mirror of
https://github.com/webmproject/libwebp.git
synced 2025-07-15 21:39:59 +02:00
5-7% faster SSE2 versions of YUV->RGB conversion functions
The C-version gets ~7-8% slower in order to match the SSE2 output exactly. The old (now off-by-1) code is kept under the WEBP_YUV_USE_TABLE flag for reference. (note that calc rounding precision is slightly better ~= +0.02dB) on ARM-neon, we somehow recover the ~4% speed that was lost by mimicking the initial C-version (see https://gerrit.chromium.org/gerrit/#/c/41610) Change-Id: Ia4363c5ed9b4c9edff5d932b002e57bb7814bf6f
This commit is contained in:
210
src/dsp/yuv.h
210
src/dsp/yuv.h
@ -14,7 +14,7 @@
|
||||
// Y = 0.2569 * R + 0.5044 * G + 0.0979 * B + 16
|
||||
// U = -0.1483 * R - 0.2911 * G + 0.4394 * B + 128
|
||||
// V = 0.4394 * R - 0.3679 * G - 0.0715 * B + 128
|
||||
// We use 16bit fixed point operations for RGB->YUV conversion.
|
||||
// We use 16bit fixed point operations for RGB->YUV conversion (YUV_FIX).
|
||||
//
|
||||
// For the Y'CbCr to RGB conversion, the BT.601 specification reads:
|
||||
// R = 1.164 * (Y-16) + 1.596 * (V-128)
|
||||
@ -23,21 +23,24 @@
|
||||
// where Y is in the [16,235] range, and U/V in the [16,240] range.
|
||||
// In the table-lookup version (WEBP_YUV_USE_TABLE), the common factor
|
||||
// "1.164 * (Y-16)" can be handled as an offset in the VP8kClip[] table.
|
||||
// So in this case the formulae should be read as:
|
||||
// So in this case the formulae should read:
|
||||
// R = 1.164 * [Y + 1.371 * (V-128) ] - 18.624
|
||||
// G = 1.164 * [Y - 0.698 * (V-128) - 0.336 * (U-128)] - 18.624
|
||||
// B = 1.164 * [Y + 1.733 * (U-128)] - 18.624
|
||||
// once factorized. Here too, 16bit fixed precision is used.
|
||||
// once factorized.
|
||||
// For YUV->RGB conversion, only 14bit fixed precision is used (YUV_FIX2).
|
||||
// That's the maximum possible for a convenient ARM implementation.
|
||||
//
|
||||
// Author: Skal (pascal.massimino@gmail.com)
|
||||
|
||||
#ifndef WEBP_DSP_YUV_H_
|
||||
#define WEBP_DSP_YUV_H_
|
||||
|
||||
#include "./dsp.h"
|
||||
#include "../dec/decode_vp8.h"
|
||||
|
||||
// Define the following to use the LUT-based code:
|
||||
#define WEBP_YUV_USE_TABLE
|
||||
// #define WEBP_YUV_USE_TABLE
|
||||
|
||||
#if defined(WEBP_EXPERIMENTAL_FEATURES)
|
||||
// Do NOT activate this feature for real compression. This is only experimental!
|
||||
@ -56,14 +59,100 @@
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
enum { YUV_FIX = 16, // fixed-point precision
|
||||
enum {
|
||||
YUV_FIX = 16, // fixed-point precision for RGB->YUV
|
||||
YUV_HALF = 1 << (YUV_FIX - 1),
|
||||
YUV_MASK = (256 << YUV_FIX) - 1,
|
||||
YUV_RANGE_MIN = -227, // min value of r/g/b output
|
||||
YUV_RANGE_MAX = 256 + 226 // max value of r/g/b output
|
||||
YUV_RANGE_MAX = 256 + 226, // max value of r/g/b output
|
||||
|
||||
YUV_FIX2 = 14, // fixed-point precision for YUV->RGB
|
||||
YUV_HALF2 = 1 << (YUV_FIX2 - 1),
|
||||
YUV_MASK2 = (256 << YUV_FIX2) - 1
|
||||
};
|
||||
|
||||
#ifdef WEBP_YUV_USE_TABLE
|
||||
// These constants are 14b fixed-point version of ITU-R BT.601 constants.
