmp[0] = a + d;
tmp[1] = b + c;
tmp[2] = b - c;
tmp[3] = a - d;
tmp += 4;
in++;
}
tmp = C;
for (i = 0; i < 4; ++i) { // horizontal pass
const int dc = tmp[0] + 4;
const int a = dc + tmp[8];
const int b = dc - tmp[8];
const int c = MUL(tmp[4], kC2) - MUL(tmp[12], kC1);
const int d = MUL(tmp[4], kC1) + MUL(tmp[12], kC2);
STORE(0, i, a + d);
STORE(1, i, b + c);
STORE(2, i, b - c);
STORE(3, i, a - d);
tmp++;
}
}
static void ITransform(const uint8_t* ref, const int16_t* in, uint8_t* dst,
int do_two) {
ITransformOne(ref, in, dst);
if (do_two) {
ITransformOne(ref + 4, in + 16, dst + 4);
}
}
static void FTransform(const uint8_t* src, const uint8_t* ref, int16_t* out) {
int i;
int tmp[16];
for (i = 0; i < 4; ++i, src += BPS, ref += BPS) {
const int d0 = src[0] - ref[0];
const int d1 = src[1] - ref[1];
const int d2 = src[2] - ref[2];
const int d3 = src[3] - ref[3];
const int a0 = (d0 + d3) << 3;
const int a1 = (d1 + d2) << 3;
const int a2 = (d1 - d2) << 3;
const int a3 = (d0 - d3) << 3;
tmp[0 + i * 4] = (a0 + a1);
tmp[1 + i * 4] = (a2 * 2217 + a3 * 5352 + 14500) >> 12;
tmp[2 + i * 4] = (a0 - a1);
tmp[3 + i * 4] = (a3 * 2217 - a2 * 5352 + 7500) >> 12;
}
for (i = 0; i < 4; ++i) {
const int a0 = (tmp[0 + i] + tmp[12 + i]);
const int a1 = (tmp[4 + i] + tmp[ 8 + i]);
const int a2 = (tmp[4 + i] - tmp[ 8 + i]);
const int a3 = (tmp[0 + i] - tmp[12 + i]);
out[0 + i] = (a0 + a1 + 7) >> 4;
out[4 + i] = ((a2 * 2217 + a3 * 5352 + 12000) >> 16) + (a3 != 0);
out[8 + i] = (a0 - a1 + 7) >> 4;
out[12+ i] = ((a3 * 2217 - a2 * 5352 + 51000) >> 16);
}
}
static void ITransformWHT(const int16_t* in, int16_t* out) {
int tmp[16];
int i;
for (i = 0; i < 4; ++i) {
const int a0 = in[0 + i] + in[12 + i];
const int a1 = in[4 + i] + in[ 8 + i];
const int a2 = in[4 + i] - in[ 8 + i];
const int a3 = in[0 + i] - in[12 + i];
tmp[0 + i] = a0 + a1;
tmp[8 + i] = a0 - a1;
tmp[4 + i] = a3 + a2;
tmp[12 + i] = a3 - a2;
}
for (i = 0; i < 4; ++i) {
const int dc = tmp[0 + i * 4] + 3; // w/ rounder
const int a0 = dc + tmp[3 + i * 4];
const int a1 = tmp[1 + i * 4] + tmp[2 + i * 4];
const int a2 = tmp[1 + i * 4] - tmp[2 + i * 4];
const int a3 = dc - tmp[3 + i * 4];
out[ 0] = (a0 + a1) >> 3;
out[16] = (a3 + a2) >> 3;
out[32] = (a0 - a1) >> 3;
out[48] = (a3 - a2) >> 3;
out += 64;
}
}
static void FTransformWHT(const int16_t* in, int16_t* out) {
int tmp[16];
int i;
for (i = 0; i < 4; ++i, in += 64) {
const int a0 = (in[0 * 16] + in[2 * 16]) << 2;
const int a1 = (in[1 * 16] + in[3 * 16]) << 2;
const int a2 = (in[1 * 16] - in[3 * 16]) << 2;
const int a3 = (in[0 * 16] - in[2 * 16]) << 2;
tmp[0 + i * 4] = (a0 + a1) + (a0 != 0);
tmp[1 + i * 4] = a3 + a2;
tmp[2 + i * 4] = a3 - a2;
tmp[3 + i * 4] = a0 - a1;
}
for (i = 0; i < 4; ++i) {
const int a0 = (tmp[0 + i] + tmp[8 + i]);
const int a1 = (tmp[4 + i] + tmp[12+ i]);
const int a2 = (tmp[4 + i] - tmp[12+ i]);
const int a3 = (tmp[0 + i] - tmp[8 + i]);
const int b0 = a0 + a1;
const int b1 = a3 + a2;
const int b2 = a3 - a2;
const int b3 = a0 - a1;
out[ 0 + i] = (b0 + (b0 > 0) + 3) >> 3;
out[ 4 + i] = (b1 + (b1 > 0) + 3) >> 3;
out[ 8 + i] = (b2 + (b2 > 0) + 3) >> 3;
out[12 + i] = (b3 + (b3 > 0) + 3) >> 3;
}
}
#undef MUL
#undef STORE
//------------------------------------------------------------------------------
// Intra predictions
#define DST(x, y) dst[(x) + (y) * BPS]
static inline void Fill(uint8_t* dst, int value, int size) {
int j;
for (j = 0; j < size; ++j) {
memset(dst + j * BPS, value, size);
}
}
static inline void VerticalPred(uint8_t* dst, const uint8_t* top, int size) {
int j;
if (top) {
for (j = 0; j < size; ++j) memcpy(dst + j * BPS, top, size);
} else {
Fill(dst, 127, size);
}
}
static inline void HorizontalPred(uint8_t* dst, const uint8_t* left, int size) {
if (left) {
int j;
for (j = 0; j < size; ++j) {
memset(dst + j * BPS, left[j], size);
}
} else {
Fill(dst, 129, size);
}
}
static inline void TrueMotion(uint8_t* dst, const uint8_t* left,
const uint8_t* top, int size) {
int y;
if (left) {
if (top) {
const uint8_t* const clip = clip1 + 255 - left[-1];
for (y = 0; y < size; ++y) {
const uint8_t* const clip_table = clip + left[y];
int x;
for (x = 0; x < size; ++x) {
dst[x] = clip_table[top[x]];
}
dst += BPS;
}
} else {
HorizontalPred(dst, left, size);
}
} else {
// true motion without left samples (hence: with default 129 value)
// is equivalent to VE prediction where you just copy the top samples.
// Note that if top samples are not available, the default value is
// then 129, and not 127 as in the VerticalPred case.
if (top) {
VerticalPred(dst, top, size);
} else {
Fill(dst, 129, size);
}
}
}
static inline void DCMode(uint8_t* dst, const uint8_t* left,
const uint8_t* top,
int size, int round, int shift) {
int DC = 0;
int j;
if (top) {
for (j = 0; j < size; ++j) DC += top[j];
if (left) { // top and left present
for (j = 0; j < size; ++j) DC += left[j];
} else { // top, but no left
DC += DC;
}
DC = (DC + round) >> shift;
} else if (left) { // left but no top
for (j = 0; j < size; ++j) DC += left[j];
DC += DC;
DC = (DC + round) >> shift;
} else { // no top, no left, nothing.
DC = 0x80;
}
Fill(dst, DC, size);
}
//------------------------------------------------------------------------------
// Chroma 8x8 prediction (paragraph 12.2)
static void IntraChromaPreds(uint8_t* dst, const uint8_t* left,
const uint8_t* top) {
// U block
DCMode(C8DC8 + dst, left, top, 8, 8, 4);
VerticalPred(C8VE8 + dst, top, 8);
HorizontalPred(C8HE8 + dst, left, 8);
TrueMotion(C8TM8 + dst, left, top, 8);
// V block
dst += 8;
if (top) top += 8;
if (left) left += 16;
DCMode(C8DC8 + dst, left, top, 8, 8, 4);
VerticalPred(C8VE8 + dst, top, 8);
HorizontalPred(C8HE8 + dst, left, 8);
TrueMotion(C8TM8 + dst, left, top, 8);
}
//------------------------------------------------------------------------------
// luma 16x16 prediction (paragraph 12.3)
static void Intra16Preds(uint8_t* dst,
const uint8_t* left, const uint8_t* top) {
DCMode(I16DC16 + dst, left, top, 16, 16, 5);
VerticalPred(I16VE16 + dst, top, 16);
HorizontalPred(I16HE16 + dst, left, 16);
TrueMotion(I16TM16 + dst, left, top, 16);
}
//------------------------------------------------------------------------------
// luma 4x4 prediction
#define AVG3(a, b, c) (((a) + 2 * (b) + (c) + 2) >> 2)
#define AVG2(a, b) (((a) + (b) + 1) >> 1)
static void VE4(uint8_t* dst, const uint8_t* top) { // vertical
const uint8_t vals[4] = {
AVG3(top[-1], top[0], top[1]),
AVG3(top[ 0], top[1], top[2]),
AVG3(top[ 1], top[2], top[3]),
AVG3(top[ 2], top[3], top[4])
};
int i;
for (i = 0; i < 4; ++i) {
memcpy(dst + i * BPS, vals, 4);
}
}
static void HE4(uint8_t* dst, const uint8_t* top) { // horizontal
const int X = top[-1];
const int I = top[-2];
const int J = top[-3];
const int K = top[-4];
const int L = top[-5];
*(uint32_t*)(dst + 0 * BPS) = 0x01010101U * AVG3(X, I, J);
*(uint32_t*)(dst + 1 * BPS) = 0x01010101U * AVG3(I, J, K);
*(uint32_t*)(dst + 2 * BPS) = 0x01010101U * AVG3(J, K, L);
*(uint32_t*)(dst + 3 * BPS) = 0x01010101U * AVG3(K, L, L);
}
static void DC4(uint8_t* dst, const uint8_t* top) {
uint32_t dc = 4;
int i;
for (i = 0; i < 4; ++i) dc += top[i] + top[-5 + i];
Fill(dst, dc >> 3, 4);
}
static void RD4(uint8_t* dst, const uint8_t* top) {
const int X = top[-1];
const int I = top[-2];
const int J = top[-3];
const int K = top[-4];
const int L = top[-5];
const int A = top[0];
const int B = top[1];
const int C = top[2];
const int D = top[3];
DST(0, 3) = AVG3(J, K, L);
DST(0, 2) = DST(1, 3) = AVG3(I, J, K);
DST(0, 1) = DST(1, 2) = DST(2, 3) = AVG3(X, I, J);
DST(0, 0) = DST(1, 1) = DST(2, 2) = DST(3, 3) = AVG3(A, X, I);
DST(1, 0) = DST(2, 1) = DST(3, 2) = AVG3(B, A, X);
DST(2, 0) = DST(3, 1) = AVG3(C, B, A);
DST(3, 0) = AVG3(D, C, B);
}
static void LD4(uint8_t* dst, const uint8_t* top) {
const int A = top[0];
const int B = top[1];
const int C = top[2];
const int D = top[3];
const int E = top[4];
const int F = top[5];
const int G = top[6];
const int H = top[7];
DST(0, 0) = AVG3(A, B, C);
DST(1, 0) = DST(0, 1) = AVG3(B, C, D);
DST(2, 0) = DST(1, 1) = DST(0, 2) = AVG3(C, D, E);
DST(3, 0) = DST(2, 1) = DST(1, 2) = DST(0, 3) = AVG3(D, E, F);
DST(3, 1) = DST(2, 2) = DST(1, 3) = AVG3(E, F, G);