|
||||
#define kYScale 19077 // 1.164 = 255 / 219
|
||||
#define kVToR 26149 // 1.596 = 255 / 112 * 0.701
|
||||
#define kUToG 6419 // 0.391 = 255 / 112 * 0.886 * 0.114 / 0.587
|
||||
#define kVToG 13320 // 0.813 = 255 / 112 * 0.701 * 0.299 / 0.587
|
||||
#define kUToB 33050 // 2.018 = 255 / 112 * 0.886
|
||||
#define kRCst (-kYScale * 16 - kVToR * 128 + YUV_HALF2)
|
||||
#define kGCst (-kYScale * 16 + kUToG * 128 + kVToG * 128 + YUV_HALF2)
|
||||
#define kBCst (-kYScale * 16 - kUToB * 128 + YUV_HALF2)
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
#ifndef WEBP_YUV_USE_TABLE
|
||||
|
||||
// slower on x86 by ~7-8%, but bit-exact with the SSE2 version
|
||||
|
||||
static WEBP_INLINE uint8_t VP8Clip8(int v) {
|
||||
return ((v & ~YUV_MASK2) == 0) ? (v >> YUV_FIX2) : ((~v) >> 31);
|
||||
}
|
||||
|
||||
static WEBP_INLINE uint8_t VP8YUVToR(int y, int v) {
|
||||
return VP8Clip8(kYScale * y + kVToR * v + kRCst);
|
||||
}
|
||||
|
||||
static WEBP_INLINE uint8_t VP8YUVToG(int y, int u, int v) {
|
||||
return VP8Clip8(kYScale * y - kUToG * u - kVToG * v + kGCst);
|
||||
}
|
||||
|
||||
static WEBP_INLINE uint8_t VP8YUVToB(int y, int u) {
|
||||
return VP8Clip8(kYScale * y + kUToB * u + kBCst);
|
||||
}
|
||||
|
||||
static WEBP_INLINE void VP8YuvToRgb(uint8_t y, uint8_t u, uint8_t v,
|
||||
uint8_t* const rgb) {
|
||||
rgb[0] = VP8YUVToR(y, v);
|
||||
rgb[1] = VP8YUVToG(y, u, v);
|
||||
rgb[2] = VP8YUVToB(y, u);
|
||||
}
|
||||
|
||||
static WEBP_INLINE void VP8YuvToBgr(uint8_t y, uint8_t u, uint8_t v,
|
||||
uint8_t* const bgr) {
|
||||
bgr[0] = VP8YUVToB(y, u);
|
||||
bgr[1] = VP8YUVToG(y, u, v);
|
||||
bgr[2] = VP8YUVToR(y, v);
|
||||
}
|
||||
|
||||
static WEBP_INLINE void VP8YuvToRgb565(uint8_t y, uint8_t u, uint8_t v,
|
||||
uint8_t* const rgb) {
|
||||
const int r = VP8YUVToR(y, v); // 5 usable bits
|
||||
const int g = VP8YUVToG(y, u, v); // 6 usable bits
|
||||
const int b = VP8YUVToB(y, u); // 5 usable bits
|
||||
const int rg = (r & 0xf8) | (g >> 5);
|
||||
const int gb = ((g << 3) & 0xe0) | (b >> 3);
|
||||
#ifdef WEBP_SWAP_16BIT_CSP
|
||||
rgb[0] = gb;
|
||||
rgb[1] = rg;
|
||||
#else
|
||||
rgb[0] = rg;
|
||||
rgb[1] = gb;
|
||||
#endif
|
||||
}
|
||||
|
||||
static WEBP_INLINE void VP8YuvToRgba4444(uint8_t y, uint8_t u, uint8_t v,
|
||||
uint8_t* const argb) {
|
||||
const int r = VP8YUVToR(y, v); // 4 usable bits
|
||||
const int g = VP8YUVToG(y, u, v); // 4 usable bits
|
||||
const int b = VP8YUVToB(y, u); // 4 usable bits
|
||||
const int rg = (r & 0xf0) | (g >> 4);
|
||||
const int ba = (b & 0xf0) | 0x0f; // overwrite the lower 4 bits
|
||||
#ifdef WEBP_SWAP_16BIT_CSP
|
||||
argb[0] = ba;
|
||||
argb[1] = rg;
|
||||
#else
|
||||
argb[0] = rg;
|
||||
argb[1] = ba;
|
||||
#endif
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
// Table-based version, not totally equivalent to the SSE2 version.