DST(3, 2) = DST(2, 3) = AVG3(F, G, H);
DST(3, 3) = AVG3(G, H, H);
}
static void VR4(uint8_t* dst, const uint8_t* top) {
const int X = top[-1];
const int I = top[-2];
const int J = top[-3];
const int K = top[-4];
const int A = top[0];
const int B = top[1];
const int C = top[2];
const int D = top[3];
DST(0, 0) = DST(1, 2) = AVG2(X, A);
DST(1, 0) = DST(2, 2) = AVG2(A, B);
DST(2, 0) = DST(3, 2) = AVG2(B, C);
DST(3, 0) = AVG2(C, D);
DST(0, 3) = AVG3(K, J, I);
DST(0, 2) = AVG3(J, I, X);
DST(0, 1) = DST(1, 3) = AVG3(I, X, A);
DST(1, 1) = DST(2, 3) = AVG3(X, A, B);
DST(2, 1) = DST(3, 3) = AVG3(A, B, C);
DST(3, 1) = AVG3(B, C, D);
}
static void VL4(uint8_t* dst, const uint8_t* top) {
const int A = top[0];
const int B = top[1];
const int C = top[2];
const int D = top[3];
const int E = top[4];
const int F = top[5];
const int G = top[6];
const int H = top[7];
DST(0, 0) = AVG2(A, B);
DST(1, 0) = DST(0, 2) = AVG2(B, C);
DST(2, 0) = DST(1, 2) = AVG2(C, D);
DST(3, 0) = DST(2, 2) = AVG2(D, E);
DST(0, 1) = AVG3(A, B, C);
DST(1, 1) = DST(0, 3) = AVG3(B, C, D);
DST(2, 1) = DST(1, 3) = AVG3(C, D, E);
DST(3, 1) = DST(2, 3) = AVG3(D, E, F);
DST(3, 2) = AVG3(E, F, G);
DST(3, 3) = AVG3(F, G, H);
}
static void HU4(uint8_t* dst, const uint8_t* top) {
const int I = top[-2];
const int J = top[-3];
const int K = top[-4];
const int L = top[-5];
DST(0, 0) = AVG2(I, J);
DST(2, 0) = DST(0, 1) = AVG2(J, K);
DST(2, 1) = DST(0, 2) = AVG2(K, L);
DST(1, 0) = AVG3(I, J, K);
DST(3, 0) = DST(1, 1) = AVG3(J, K, L);
DST(3, 1) = DST(1, 2) = AVG3(K, L, L);
DST(3, 2) = DST(2, 2) =
DST(0, 3) = DST(1, 3) = DST(2, 3) = DST(3, 3) = L;
}
static void HD4(uint8_t* dst, const uint8_t* top) {
const int X = top[-1];
const int I = top[-2];
const int J = top[-3];
const int K = top[-4];
const int L = top[-5];
const int A = top[0];
const int B = top[1];
const int C = top[2];
DST(0, 0) = DST(2, 1) = AVG2(I, X);
DST(0, 1) = DST(2, 2) = AVG2(J, I);
DST(0, 2) = DST(2, 3) = AVG2(K, J);
DST(0, 3) = AVG2(L, K);
DST(3, 0) = AVG3(A, B, C);
DST(2, 0) = AVG3(X, A, B);
DST(1, 0) = DST(3, 1) = AVG3(I, X, A);
DST(1, 1) = DST(3, 2) = AVG3(J, I, X);
DST(1, 2) = DST(3, 3) = AVG3(K, J, I);
DST(1, 3) = AVG3(L, K, J);
}
static void TM4(uint8_t* dst, const uint8_t* top) {
int x, y;
const uint8_t* const clip = clip1 + 255 - top[-1];
for (y = 0; y < 4; ++y) {
const uint8_t* const clip_table = clip + top[-2 - y];
for (x = 0; x < 4; ++x) {
dst[x] = clip_table[top[x]];
}
dst += BPS;
}
}
#undef DST
#undef AVG3
#undef AVG2
// Left samples are top[-5 .. -2], top_left is top[-1], top are
// located at top[0..3], and top right is top[4..7]
static void Intra4Preds(uint8_t* dst, const uint8_t* top) {
DC4(I4DC4 + dst, top);
TM4(I4TM4 + dst, top);
VE4(I4VE4 + dst, top);
HE4(I4HE4 + dst, top);
RD4(I4RD4 + dst, top);
VR4(I4VR4 + dst, top);
LD4(I4LD4 + dst, top);
VL4(I4VL4 + dst, top);
HD4(I4HD4 + dst, top);
HU4(I4HU4 + dst, top);
}
//------------------------------------------------------------------------------
// Metric
static inline int GetSSE(const uint8_t* a, const uint8_t* b, int w, int h) {
int count = 0;
int y, x;
for (y = 0; y < h; ++y) {
for (x = 0; x < w; ++x) {
const int diff = (int)a[x] - b[x];
count += diff * diff;
}
a += BPS;
b += BPS;
}
return count;
}
static int SSE16x16(const uint8_t* a, const uint8_t* b) {
return GetSSE(a, b, 16, 16);
}
static int SSE16x8(const uint8_t* a, const uint8_t* b) {
return GetSSE(a, b, 16, 8);
}
static int SSE8x8(const uint8_t* a, const uint8_t* b) {
return GetSSE(a, b, 8, 8);
}
static int SSE4x4(const uint8_t* a, const uint8_t* b) {
return GetSSE(a, b, 4, 4);
}
//------------------------------------------------------------------------------
// Texture distortion
//
// We try to match the spectral content (weighted) between source and
// reconstructed samples.
// Hadamard transform
// Returns the weighted sum of the absolute value of transformed coefficients.
static int TTransform(const uint8_t* in, const uint16_t* w) {
int sum = 0;
int tmp[16];
int i;
// horizontal pass
for (i = 0; i < 4; ++i, in += BPS) {
const int a0 = (in[0] + in[2]) << 2;
const int a1 = (in[1] + in[3]) << 2;
const int a2 = (in[1] - in[3]) << 2;
const int a3 = (in[0] - in[2]) << 2;
tmp[0 + i * 4] = a0 + a1 + (a0 != 0);
tmp[1 + i * 4] = a3 + a2;
tmp[2 + i * 4] = a3 - a2;
tmp[3 + i * 4] = a0 - a1;
}
// vertical pass
for (i = 0; i < 4; ++i, ++w) {
const int a0 = (tmp[0 + i] + tmp[8 + i]);
const int a1 = (tmp[4 + i] + tmp[12+ i]);
const int a2 = (tmp[4 + i] - tmp[12+ i]);
const int a3 = (tmp[0 + i] - tmp[8 + i]);
const int b0 = a0 + a1;
const int b1 = a3 + a2;
const int b2 = a3 - a2;
const int b3 = a0 - a1;
// abs((b + (b<0) + 3) >> 3) = (abs(b) + 3) >> 3
sum += w[ 0] * ((abs(b0) + 3) >> 3);
sum += w[ 4] * ((abs(b1) + 3) >> 3);
sum += w[ 8] * ((abs(b2) + 3) >> 3);
sum += w[12] * ((abs(b3) + 3) >> 3);
}
return sum;
}
static int Disto4x4(const uint8_t* const a, const uint8_t* const b,
const uint16_t* const w) {
const int sum1 = TTransform(a, w);
const int sum2 = TTransform(b, w);
return (abs(sum2 - sum1) + 8) >> 4;
}
static int Disto16x16(const uint8_t* const a, const uint8_t* const b,
const uint16_t* const w) {
int D = 0;
int x, y;
for (y = 0; y < 16 * BPS; y += 4 * BPS) {
for (x = 0; x < 16; x += 4) {
D += Disto4x4(a + x + y, b + x + y, w);
}
}
return D;
}
//------------------------------------------------------------------------------
// Quantization
//
static const uint8_t kZigzag[16] = {
0, 1, 4, 8, 5, 2, 3, 6, 9, 12, 13, 10, 7, 11, 14, 15
};
// Simple quantization
static int QuantizeBlock(int16_t in[16], int16_t out[16],
int n, const VP8Matrix* const mtx) {
int last = -1;
for (; n < 16; ++n) {
const int j = kZigzag[n];
const int sign = (in[j] < 0);
int coeff = (sign ? -in[j] : in[j]) + mtx->sharpen_[j];
if (coeff > 2047) coeff = 2047;
if (coeff > mtx->zthresh_[j]) {
const int Q = mtx->q_[j];
const int iQ = mtx->iq_[j];
const int B = mtx->bias_[j];
out[n] = QUANTDIV(coeff, iQ, B);
if (sign) out[n] = -out[n];
in[j] = out[n] * Q;
if (out[n]) last = n;
} else {
out[n] = 0;
in[j] = 0;
}
}
return (last >= 0);
}
//------------------------------------------------------------------------------
// Block copy
static inline void Copy(const uint8_t* src, uint8_t* dst, int size) {
int y;
for (y = 0; y < size; ++y) {
memcpy(dst, src, size);
src += BPS;
dst += BPS;
}
}
static void Copy4x4(const uint8_t* src, uint8_t* dst) { Copy(src, dst, 4); }
static void Copy8x8(const uint8_t* src, uint8_t* dst) { Copy(src, dst, 8); }
static void Copy16x16(const uint8_t* src, uint8_t* dst) { Copy(src, dst, 16); }
//------------------------------------------------------------------------------
// Initialization
// Speed-critical function pointers. We have to initialize them to the default
// implementations within VP8EncDspInit().
VP8CHisto VP8CollectHistogram;
VP8Idct VP8ITransform;
VP8Fdct VP8FTransform;
VP8WHT VP8ITransformWHT;
VP8WHT VP8FTransformWHT;
VP8Intra4Preds VP8EncPredLuma4;
VP8IntraPreds VP8EncPredLuma16;
VP8IntraPreds VP8EncPredChroma8;
VP8Metric VP8SSE16x16;
VP8Metric VP8SSE8x8;
VP8Metric VP8SSE16x8;
VP8Metric VP8SSE4x4;
VP8WMetric VP8TDisto4x4;
VP8WMetric VP8TDisto16x16;
VP8QuantizeBlock VP8EncQuantizeBlock;
VP8BlockCopy VP8Copy4x4;
VP8BlockCopy VP8Copy8x8;
VP8BlockCopy VP8Copy16x16;
extern void VP8EncDspInitSSE2(void);
void VP8EncDspInit(void) {
InitTables();
// default C implementations
VP8CollectHistogram = CollectHistogram;
VP8ITransform = ITransform;
VP8FTransform = FTransform;
VP8ITransformWHT = ITransformWHT;
VP8FTransformWHT = FTransformWHT;
VP8EncPredLuma4 = Intra4Preds;
VP8EncPredLuma16 = Intra16Preds;
VP8EncPredChroma8 = IntraChromaPreds;
VP8SSE16x16 = SSE16x16;
VP8SSE8x8 = SSE8x8;
VP8SSE16x8 = SSE16x8;
VP8SSE4x4 = SSE4x4;
VP8TDisto4x4 = Disto4x4;
VP8TDisto16x16 = Disto16x16;
VP8EncQuantizeBlock = QuantizeBlock;
VP8Copy4x4 = Copy4x4;
VP8Copy8x8 = Copy8x8;
VP8Copy16x16 = Copy16x16;
// If defined, use CPUInfo() to overwrite some pointers with faster versions.
if (VP8GetCPUInfo) {
#if defined(__SSE2__) || defined(_MSC_VER)
if (VP8GetCPUInfo(kSSE2)) {
VP8EncDspInitSSE2();
}
#endif
}
}
#if defined(__cplusplus) || defined(c_plusplus)
} // extern "C"
#endif

834
src/dsp/enc_sse2.c Normal file
View File

@ -0,0 +1,834 @@
// Copyright 2011 Google Inc.
//
// This code is licensed under the same terms as WebM:
// Software License Agreement: http://www.webmproject.org/license/software/
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
// -----------------------------------------------------------------------------
//
// SSE2 version of speed-critical encoding functions.
//
// Author: Christian Duvivier (cduvivier@google.com)
#if defined(__SSE2__) || defined(_MSC_VER)
#include <emmintrin.h>
#include "../enc/vp8enci.h"
#if defined(__cplusplus) || defined(c_plusplus)
extern "C" {
#endif
//------------------------------------------------------------------------------
// Compute susceptibility based on DCT-coeff histograms:
// the higher, the "easier" the macroblock is to compress.
static int CollectHistogramSSE2(const uint8_t* ref, const uint8_t* pred,
int start_block, int end_block) {
int histo[MAX_COEFF_THRESH + 1] = { 0 };
int16_t out[16];
int j, k;
const __m128i max_coeff_thresh = _mm_set1_epi16(MAX_COEFF_THRESH);
for (j = start_block; j < end_block; ++j) {
VP8FTransform(ref + VP8DspScan[j], pred + VP8DspScan[j], out);
// Convert coefficients to bin (within out[]).
{
// Load.
const __m128i out0 = _mm_loadu_si128((__m128i*)&out[0]);
const __m128i out1 = _mm_loadu_si128((__m128i*)&out[8]);
// sign(out) = out >> 15 (0x0000 if positive, 0xffff if negative)
const __m128i sign0 = _mm_srai_epi16(out0, 15);
const __m128i sign1 = _mm_srai_epi16(out1, 15);
// abs(out) = (out ^ sign) - sign
const __m128i xor0 = _mm_xor_si128(out0, sign0);
const __m128i xor1 = _mm_xor_si128(out1, sign1);
const __m128i abs0 = _mm_sub_epi16(xor0, sign0);
const __m128i abs1 = _mm_sub_epi16(xor1, sign1);
// v = abs(out) >> 2
const __m128i v0 = _mm_srai_epi16(abs0, 2);
const __m128i v1 = _mm_srai_epi16(abs1, 2);
// bin = min(v, MAX_COEFF_THRESH)
const __m128i bin0 = _mm_min_epi16(v0, max_coeff_thresh);
const __m128i bin1 = _mm_min_epi16(v1, max_coeff_thresh);
// Store.
_mm_storeu_si128((__m128i*)&out[0], bin0);
_mm_storeu_si128((__m128i*)&out[8], bin1);
}
// Use bin to update histogram.
for (k = 0; k < 16; ++k) {
histo[out[k]]++;
}
}
return VP8GetAlpha(histo);
}
//------------------------------------------------------------------------------
// Transforms (Paragraph 14.4)
// Does one or two inverse transforms.
static void ITransformSSE2(const uint8_t* ref, const int16_t* in, uint8_t* dst,
int do_two) {
// This implementation makes use of 16-bit fixed point versions of two
// multiply constants:
// K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
// K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
//
// To be able to use signed 16-bit integers, we use the following trick to
// have constants within range:
// - Associated constants are obtained by subtracting the 16-bit fixed point
// version of one:
// k = K - (1 << 16) => K = k + (1 << 16)
// K1 = 85267 => k1 = 20091
// K2 = 35468 => k2 = -30068
// - The multiplication of a variable by a constant become the sum of the
// variable and the multiplication of that variable by the associated
// constant:
// (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
const __m128i k1 = _mm_set1_epi16(20091);
const __m128i k2 = _mm_set1_epi16(-30068);
__m128i T0, T1, T2, T3;
// Load and concatenate the transform coefficients (we'll do two inverse
// transforms in parallel). In the case of only one inverse transform, the
// second half of the vectors will just contain random value we'll never
// use nor store.
__m128i in0, in1, in2, in3;
{
in0 = _mm_loadl_epi64((__m128i*)&in[0]);
in1 = _mm_loadl_epi64((__m128i*)&in[4]);
in2 = _mm_loadl_epi64((__m128i*)&in[8]);
in3 = _mm_loadl_epi64((__m128i*)&in[12]);
// a00 a10 a20 a30 x x x x
// a01 a11 a21 a31 x x x x
// a02 a12 a22 a32 x x x x
// a03 a13 a23 a33 x x x x
if (do_two) {
const __m128i inB0 = _mm_loadl_epi64((__m128i*)&in[16]);
const __m128i inB1 = _mm_loadl_epi64((__m128i*)&in[20]);
const __m128i inB2 = _mm_loadl_epi64((__m128i*)&in[24]);
const __m128i inB3 = _mm_loadl_epi64((__m128i*)&in[28]);
in0 = _mm_unpacklo_epi64(in0, inB0);
in1 = _mm_unpacklo_epi64(in1, inB1);
in2 = _mm_unpacklo_epi64(in2, inB2);
in3 = _mm_unpacklo_epi64(in3, inB3);
// a00 a10 a20 a30 b00 b10 b20 b30
// a01 a11 a21 a31 b01 b11 b21 b31
// a02 a12 a22 a32 b02 b12 b22 b32
// a03 a13 a23 a33 b03 b13 b23 b33
}
}
// Vertical pass and subsequent transpose.
{
// First pass, c and d calculations are longer because of the "trick"
// multiplications.
const __m128i a = _mm_add_epi16(in0, in2);
const __m128i b = _mm_sub_epi16(in0, in2);
// c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
const __m128i c1 = _mm_mulhi_epi16(in1, k2);
const __m128i c2 = _mm_mulhi_epi16(in3, k1);
const __m128i c3 = _mm_sub_epi16(in1, in3);
const __m128i c4 = _mm_sub_epi16(c1, c2);
const __m128i c = _mm_add_epi16(c3, c4);
// d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
const __m128i d1 = _mm_mulhi_epi16(in1, k1);
const __m128i d2 = _mm_mulhi_epi16(in3, k2);
const __m128i d3 = _mm_add_epi16(in1, in3);
const __m128i d4 = _mm_add_epi16(d1, d2);
const __m128i d = _mm_add_epi16(d3, d4);
// Second pass.
const __m128i tmp0 = _mm_add_epi16(a, d);
const __m128i tmp1 = _mm_add_epi16(b, c);
const __m128i tmp2 = _mm_sub_epi16(b, c);
const __m128i tmp3 = _mm_sub_epi16(a, d);
// Transpose the two 4x4.
// a00 a01 a02 a03 b00 b01 b02 b03
// a10 a11 a12 a13 b10 b11 b12 b13
// a20 a21 a22 a23 b20 b21 b22 b23
// a30 a31 a32 a33 b30 b31 b32 b33
const __m128i transpose0_0 = _mm_unpacklo_epi16(tmp0, tmp1);
const __m128i transpose0_1 = _mm_unpacklo_epi16(tmp2, tmp3);
const __m128i transpose0_2 = _mm_unpackhi_epi16(tmp0, tmp1);
const __m128i transpose0_3 = _mm_unpackhi_epi16(tmp2, tmp3);
// a00 a10 a01 a11 a02 a12 a03 a13
// a20 a30 a21 a31 a22 a32 a23 a33
// b00 b10 b01 b11 b02 b12 b03 b13
// b20 b30 b21 b31 b22 b32 b23 b33
const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
// a00 a10 a20 a30 a01 a11 a21 a31
// b00 b10 b20 b30 b01 b11 b21 b31
// a02 a12 a22 a32 a03 a13 a23 a33
// b02 b12 a22 b32 b03 b13 b23 b33
T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
// a00 a10 a20 a30 b00 b10 b20 b30
// a01 a11 a21 a31 b01 b11 b21 b31
// a02 a12 a22 a32 b02 b12 b22 b32
// a03 a13 a23 a33 b03 b13 b23 b33
}
// Horizontal pass and subsequent transpose.
{
// First pass, c and d calculations are longer because of the "trick"
// multiplications.
const __m128i four = _mm_set1_epi16(4);
const __m128i dc = _mm_add_epi16(T0, four);
const __m128i a = _mm_add_epi16(dc, T2);
const __m128i b = _mm_sub_epi16(dc, T2);
// c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
const __m128i c1 = _mm_mulhi_epi16(T1, k2);
const __m128i c2 = _mm_mulhi_epi16(T3, k1);
const __m128i c3 = _mm_sub_epi16(T1, T3);
const __m128i c4 = _mm_sub_epi16(c1, c2);
const __m128i c = _mm_add_epi16(c3, c4);
// d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
const __m128i d1 = _mm_mulhi_epi16(T1, k1);
const __m128i d2 = _mm_mulhi_epi16(T3, k2);
const __m128i d3 = _mm_add_epi16(T1, T3);
const __m128i d4 = _mm_add_epi16(d1, d2);
const __m128i d = _mm_add_epi16(d3, d4);
// Second pass.
const __m128i tmp0 = _mm_add_epi16(a, d);
const __m128i tmp1 = _mm_add_epi16(b, c);
const __m128i tmp2 = _mm_sub_epi16(b, c);
const __m128i tmp3 = _mm_sub_epi16(a, d);
const __m128i shifted0 = _mm_srai_epi16(tmp0, 3);
const __m128i shifted1 = _mm_srai_epi16(tmp1, 3);
const __m128i shifted2 = _mm_srai_epi16(tmp2, 3);
const __m128i shifted3 = _mm_srai_epi16(tmp3, 3);
// Transpose the two 4x4.
// a00 a01 a02 a03 b00 b01 b02 b03
// a10 a11 a12 a13 b10 b11 b12 b13
// a20 a21 a22 a23 b20 b21 b22 b23
// a30 a31 a32 a33 b30 b31 b32 b33
const __m128i transpose0_0 = _mm_unpacklo_epi16(shifted0, shifted1);
const __m128i transpose0_1 = _mm_unpacklo_epi16(shifted2, shifted3);
const __m128i transpose0_2 = _mm_unpackhi_epi16(shifted0, shifted1);
const __m128i transpose0_3 = _mm_unpackhi_epi16(shifted2, shifted3);
// a00 a10 a01 a11 a02 a12 a03 a13
// a20 a30 a21 a31 a22 a32 a23 a33
// b00 b10 b01 b11 b02 b12 b03 b13
// b20 b30 b21 b31 b22 b32 b23 b33
const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
// a00 a10 a20 a30 a01 a11 a21 a31
// b00 b10 b20 b30 b01 b11 b21 b31
// a02 a12 a22 a32 a03 a13 a23 a33
// b02 b12 a22 b32 b03 b13 b23 b33
T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
// a00 a10 a20 a30 b00 b10 b20 b30
// a01 a11 a21 a31 b01 b11 b21 b31
// a02 a12 a22 a32 b02 b12 b22 b32
// a03 a13 a23 a33 b03 b13 b23 b33
}
// Add inverse transform to 'ref' and store.
{
const __m128i zero = _mm_set1_epi16(0);
// Load the reference(s).
__m128i ref0, ref1, ref2, ref3;
if (do_two) {
// Load eight bytes/pixels per line.
ref0 = _mm_loadl_epi64((__m128i*)&ref[0 * BPS]);
ref1 = _mm_loadl_epi64((__m128i*)&ref[1 * BPS]);
ref2 = _mm_loadl_epi64((__m128i*)&ref[2 * BPS]);
ref3 = _mm_loadl_epi64((__m128i*)&ref[3 * BPS]);
} else {
// Load four bytes/pixels per line.
ref0 = _mm_cvtsi32_si128(*(int*)&ref[0 * BPS]);
ref1 = _mm_cvtsi32_si128(*(int*)&ref[1 * BPS]);
ref2 = _mm_cvtsi32_si128(*(int*)&ref[2 * BPS]);
ref3 = _mm_cvtsi32_si128(*(int*)&ref[3 * BPS]);
}
// Convert to 16b.
ref0 = _mm_unpacklo_epi8(ref0, zero);
ref1 = _mm_unpacklo_epi8(ref1, zero);
ref2 = _mm_unpacklo_epi8(ref2, zero);
ref3 = _mm_unpacklo_epi8(ref3, zero);
// Add the inverse transform(s).
ref0 = _mm_add_epi16(ref0, T0);
ref1 = _mm_add_epi16(ref1, T1);
ref2 = _mm_add_epi16(ref2, T2);
ref3 = _mm_add_epi16(ref3, T3);
// Unsigned saturate to 8b.
ref0 = _mm_packus_epi16(ref0, ref0);
ref1 = _mm_packus_epi16(ref1, ref1);
ref2 = _mm_packus_epi16(ref2, ref2);
ref3 = _mm_packus_epi16(ref3, ref3);
// Store the results.
if (do_two) {
// Store eight bytes/pixels per line.
_mm_storel_epi64((__m128i*)&dst[0 * BPS], ref0);
_mm_storel_epi64((__m128i*)&dst[1 * BPS], ref1);
_mm_storel_epi64((__m128i*)&dst[2 * BPS], ref2);
_mm_storel_epi64((__m128i*)&dst[3 * BPS], ref3);
} else {
// Store four bytes/pixels per line.
*((int32_t *)&dst[0 * BPS]) = _mm_cvtsi128_si32(ref0);
*((int32_t *)&dst[1 * BPS]) = _mm_cvtsi128_si32(ref1);
*((int32_t *)&dst[2 * BPS]) = _mm_cvtsi128_si32(ref2);
*((int32_t *)&dst[3 * BPS]) = _mm_cvtsi128_si32(ref3);
}
}
}
static void FTransformSSE2(const uint8_t* src, const uint8_t* ref,
int16_t* out) {
const __m128i zero = _mm_setzero_si128();
const __m128i seven = _mm_set1_epi16(7);
const __m128i k7500 = _mm_set1_epi32(7500);
const __m128i k14500 = _mm_set1_epi32(14500);
const __m128i k51000 = _mm_set1_epi32(51000);
const __m128i k12000_plus_one = _mm_set1_epi32(12000 + (1 << 16));
const __m128i k5352_2217 = _mm_set_epi16(5352, 2217, 5352, 2217,
5352, 2217, 5352, 2217);
const __m128i k2217_5352 = _mm_set_epi16(2217, -5352, 2217, -5352,
2217, -5352, 2217, -5352);
__m128i v01, v32;
// Difference between src and ref and initial transpose.
{
// Load src and convert to 16b.
const __m128i src0 = _mm_loadl_epi64((__m128i*)&src[0 * BPS]);
const __m128i src1 = _mm_loadl_epi64((__m128i*)&src[1 * BPS]);
const __m128i src2 = _mm_loadl_epi64((__m128i*)&src[2 * BPS]);
const __m128i src3 = _mm_loadl_epi64((__m128i*)&src[3 * BPS]);
const __m128i src_0 = _mm_unpacklo_epi8(src0, zero);
const __m128i src_1 = _mm_unpacklo_epi8(src1, zero);
const __m128i src_2 = _mm_unpacklo_epi8(src2, zero);
const __m128i src_3 = _mm_unpacklo_epi8(src3, zero);
// Load ref and convert to 16b.
const __m128i ref0 = _mm_loadl_epi64((__m128i*)&ref[0 * BPS]);
const __m128i ref1 = _mm_loadl_epi64((__m128i*)&ref[1 * BPS]);
const __m128i ref2 = _mm_loadl_epi64((__m128i*)&ref[2 * BPS]);
const __m128i ref3 = _mm_loadl_epi64((__m128i*)&ref[3 * BPS]);
const __m128i ref_0 = _mm_unpacklo_epi8(ref0, zero);
const __m128i ref_1 = _mm_unpacklo_epi8(ref1, zero);
const __m128i ref_2 = _mm_unpacklo_epi8(ref2, zero);
const __m128i ref_3 = _mm_unpacklo_epi8(ref3, zero);
// Compute difference.
const __m128i diff0 = _mm_sub_epi16(src_0, ref_0);
const __m128i diff1 = _mm_sub_epi16(src_1, ref_1);
const __m128i diff2 = _mm_sub_epi16(src_2, ref_2);
const __m128i diff3 = _mm_sub_epi16(src_3, ref_3);
// Transpose.
// 00 01 02 03 0 0 0 0
// 10 11 12 13 0 0 0 0
// 20 21 22 23 0 0 0 0
// 30 31 32 33 0 0 0 0
const __m128i transpose0_0 = _mm_unpacklo_epi16(diff0, diff1);
const __m128i transpose0_1 = _mm_unpacklo_epi16(diff2, diff3);
// 00 10 01 11 02 12 03 13
// 20 30 21 31 22 32 23 33
const __m128i v23 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
v01 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
v32 = _mm_shuffle_epi32(v23, _MM_SHUFFLE(1, 0, 3, 2));
// a02 a12 a22 a32 a03 a13 a23 a33
// a00 a10 a20 a30 a01 a11 a21 a31
// a03 a13 a23 a33 a02 a12 a22 a32
}
// First pass and subsequent transpose.
{
// Same operations are done on the (0,3) and (1,2) pairs.
// b0 = (a0 + a3) << 3
// b1 = (a1 + a2) << 3
// b3 = (a0 - a3) << 3
// b2 = (a1 - a2) << 3
const __m128i a01 = _mm_add_epi16(v01, v32);
const __m128i a32 = _mm_sub_epi16(v01, v32);
const __m128i b01 = _mm_slli_epi16(a01, 3);
const __m128i b32 = _mm_slli_epi16(a32, 3);
const __m128i b11 = _mm_unpackhi_epi64(b01, b01);
const __m128i b22 = _mm_unpackhi_epi64(b32, b32);
// e0 = b0 + b1
// e2 = b0 - b1
const __m128i e0 = _mm_add_epi16(b01, b11);
const __m128i e2 = _mm_sub_epi16(b01, b11);
const __m128i e02 = _mm_unpacklo_epi64(e0, e2);
// e1 = (b3 * 5352 + b2 * 2217 + 14500) >> 12
// e3 = (b3 * 2217 - b2 * 5352 + 7500) >> 12
const __m128i b23 = _mm_unpacklo_epi16(b22, b32);
const __m128i c1 = _mm_madd_epi16(b23, k5352_2217);
const __m128i c3 = _mm_madd_epi16(b23, k2217_5352);
const __m128i d1 = _mm_add_epi32(c1, k14500);
const __m128i d3 = _mm_add_epi32(c3, k7500);
const __m128i e1 = _mm_srai_epi32(d1, 12);
const __m128i e3 = _mm_srai_epi32(d3, 12);
const __m128i e13 = _mm_packs_epi32(e1, e3);
// Transpose.
// 00 01 02 03 20 21 22 23
// 10 11 12 13 30 31 32 33
const __m128i transpose0_0 = _mm_unpacklo_epi16(e02, e13);
const __m128i transpose0_1 = _mm_unpackhi_epi16(e02, e13);
// 00 10 01 11 02 12 03 13
// 20 30 21 31 22 32 23 33
const __m128i v23 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
v01 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
v32 = _mm_shuffle_epi32(v23, _MM_SHUFFLE(1, 0, 3, 2));
// 02 12 22 32 03 13 23 33
// 00 10 20 30 01 11 21 31
// 03 13 23 33 02 12 22 32
}
// Second pass
{
// Same operations are done on the (0,3) and (1,2) pairs.
// a0 = v0 + v3
// a1 = v1 + v2
// a3 = v0 - v3
// a2 = v1 - v2
const __m128i a01 = _mm_add_epi16(v01, v32);
const __m128i a32 = _mm_sub_epi16(v01, v32);
const __m128i a11 = _mm_unpackhi_epi64(a01, a01);
const __m128i a22 = _mm_unpackhi_epi64(a32, a32);
// d0 = (a0 + a1 + 7) >> 4;
// d2 = (a0 - a1 + 7) >> 4;
const __m128i b0 = _mm_add_epi16(a01, a11);
const __m128i b2 = _mm_sub_epi16(a01, a11);
const __m128i c0 = _mm_add_epi16(b0, seven);
const __m128i c2 = _mm_add_epi16(b2, seven);
const __m128i d0 = _mm_srai_epi16(c0, 4);
const __m128i d2 = _mm_srai_epi16(c2, 4);
// f1 = ((b3 * 5352 + b2 * 2217 + 12000) >> 16)
// f3 = ((b3 * 2217 - b2 * 5352 + 51000) >> 16)
const __m128i b23 = _mm_unpacklo_epi16(a22, a32);
const __m128i c1 = _mm_madd_epi16(b23, k5352_2217);
const __m128i c3 = _mm_madd_epi16(b23, k2217_5352);
const __m128i d1 = _mm_add_epi32(c1, k12000_plus_one);
const __m128i d3 = _mm_add_epi32(c3, k51000);
const __m128i e1 = _mm_srai_epi32(d1, 16);
const __m128i e3 = _mm_srai_epi32(d3, 16);
const __m128i f1 = _mm_packs_epi32(e1, e1);
const __m128i f3 = _mm_packs_epi32(e3, e3);
// f1 = f1 + (a3 != 0);
// The compare will return (0xffff, 0) for (==0, !=0). To turn that into the
// desired (0, 1), we add one earlier through k12000_plus_one.
const __m128i g1 = _mm_add_epi16(f1, _mm_cmpeq_epi16(a32, zero));
_mm_storel_epi64((__m128i*)&out[ 0], d0);
_mm_storel_epi64((__m128i*)&out[ 4], g1);
_mm_storel_epi64((__m128i*)&out[ 8], d2);
_mm_storel_epi64((__m128i*)&out[12], f3);
}
}
//------------------------------------------------------------------------------
// Metric
static int SSE4x4SSE2(const uint8_t* a, const uint8_t* b) {
const __m128i zero = _mm_set1_epi16(0);
// Load values.
const __m128i a0 = _mm_loadl_epi64((__m128i*)&a[BPS * 0]);
const __m128i a1 = _mm_loadl_epi64((__m128i*)&a[BPS * 1]);
const __m128i a2 = _mm_loadl_epi64((__m128i*)&a[BPS * 2]);
const __m128i a3 = _mm_loadl_epi64((__m128i*)&a[BPS * 3]);
const __m128i b0 = _mm_loadl_epi64((__m128i*)&b[BPS * 0]);
const __m128i b1 = _mm_loadl_epi64((__m128i*)&b[BPS * 1]);
const __m128i b2 = _mm_loadl_epi64((__m128i*)&b[BPS * 2]);
const __m128i b3 = _mm_loadl_epi64((__m128i*)&b[BPS * 3]);
// Combine pair of lines and convert to 16b.
const __m128i a01 = _mm_unpacklo_epi32(a0, a1);
const __m128i a23 = _mm_unpacklo_epi32(a2, a3);
const __m128i b01 = _mm_unpacklo_epi32(b0, b1);
const __m128i b23 = _mm_unpacklo_epi32(b2, b3);
const __m128i a01s = _mm_unpacklo_epi8(a01, zero);
const __m128i a23s = _mm_unpacklo_epi8(a23, zero);
const __m128i b01s = _mm_unpacklo_epi8(b01, zero);
const __m128i b23s = _mm_unpacklo_epi8(b23, zero);
// Compute differences; (a-b)^2 = (abs(a-b))^2 = (sat8(a-b) + sat8(b-a))^2
// TODO(cduvivier): Dissassemble and figure out why this is fastest. We don't
// need absolute values, there is no need to do calculation
// in 8bit as we are already in 16bit, ... Yet this is what
// benchmarks the fastest!
const __m128i d0 = _mm_subs_epu8(a01s, b01s);
const __m128i d1 = _mm_subs_epu8(b01s, a01s);
const __m128i d2 = _mm_subs_epu8(a23s, b23s);
const __m128i d3 = _mm_subs_epu8(b23s, a23s);
// Square and add them all together.
const __m128i madd0 = _mm_madd_epi16(d0, d0);
const __m128i madd1 = _mm_madd_epi16(d1, d1);
const __m128i madd2 = _mm_madd_epi16(d2, d2);
const __m128i madd3 = _mm_madd_epi16(d3, d3);
const __m128i sum0 = _mm_add_epi32(madd0, madd1);
const __m128i sum1 = _mm_add_epi32(madd2, madd3);
const __m128i sum2 = _mm_add_epi32(sum0, sum1);
int32_t tmp[4];
_mm_storeu_si128((__m128i*)tmp, sum2);
return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
}
//------------------------------------------------------------------------------
// Texture distortion
//
// We try to match the spectral content (weighted) between source and
// reconstructed samples.
// Hadamard transform
// Returns the difference between the weighted sum of the absolute value of
// transformed coefficients.
static int TTransformSSE2(const uint8_t* inA, const uint8_t* inB,
const uint16_t* const w) {
int32_t sum[4];
__m128i tmp_0, tmp_1, tmp_2, tmp_3;
const __m128i zero = _mm_setzero_si128();
const __m128i one = _mm_set1_epi16(1);
const __m128i three = _mm_set1_epi16(3);
// Load, combine and tranpose inputs.
{
const __m128i inA_0 = _mm_loadl_epi64((__m128i*)&inA[BPS * 0]);
const __m128i inA_1 = _mm_loadl_epi64((__m128i*)&inA[BPS * 1]);
const __m128i inA_2 = _mm_loadl_epi64((__m128i*)&inA[BPS * 2]);
const __m128i inA_3 = _mm_loadl_epi64((__m128i*)&inA[BPS * 3]);
const __m128i inB_0 = _mm_loadl_epi64((__m128i*)&inB[BPS * 0]);
const __m128i inB_1 = _mm_loadl_epi64((__m128i*)&inB[BPS * 1]);
const __m128i inB_2 = _mm_loadl_epi64((__m128i*)&inB[BPS * 2]);
const __m128i inB_3 = _mm_loadl_epi64((__m128i*)&inB[BPS * 3]);
// Combine inA and inB (we'll do two transforms in parallel).
const __m128i inAB_0 = _mm_unpacklo_epi8(inA_0, inB_0);
const __m128i inAB_1 = _mm_unpacklo_epi8(inA_1, inB_1);
const __m128i inAB_2 = _mm_unpacklo_epi8(inA_2, inB_2);
const __m128i inAB_3 = _mm_unpacklo_epi8(inA_3, inB_3);
// a00 b00 a01 b01 a02 b03 a03 b03 0 0 0 0 0 0 0 0
// a10 b10 a11 b11 a12 b12 a13 b13 0 0 0 0 0 0 0 0
// a20 b20 a21 b21 a22 b22 a23 b23 0 0 0 0 0 0 0 0
// a30 b30 a31 b31 a32 b32 a33 b33 0 0 0 0 0 0 0 0
// Transpose the two 4x4, discarding the filling zeroes.
const __m128i transpose0_0 = _mm_unpacklo_epi8(inAB_0, inAB_2);
const __m128i transpose0_1 = _mm_unpacklo_epi8(inAB_1, inAB_3);
// a00 a20 b00 b20 a01 a21 b01 b21 a02 a22 b02 b22 a03 a23 b03 b23
// a10 a30 b10 b30 a11 a31 b11 b31 a12 a32 b12 b32 a13 a33 b13 b33
const __m128i transpose1_0 = _mm_unpacklo_epi8(transpose0_0, transpose0_1);
const __m128i transpose1_1 = _mm_unpackhi_epi8(transpose0_0, transpose0_1);
// a00 a10 a20 a30 b00 b10 b20 b30 a01 a11 a21 a31 b01 b11 b21 b31
// a02 a12 a22 a32 b02 b12 b22 b32 a03 a13 a23 a33 b03 b13 b23 b33
// Convert to 16b.
tmp_0 = _mm_unpacklo_epi8(transpose1_0, zero);
tmp_1 = _mm_unpackhi_epi8(transpose1_0, zero);
tmp_2 = _mm_unpacklo_epi8(transpose1_1, zero);
tmp_3 = _mm_unpackhi_epi8(transpose1_1, zero);
// a00 a10 a20 a30 b00 b10 b20 b30
// a01 a11 a21 a31 b01 b11 b21 b31
// a02 a12 a22 a32 b02 b12 b22 b32
// a03 a13 a23 a33 b03 b13 b23 b33
}
// Horizontal pass and subsequent transpose.
{
// Calculate a and b (two 4x4 at once).
const __m128i a0 = _mm_slli_epi16(_mm_add_epi16(tmp_0, tmp_2), 2);
const __m128i a1 = _mm_slli_epi16(_mm_add_epi16(tmp_1, tmp_3), 2);
const __m128i a2 = _mm_slli_epi16(_mm_sub_epi16(tmp_1, tmp_3), 2);
const __m128i a3 = _mm_slli_epi16(_mm_sub_epi16(tmp_0, tmp_2), 2);
// b0_extra = (a0 != 0);
const __m128i b0_extra = _mm_andnot_si128(_mm_cmpeq_epi16 (a0, zero), one);
const __m128i b0_base = _mm_add_epi16(a0, a1);
const __m128i b1 = _mm_add_epi16(a3, a2);
const __m128i b2 = _mm_sub_epi16(a3, a2);
const __m128i b3 = _mm_sub_epi16(a0, a1);
const __m128i b0 = _mm_add_epi16(b0_base, b0_extra);
// a00 a01 a02 a03 b00 b01 b02 b03
// a10 a11 a12 a13 b10 b11 b12 b13
// a20 a21 a22 a23 b20 b21 b22 b23
// a30 a31 a32 a33 b30 b31 b32 b33
// Transpose the two 4x4.
const __m128i transpose0_0 = _mm_unpacklo_epi16(b0, b1);
const __m128i transpose0_1 = _mm_unpacklo_epi16(b2, b3);
const __m128i transpose0_2 = _mm_unpackhi_epi16(b0, b1);
const __m128i transpose0_3 = _mm_unpackhi_epi16(b2, b3);
// a00 a10 a01 a11 a02 a12 a03 a13
// a20 a30 a21 a31 a22 a32 a23 a33
// b00 b10 b01 b11 b02 b12 b03 b13
// b20 b30 b21 b31 b22 b32 b23 b33
const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
// a00 a10 a20 a30 a01 a11 a21 a31
// b00 b10 b20 b30 b01 b11 b21 b31
// a02 a12 a22 a32 a03 a13 a23 a33
// b02 b12 a22 b32 b03 b13 b23 b33
tmp_0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
tmp_1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
tmp_2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
tmp_3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
// a00 a10 a20 a30 b00 b10 b20 b30
// a01 a11 a21 a31 b01 b11 b21 b31
// a02 a12 a22 a32 b02 b12 b22 b32
// a03 a13 a23 a33 b03 b13 b23 b33
}
// Vertical pass and difference of weighted sums.
{
// Load all inputs.
// TODO(cduvivier): Make variable declarations and allocations aligned so
// we can use _mm_load_si128 instead of _mm_loadu_si128.
const __m128i w_0 = _mm_loadu_si128((__m128i*)&w[0]);
const __m128i w_8 = _mm_loadu_si128((__m128i*)&w[8]);
// Calculate a and b (two 4x4 at once).
const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
const __m128i b0 = _mm_add_epi16(a0, a1);
const __m128i b1 = _mm_add_epi16(a3, a2);
const __m128i b2 = _mm_sub_epi16(a3, a2);
const __m128i b3 = _mm_sub_epi16(a0, a1);
// Separate the transforms of inA and inB.
__m128i A_b0 = _mm_unpacklo_epi64(b0, b1);
__m128i A_b2 = _mm_unpacklo_epi64(b2, b3);
__m128i B_b0 = _mm_unpackhi_epi64(b0, b1);
__m128i B_b2 = _mm_unpackhi_epi64(b2, b3);
{
// sign(b) = b >> 15 (0x0000 if positive, 0xffff if negative)
const __m128i sign_A_b0 = _mm_srai_epi16(A_b0, 15);
const __m128i sign_A_b2 = _mm_srai_epi16(A_b2, 15);
const __m128i sign_B_b0 = _mm_srai_epi16(B_b0, 15);
const __m128i sign_B_b2 = _mm_srai_epi16(B_b2, 15);
// b = abs(b) = (b ^ sign) - sign
A_b0 = _mm_xor_si128(A_b0, sign_A_b0);
A_b2 = _mm_xor_si128(A_b2, sign_A_b2);
B_b0 = _mm_xor_si128(B_b0, sign_B_b0);
B_b2 = _mm_xor_si128(B_b2, sign_B_b2);
A_b0 = _mm_sub_epi16(A_b0, sign_A_b0);
A_b2 = _mm_sub_epi16(A_b2, sign_A_b2);
B_b0 = _mm_sub_epi16(B_b0, sign_B_b0);
B_b2 = _mm_sub_epi16(B_b2, sign_B_b2);
}
// b = abs(b) + 3
A_b0 = _mm_add_epi16(A_b0, three);
A_b2 = _mm_add_epi16(A_b2, three);
B_b0 = _mm_add_epi16(B_b0, three);
B_b2 = _mm_add_epi16(B_b2, three);
// abs((b + (b<0) + 3) >> 3) = (abs(b) + 3) >> 3
// b = (abs(b) + 3) >> 3
A_b0 = _mm_srai_epi16(A_b0, 3);
A_b2 = _mm_srai_epi16(A_b2, 3);
B_b0 = _mm_srai_epi16(B_b0, 3);
B_b2 = _mm_srai_epi16(B_b2, 3);
// weighted sums
A_b0 = _mm_madd_epi16(A_b0, w_0);
A_b2 = _mm_madd_epi16(A_b2, w_8);
B_b0 = _mm_madd_epi16(B_b0, w_0);
B_b2 = _mm_madd_epi16(B_b2, w_8);
A_b0 = _mm_add_epi32(A_b0, A_b2);
B_b0 = _mm_add_epi32(B_b0, B_b2);
// difference of weighted sums
A_b0 = _mm_sub_epi32(A_b0, B_b0);
_mm_storeu_si128((__m128i*)&sum[0], A_b0);
}
return sum[0] + sum[1] + sum[2] + sum[3];
}
static int Disto4x4SSE2(const uint8_t* const a, const uint8_t* const b,
const uint16_t* const w) {
const int diff_sum = TTransformSSE2(a, b, w);
return (abs(diff_sum) + 8) >> 4;
}
static int Disto16x16SSE2(const uint8_t* const a, const uint8_t* const b,
const uint16_t* const w) {
int D = 0;
int x, y;
for (y = 0; y < 16 * BPS; y += 4 * BPS) {
for (x = 0; x < 16; x += 4) {
D += Disto4x4SSE2(a + x + y, b + x + y, w);
}
}
return D;
}
//------------------------------------------------------------------------------
// Quantization
//
// Simple quantization
static int QuantizeBlockSSE2(int16_t in[16], int16_t out[16],
int n, const VP8Matrix* const mtx) {
const __m128i max_coeff_2047 = _mm_set1_epi16(2047);
const __m128i zero = _mm_set1_epi16(0);
__m128i sign0, sign8;
__m128i coeff0, coeff8;
__m128i out0, out8;
__m128i packed_out;
// Load all inputs.
// TODO(cduvivier): Make variable declarations and allocations aligned so that
// we can use _mm_load_si128 instead of _mm_loadu_si128.
__m128i in0 = _mm_loadu_si128((__m128i*)&in[0]);
__m128i in8 = _mm_loadu_si128((__m128i*)&in[8]);
const __m128i sharpen0 = _mm_loadu_si128((__m128i*)&mtx->sharpen_[0]);
const __m128i sharpen8 = _mm_loadu_si128((__m128i*)&mtx->sharpen_[8]);
const __m128i iq0 = _mm_loadu_si128((__m128i*)&mtx->iq_[0]);
const __m128i iq8 = _mm_loadu_si128((__m128i*)&mtx->iq_[8]);
const __m128i bias0 = _mm_loadu_si128((__m128i*)&mtx->bias_[0]);
const __m128i bias8 = _mm_loadu_si128((__m128i*)&mtx->bias_[8]);
const __m128i q0 = _mm_loadu_si128((__m128i*)&mtx->q_[0]);
const __m128i q8 = _mm_loadu_si128((__m128i*)&mtx->q_[8]);
const __m128i zthresh0 = _mm_loadu_si128((__m128i*)&mtx->zthresh_[0]);
const __m128i zthresh8 = _mm_loadu_si128((__m128i*)&mtx->zthresh_[8]);
// sign(in) = in >> 15 (0x0000 if positive, 0xffff if negative)
sign0 = _mm_srai_epi16(in0, 15);
sign8 = _mm_srai_epi16(in8, 15);
// coeff = abs(in) = (in ^ sign) - sign
coeff0 = _mm_xor_si128(in0, sign0);
coeff8 = _mm_xor_si128(in8, sign8);
coeff0 = _mm_sub_epi16(coeff0, sign0);
coeff8 = _mm_sub_epi16(coeff8, sign8);
// coeff = abs(in) + sharpen
coeff0 = _mm_add_epi16(coeff0, sharpen0);
coeff8 = _mm_add_epi16(coeff8, sharpen8);
// if (coeff > 2047) coeff = 2047
coeff0 = _mm_min_epi16(coeff0, max_coeff_2047);
coeff8 = _mm_min_epi16(coeff8, max_coeff_2047);
// out = (coeff * iQ + B) >> QFIX;
{
// doing calculations with 32b precision (QFIX=17)
// out = (coeff * iQ)
__m128i coeff_iQ0H = _mm_mulhi_epu16(coeff0, iq0);
__m128i coeff_iQ0L = _mm_mullo_epi16(coeff0, iq0);
__m128i coeff_iQ8H = _mm_mulhi_epu16(coeff8, iq8);
__m128i coeff_iQ8L = _mm_mullo_epi16(coeff8, iq8);
__m128i out_00 = _mm_unpacklo_epi16(coeff_iQ0L, coeff_iQ0H);
__m128i out_04 = _mm_unpackhi_epi16(coeff_iQ0L, coeff_iQ0H);
__m128i out_08 = _mm_unpacklo_epi16(coeff_iQ8L, coeff_iQ8H);
__m128i out_12 = _mm_unpackhi_epi16(coeff_iQ8L, coeff_iQ8H);
// expand bias from 16b to 32b
__m128i bias_00 = _mm_unpacklo_epi16(bias0, zero);
__m128i bias_04 = _mm_unpackhi_epi16(bias0, zero);
__m128i bias_08 = _mm_unpacklo_epi16(bias8, zero);
__m128i bias_12 = _mm_unpackhi_epi16(bias8, zero);
// out = (coeff * iQ + B)
out_00 = _mm_add_epi32(out_00, bias_00);
out_04 = _mm_add_epi32(out_04, bias_04);
out_08 = _mm_add_epi32(out_08, bias_08);
out_12 = _mm_add_epi32(out_12, bias_12);
// out = (coeff * iQ + B) >> QFIX;
out_00 = _mm_srai_epi32(out_00, QFIX);
out_04 = _mm_srai_epi32(out_04, QFIX);
out_08 = _mm_srai_epi32(out_08, QFIX);
out_12 = _mm_srai_epi32(out_12, QFIX);
// pack result as 16b
out0 = _mm_packs_epi32(out_00, out_04);
out8 = _mm_packs_epi32(out_08, out_12);
}
// get sign back (if (sign[j]) out_n = -out_n)
out0 = _mm_xor_si128(out0, sign0);
out8 = _mm_xor_si128(out8, sign8);
out0 = _mm_sub_epi16(out0, sign0);
out8 = _mm_sub_epi16(out8, sign8);
// in = out * Q
in0 = _mm_mullo_epi16(out0, q0);
in8 = _mm_mullo_epi16(out8, q8);
// if (coeff <= mtx->zthresh_) {in=0; out=0;}
{
__m128i cmp0 = _mm_cmpgt_epi16(coeff0, zthresh0);
__m128i cmp8 = _mm_cmpgt_epi16(coeff8, zthresh8);
in0 = _mm_and_si128(in0, cmp0);
in8 = _mm_and_si128(in8, cmp8);
_mm_storeu_si128((__m128i*)&in[0], in0);
_mm_storeu_si128((__m128i*)&in[8], in8);
out0 = _mm_and_si128(out0, cmp0);
out8 = _mm_and_si128(out8, cmp8);
}
// zigzag the output before storing it.
//
// The zigzag pattern can almost be reproduced with a small sequence of
// shuffles. After it, we only need to swap the 7th (ending up in third
// position instead of twelfth) and 8th values.
{
__m128i outZ0, outZ8;
outZ0 = _mm_shufflehi_epi16(out0, _MM_SHUFFLE(2, 1, 3, 0));
outZ0 = _mm_shuffle_epi32 (outZ0, _MM_SHUFFLE(3, 1, 2, 0));
outZ0 = _mm_shufflehi_epi16(outZ0, _MM_SHUFFLE(3, 1, 0, 2));
outZ8 = _mm_shufflelo_epi16(out8, _MM_SHUFFLE(3, 0, 2, 1));
outZ8 = _mm_shuffle_epi32 (outZ8, _MM_SHUFFLE(3, 1, 2, 0));
outZ8 = _mm_shufflelo_epi16(outZ8, _MM_SHUFFLE(1, 3, 2, 0));
_mm_storeu_si128((__m128i*)&out[0], outZ0);
_mm_storeu_si128((__m128i*)&out[8], outZ8);
packed_out = _mm_packs_epi16(outZ0, outZ8);
}
{
const int16_t outZ_12 = out[12];
const int16_t outZ_3 = out[3];
out[3] = outZ_12;
out[12] = outZ_3;
}
// detect if all 'out' values are zeroes or not
{
int32_t tmp[4];
_mm_storeu_si128((__m128i*)tmp, packed_out);
if (n) {
tmp[0] &= ~0xff;
}
return (tmp[3] || tmp[2] || tmp[1] || tmp[0]);
}
}
extern void VP8EncDspInitSSE2(void);
void VP8EncDspInitSSE2(void) {
VP8CollectHistogram = CollectHistogramSSE2;
VP8EncQuantizeBlock = QuantizeBlockSSE2;
VP8ITransform = ITransformSSE2;
VP8FTransform = FTransformSSE2;
VP8SSE4x4 = SSE4x4SSE2;
VP8TDisto4x4 = Disto4x4SSE2;
VP8TDisto16x16 = Disto16x16SSE2;
}
#if defined(__cplusplus) || defined(c_plusplus)
} // extern "C"
#endif
#endif //__SSE2__

226
src/dsp/upsampling.c Normal file
View File

@ -0,0 +1,226 @@
// Copyright 2011 Google Inc.
//
// This code is licensed under the same terms as WebM:
// Software License Agreement: http://www.webmproject.org/license/software/
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
// -----------------------------------------------------------------------------
//
// YUV to RGB upsampling functions.
//
// Author: somnath@google.com (Somnath Banerjee)
#include "./dsp.h"
#include "./yuv.h"
#include "../dec/webpi.h"
#if defined(__cplusplus) || defined(c_plusplus)
extern "C" {
#endif
//------------------------------------------------------------------------------
// Fancy upsampler
#ifdef FANCY_UPSAMPLING
// Fancy upsampling functions to convert YUV to RGB
WebPUpsampleLinePairFunc WebPUpsamplers[MODE_LAST];
WebPUpsampleLinePairFunc WebPUpsamplersKeepAlpha[MODE_LAST];
// Given samples laid out in a square as:
// [a b]
// [c d]
// we interpolate u/v as:
// ([9*a + 3*b + 3*c + d 3*a + 9*b + 3*c + d] + [8 8]) / 16
// ([3*a + b + 9*c + 3*d a + 3*b + 3*c + 9*d] [8 8]) / 16
// We process u and v together stashed into 32bit (16bit each).
#define LOAD_UV(u,v) ((u) | ((v) << 16))
#define UPSAMPLE_FUNC(FUNC_NAME, FUNC, XSTEP) \
static void FUNC_NAME(const uint8_t* top_y, const uint8_t* bottom_y, \
const uint8_t* top_u, const uint8_t* top_v, \
const uint8_t* cur_u, const uint8_t* cur_v, \
uint8_t* top_dst, uint8_t* bottom_dst, int len) { \
int x; \
const int last_pixel_pair = (len - 1) >> 1; \
uint32_t tl_uv = LOAD_UV(top_u[0], top_v[0]); /* top-left sample */ \
uint32_t l_uv = LOAD_UV(cur_u[0], cur_v[0]); /* left-sample */ \
if (top_y) { \
const uint32_t uv0 = (3 * tl_uv + l_uv + 0x00020002u) >> 2; \
FUNC(top_y[0], uv0 & 0xff, (uv0 >> 16), top_dst); \
} \
if (bottom_y) { \
const uint32_t uv0 = (3 * l_uv + tl_uv + 0x00020002u) >> 2; \
FUNC(bottom_y[0], uv0 & 0xff, (uv0 >> 16), bottom_dst); \
} \
for (x = 1; x <= last_pixel_pair; ++x) { \
const uint32_t t_uv = LOAD_UV(top_u[x], top_v[x]); /* top sample */ \
const uint32_t uv = LOAD_UV(cur_u[x], cur_v[x]); /* sample */ \
/* precompute invariant values associated with first and second diagonals*/\
const uint32_t avg = tl_uv + t_uv + l_uv + uv + 0x00080008u; \
const uint32_t diag_12 = (avg + 2 * (t_uv + l_uv)) >> 3; \
const uint32_t diag_03 = (avg + 2 * (tl_uv + uv)) >> 3; \
if (top_y) { \
const uint32_t uv0 = (diag_12 + tl_uv) >> 1; \
const uint32_t uv1 = (diag_03 + t_uv) >> 1; \
FUNC(top_y[2 * x - 1], uv0 & 0xff, (uv0 >> 16), \
top_dst + (2 * x - 1) * XSTEP); \
FUNC(top_y[2 * x - 0], uv1 & 0xff, (uv1 >> 16), \
top_dst + (2 * x - 0) * XSTEP); \
} \
if (bottom_y) { \
const uint32_t uv0 = (diag_03 + l_uv) >> 1; \
const uint32_t uv1 = (diag_12 + uv) >> 1; \
FUNC(bottom_y[2 * x - 1], uv0 & 0xff, (uv0 >> 16), \
bottom_dst + (2 * x - 1) * XSTEP); \
FUNC(bottom_y[2 * x + 0], uv1 & 0xff, (uv1 >> 16), \
bottom_dst + (2 * x + 0) * XSTEP); \
} \
tl_uv = t_uv; \
l_uv = uv; \
} \
if (!(len & 1)) { \
if (top_y) { \
const uint32_t uv0 = (3 * tl_uv + l_uv + 0x00020002u) >> 2; \
FUNC(top_y[len - 1], uv0 & 0xff, (uv0 >> 16), \
top_dst + (len - 1) * XSTEP); \
} \
if (bottom_y) { \
const uint32_t uv0 = (3 * l_uv + tl_uv + 0x00020002u) >> 2; \
FUNC(bottom_y[len - 1], uv0 & 0xff, (uv0 >> 16), \
bottom_dst + (len - 1) * XSTEP); \
} \
} \
}
// All variants implemented.
UPSAMPLE_FUNC(UpsampleRgbLinePair, VP8YuvToRgb, 3)
UPSAMPLE_FUNC(UpsampleBgrLinePair, VP8YuvToBgr, 3)
UPSAMPLE_FUNC(UpsampleRgbaLinePair, VP8YuvToRgba, 4)
UPSAMPLE_FUNC(UpsampleBgraLinePair, VP8YuvToBgra, 4)
UPSAMPLE_FUNC(UpsampleArgbLinePair, VP8YuvToArgb, 4)
UPSAMPLE_FUNC(UpsampleRgba4444LinePair, VP8YuvToRgba4444, 2)
UPSAMPLE_FUNC(UpsampleRgb565LinePair, VP8YuvToRgb565, 2)
// These two don't erase the alpha value
UPSAMPLE_FUNC(UpsampleRgbKeepAlphaLinePair, VP8YuvToRgb, 4)
UPSAMPLE_FUNC(UpsampleBgrKeepAlphaLinePair, VP8YuvToBgr, 4)
UPSAMPLE_FUNC(UpsampleArgbKeepAlphaLinePair, VP8YuvToArgbKeepA, 4)
UPSAMPLE_FUNC(UpsampleRgba4444KeepAlphaLinePair, VP8YuvToRgba4444KeepA, 2)
#undef LOAD_UV
#undef UPSAMPLE_FUNC
#endif // FANCY_UPSAMPLING
//------------------------------------------------------------------------------
// simple point-sampling
#define SAMPLE_FUNC(FUNC_NAME, FUNC, XSTEP) \
static void FUNC_NAME(const uint8_t* top_y, const uint8_t* bottom_y, \
const uint8_t* u, const uint8_t* v, \
uint8_t* top_dst, uint8_t* bottom_dst, int len) { \
int i; \
for (i = 0; i < len - 1; i += 2) { \
FUNC(top_y[0], u[0], v[0], top_dst); \
FUNC(top_y[1], u[0], v[0], top_dst + XSTEP); \
FUNC(bottom_y[0], u[0], v[0], bottom_dst); \
FUNC(bottom_y[1], u[0], v[0], bottom_dst + XSTEP); \
top_y += 2; \
bottom_y += 2; \
u++; \
v++; \
top_dst += 2 * XSTEP; \
bottom_dst += 2 * XSTEP; \
} \
if (i == len - 1) { /* last one */ \
FUNC(top_y[0], u[0], v[0], top_dst); \
FUNC(bottom_y[0], u[0], v[0], bottom_dst); \
} \
}
// All variants implemented.
SAMPLE_FUNC(SampleRgbLinePair, VP8YuvToRgb, 3)
SAMPLE_FUNC(SampleBgrLinePair, VP8YuvToBgr, 3)
SAMPLE_FUNC(SampleRgbaLinePair, VP8YuvToRgba, 4)
SAMPLE_FUNC(SampleBgraLinePair, VP8YuvToBgra, 4)
SAMPLE_FUNC(SampleArgbLinePair, VP8YuvToArgb, 4)
SAMPLE_FUNC(SampleRgba4444LinePair, VP8YuvToRgba4444, 2)
SAMPLE_FUNC(SampleRgb565LinePair, VP8YuvToRgb565, 2)
#undef SAMPLE_FUNC
const WebPSampleLinePairFunc WebPSamplers[MODE_LAST] = {
SampleRgbLinePair, // MODE_RGB
SampleRgbaLinePair, // MODE_RGBA
SampleBgrLinePair, // MODE_BGR
SampleBgraLinePair, // MODE_BGRA
SampleArgbLinePair, // MODE_ARGB
SampleRgba4444LinePair, // MODE_RGBA_4444
SampleRgb565LinePair // MODE_RGB_565
};
//------------------------------------------------------------------------------
// YUV444 converter
#define YUV444_FUNC(FUNC_NAME, FUNC, XSTEP) \
static void FUNC_NAME(const uint8_t* y, const uint8_t* u, const uint8_t* v, \
uint8_t* dst, int len) { \
int i; \
for (i = 0; i < len; ++i) FUNC(y[i], u[i], v[i], &dst[i * XSTEP]); \
}
YUV444_FUNC(Yuv444ToRgb, VP8YuvToRgb, 3)
YUV444_FUNC(Yuv444ToBgr, VP8YuvToBgr, 3)
YUV444_FUNC(Yuv444ToRgba, VP8YuvToRgba, 4)
YUV444_FUNC(Yuv444ToBgra, VP8YuvToBgra, 4)
YUV444_FUNC(Yuv444ToArgb, VP8YuvToArgb, 4)
YUV444_FUNC(Yuv444ToRgba4444, VP8YuvToRgba4444, 2)
YUV444_FUNC(Yuv444ToRgb565, VP8YuvToRgb565, 2)
#undef YUV444_FUNC
const WebPYUV444Converter WebPYUV444Converters[MODE_LAST] = {
Yuv444ToRgb, // MODE_RGB
Yuv444ToRgba, // MODE_RGBA
Yuv444ToBgr, // MODE_BGR
Yuv444ToBgra, // MODE_BGRA
Yuv444ToArgb, // MODE_ARGB
Yuv444ToRgba4444, // MODE_RGBA_4444
Yuv444ToRgb565 // MODE_RGB_565
};
//------------------------------------------------------------------------------
// Main call
void WebPInitUpsamplers(void) {
#ifdef FANCY_UPSAMPLING
WebPUpsamplers[MODE_RGB] = UpsampleRgbLinePair;
WebPUpsamplers[MODE_RGBA] = UpsampleRgbaLinePair;
WebPUpsamplers[MODE_BGR] = UpsampleBgrLinePair;
WebPUpsamplers[MODE_BGRA] = UpsampleBgraLinePair;
WebPUpsamplers[MODE_ARGB] = UpsampleArgbLinePair;
WebPUpsamplers[MODE_RGBA_4444] = UpsampleRgba4444LinePair;
WebPUpsamplers[MODE_RGB_565] = UpsampleRgb565LinePair;
WebPUpsamplersKeepAlpha[MODE_RGB] = UpsampleRgbLinePair;
WebPUpsamplersKeepAlpha[MODE_RGBA] = UpsampleRgbKeepAlphaLinePair;
WebPUpsamplersKeepAlpha[MODE_BGR] = UpsampleBgrLinePair;
WebPUpsamplersKeepAlpha[MODE_BGRA] = UpsampleBgrKeepAlphaLinePair;
WebPUpsamplersKeepAlpha[MODE_ARGB] = UpsampleArgbKeepAlphaLinePair;
WebPUpsamplersKeepAlpha[MODE_RGBA_4444] = UpsampleRgba4444KeepAlphaLinePair;
WebPUpsamplersKeepAlpha[MODE_RGB_565] = UpsampleRgb565LinePair;
// If defined, use CPUInfo() to overwrite some pointers with faster versions.
if (VP8GetCPUInfo) {
#if defined(__SSE2__) || defined(_MSC_VER)
if (VP8GetCPUInfo(kSSE2)) {
WebPInitUpsamplersSSE2();
}
#endif
}
#endif // FANCY_UPSAMPLING
}
#if defined(__cplusplus) || defined(c_plusplus)
} // extern "C"
#endif

View File

@ -14,13 +14,16 @@
#include <assert.h>
#include <emmintrin.h>
#include <string.h>
#include "webpi.h"
#include "yuv.h"
#include "./dsp.h"
#include "./yuv.h"
#include "../dec/webpi.h"
#if defined(__cplusplus) || defined(c_plusplus)
extern "C" {
#endif
#ifdef FANCY_UPSAMPLING
// We compute (9*a + 3*b + 3*c + d + 8) / 16 as follows
// u = (9*a + 3*b + 3*c + d + 8) / 16
// = (a + (a + 3*b + 3*c + d) / 8 + 1) / 2
@ -186,7 +189,13 @@ SSE2_UPSAMPLE_FUNC(UpsampleBgrKeepAlphaLinePairSSE2, VP8YuvToBgr, 4)
//------------------------------------------------------------------------------
extern WebPUpsampleLinePairFunc WebPUpsamplers[/* MODE_LAST */];
extern WebPUpsampleLinePairFunc WebPUpsamplersKeepAlpha[/* MODE_LAST */];
#endif // FANCY_UPSAMPLING
void WebPInitUpsamplersSSE2(void) {
#ifdef FANCY_UPSAMPLING
WebPUpsamplers[MODE_RGB] = UpsampleRgbLinePairSSE2;
WebPUpsamplers[MODE_RGBA] = UpsampleRgbaLinePairSSE2;
WebPUpsamplers[MODE_BGR] = UpsampleBgrLinePairSSE2;
@ -196,6 +205,7 @@ void WebPInitUpsamplersSSE2(void) {
WebPUpsamplersKeepAlpha[MODE_RGBA] = UpsampleRgbKeepAlphaLinePairSSE2;
WebPUpsamplersKeepAlpha[MODE_BGR] = UpsampleBgrLinePairSSE2;
WebPUpsamplersKeepAlpha[MODE_BGRA] = UpsampleBgrKeepAlphaLinePairSSE2;
#endif // FANCY_UPSAMPLING
}
#if defined(__cplusplus) || defined(c_plusplus)

View File

@ -9,7 +9,7 @@
//
// Author: Skal (pascal.massimino@gmail.com)
#include "yuv.h"
#include "./yuv.h"
#if defined(__cplusplus) || defined(c_plusplus)
extern "C" {

View File

@ -9,8 +9,8 @@
//
// Author: Skal (pascal.massimino@gmail.com)
#ifndef WEBP_DEC_YUV_H_
#define WEBP_DEC_YUV_H_
#ifndef WEBP_DSP_YUV_H_
#define WEBP_DSP_YUV_H_
#include "../webp/decode_vp8.h"
@ -106,4 +106,4 @@ void VP8YUVInit(void);
} // extern "C"
#endif
#endif // WEBP_DEC_YUV_H_
#endif // WEBP_DSP_YUV_H_

View File

@ -1,9 +1,10 @@
AM_CPPFLAGS = -I$(top_srcdir)/src
libwebpencode_la_SOURCES = analysis.c bit_writer.c bit_writer.h \
config.c cost.c cost.h dsp.c dsp_sse2.c filter.c \
config.c cost.c cost.h filter.c \
frame.c iterator.c picture.c quant.c \
syntax.c tree.c vp8enci.h webpenc.c alpha.c layer.c
syntax.c tree.c vp8enci.h webpenc.c alpha.c \
layer.c
libwebpencode_la_LDFLAGS = -version-info 0:0:0 -lm
libwebpencode_la_CPPFLAGS = $(USE_EXPERIMENTAL_CODE)
libwebpencodeinclude_HEADERS = ../webp/encode.h ../webp/types.h
@ -11,6 +12,3 @@ libwebpencodeincludedir = $(includedir)/webp
noinst_HEADERS = cost.h bit_writer.h vp8enci.h
noinst_LTLIBRARIES = libwebpencode.la
# uncomment the following line (and comment the above) if you want
# to install libwebpencode library.
#lib_LTLIBRARIES = libwebpencode.la

View File

@ -39,7 +39,7 @@ static inline int clip(int v, int m, int M) {
return v < m ? m : v > M ? M : v;
}
const uint8_t VP8Zigzag[16] = {
static const uint8_t kZigzag[16] = {
0, 1, 4, 8, 5, 2, 3, 6, 9, 12, 13, 10, 7, 11, 14, 15
};
@ -143,7 +143,7 @@ static int ExpandMatrix(VP8Matrix* const m, int type) {
m->q_[i] = m->q_[1];
}
for (i = 0; i < 16; ++i) {
const int j = VP8Zigzag[i];
const int j = kZigzag[i];
const int bias = kBiasMatrices[type][j];
m->iq_[j] = (1 << QFIX) / m->q_[j];
m->bias_[j] = BIAS(bias);
@ -440,7 +440,7 @@ static int TrellisQuantizeBlock(const VP8EncIterator* const it,
// compute maximal distortion.
max_error = 0;
for (n = first; n < 16; ++n) {
const int j = VP8Zigzag[n];
const int j = kZigzag[n];
const int err = in[j] * in[j];
max_error += kWeightTrellis[j] * err;
if (err > thresh) last = n;
@ -464,7 +464,7 @@ static int TrellisQuantizeBlock(const VP8EncIterator* const it,
// traverse trellis.
for (n = first; n <= last; ++n) {
const int j = VP8Zigzag[n];
const int j = kZigzag[n];
const int Q = mtx->q_[j];
const int iQ = mtx->iq_[j];
const int B = BIAS(0x00); // neutral bias
@ -560,7 +560,7 @@ static int TrellisQuantizeBlock(const VP8EncIterator* const it,
for (; n >= first; --n) {
const Node* const node = &NODE(n, best_node);
const int j = VP8Zigzag[n];
const int j = kZigzag[n];
out[n] = node->sign ? -node->level : node->level;
nz |= (node->level != 0);
in[j] = out[n] * mtx->q_[j];

View File

@ -14,6 +14,7 @@
#include "string.h" // for memcpy()
#include "../webp/encode.h"
#include "../dsp/dsp.h"
#include "bit_writer.h"
#if defined(__cplusplus) || defined(c_plusplus)
@ -211,7 +212,7 @@ typedef struct {
uint8_t alpha_; // quantization-susceptibility
} VP8MBInfo;
typedef struct {
typedef struct VP8Matrix {
uint16_t q_[16]; // quantizer steps
uint16_t iq_[16]; // reciprocals, fixed point.
uint16_t bias_[16]; // rounding bias
@ -421,12 +422,8 @@ int VP8StatLoop(VP8Encoder* const enc);
// in webpenc.c
// Assign an error code to a picture. Return false for convenience.
int WebPEncodingSetError(WebPPicture* const pic, WebPEncodingError error);
// in analysis.c
// Compute susceptibility based on DCT-coeff histograms:
// the higher, the "easier" the macroblock is to compress.
typedef int (*VP8CHisto)(const uint8_t* ref, const uint8_t* pred,
int start_block, int end_block);
extern VP8CHisto VP8CollectHistogram;
// Main analysis loop. Decides the segmentations and complexity.
// Assigns a first guess for Intra16 and uvmode_ prediction modes.
int VP8EncAnalyze(VP8Encoder* const enc);
@ -449,54 +446,6 @@ void VP8EncCodeLayerBlock(VP8EncIterator* it); // code one more macroblock
int VP8EncFinishLayer(VP8Encoder* const enc); // finalize coding
void VP8EncDeleteLayer(VP8Encoder* enc); // reclaim memory
// in dsp.c
int VP8GetAlpha(const int histo[MAX_COEFF_THRESH + 1]);
// Transforms
// VP8Idct: Does one of two inverse transforms. If do_two is set, the transforms
// will be done for (ref, in, dst) and (ref + 4, in + 16, dst + 4).
typedef void (*VP8Idct)(const uint8_t* ref, const int16_t* in, uint8_t* dst,
int do_two);
typedef void (*VP8Fdct)(const uint8_t* src, const uint8_t* ref, int16_t* out);
typedef void (*VP8WHT)(const int16_t* in, int16_t* out);
extern VP8Idct VP8ITransform;
extern VP8Fdct VP8FTransform;
extern VP8WHT VP8ITransformWHT;
extern VP8WHT VP8FTransformWHT;
// Predictions
// *dst is the destination block. *top, *top_right and *left can be NULL.
typedef void (*VP8IntraPreds)(uint8_t *dst, const uint8_t* left,
const uint8_t* top);
typedef void (*VP8Intra4Preds)(uint8_t *dst, const uint8_t* top);
extern VP8Intra4Preds VP8EncPredLuma4;
extern VP8IntraPreds VP8EncPredLuma16;
extern VP8IntraPreds VP8EncPredChroma8;
typedef int (*VP8Metric)(const uint8_t* pix, const uint8_t* ref);
extern VP8Metric VP8SSE16x16, VP8SSE16x8, VP8SSE8x8, VP8SSE4x4;
typedef int (*VP8WMetric)(const uint8_t* pix, const uint8_t* ref,
const uint16_t* const weights);
extern VP8WMetric VP8TDisto4x4, VP8TDisto16x16;
typedef void (*VP8BlockCopy)(const uint8_t* src, uint8_t* dst);
extern VP8BlockCopy VP8Copy4x4;
extern VP8BlockCopy VP8Copy8x8;
extern VP8BlockCopy VP8Copy16x16;
// Quantization
typedef int (*VP8QuantizeBlock)(int16_t in[16], int16_t out[16],
int n, const VP8Matrix* const mtx);
extern VP8QuantizeBlock VP8EncQuantizeBlock;
typedef enum {
kSSE2,
kSSE3
} CPUFeature;
// returns true if the CPU supports the feature.
typedef int (*VP8CPUInfo)(CPUFeature feature);
extern VP8CPUInfo VP8EncGetCPUInfo;
void VP8EncDspInit(void); // must be called before using any of the above
// in filter.c
extern void VP8InitFilter(VP8EncIterator* const it);
extern void VP8StoreFilterStats(VP8EncIterator* const it);