|
||||
// Rounding diff is only +/-1 though.
|
||||
|
||||
extern int16_t VP8kVToR[256], VP8kUToB[256];
|
||||
extern int32_t VP8kVToG[256], VP8kUToG[256];
|
||||
@ -125,88 +214,11 @@ static WEBP_INLINE void VP8YuvToRgba4444(uint8_t y, uint8_t u, uint8_t v,
|
||||
#endif
|
||||
}
|
||||
|
||||
#else // Table-free version (slower on x86)
|
||||
|
||||
// These constants are 16b fixed-point version of ITU-R BT.601 constants
|
||||
#define kYScale 76309 // 1.164 = 255 / 219
|
||||
#define kVToR 104597 // 1.596 = 255 / 112 * 0.701
|
||||
#define kUToG 25674 // 0.391 = 255 / 112 * 0.886 * 0.114 / 0.587
|
||||
#define kVToG 53278 // 0.813 = 255 / 112 * 0.701 * 0.299 / 0.587
|
||||
#define kUToB 132201 // 2.018 = 255 / 112 * 0.886
|
||||
#define kRCst (-kYScale * 16 - kVToR * 128 + YUV_HALF)
|
||||
#define kGCst (-kYScale * 16 + kUToG * 128 + kVToG * 128 + YUV_HALF)
|
||||
#define kBCst (-kYScale * 16 - kUToB * 128 + YUV_HALF)
|
||||
|
||||
static WEBP_INLINE uint8_t VP8Clip8(int v) {
|
||||
return ((v & ~YUV_MASK) == 0) ? (uint8_t)(v >> YUV_FIX)
|
||||
: (v < 0) ? 0u : 255u;
|
||||
}
|
||||
|
||||
static WEBP_INLINE uint8_t VP8ClipN(int v, int N) { // clip to N bits
|
||||
return ((v & ~YUV_MASK) == 0) ? (uint8_t)(v >> (YUV_FIX + (8 - N)))
|
||||
: (v < 0) ? 0u : (255u >> (8 - N));
|
||||
}
|
||||
|
||||
static WEBP_INLINE int VP8YUVToR(int y, int v) {
|
||||
return kYScale * y + kVToR * v + kRCst;
|
||||
}
|
||||
|
||||
static WEBP_INLINE int VP8YUVToG(int y, int u, int v) {
|
||||
return kYScale * y - kUToG * u - kVToG * v + kGCst;
|
||||
}
|
||||
|
||||
static WEBP_INLINE int VP8YUVToB(int y, int u) {
|
||||
return kYScale * y + kUToB * u + kBCst;
|
||||
}
|
||||
|
||||
static WEBP_INLINE void VP8YuvToRgb(uint8_t y, uint8_t u, uint8_t v,
|
||||
uint8_t* const rgb) {
|
||||
rgb[0] = VP8Clip8(VP8YUVToR(y, v));
|
||||
rgb[1] = VP8Clip8(VP8YUVToG(y, u, v));
|
||||
rgb[2] = VP8Clip8(VP8YUVToB(y, u));
|
||||
}
|
||||
|
||||
static WEBP_INLINE void VP8YuvToBgr(uint8_t y, uint8_t u, uint8_t v,
|
||||
uint8_t* const bgr) {
|
||||
bgr[0] = VP8Clip8(VP8YUVToB(y, u));
|
||||
bgr[1] = VP8Clip8(VP8YUVToG(y, u, v));
|
||||
bgr[2] = VP8Clip8(VP8YUVToR(y, v));
|
||||
}
|
||||
|
||||
static WEBP_INLINE void VP8YuvToRgb565(uint8_t y, uint8_t u, uint8_t v,
|
||||
uint8_t* const rgb) {
|
||||
const int r = VP8Clip8(VP8YUVToR(y, u));
|
||||
const int g = VP8ClipN(VP8YUVToG(y, u, v), 6);
|
||||
const int b = VP8ClipN(VP8YUVToB(y, v), 5);
|
||||
const uint8_t rg = (r & 0xf8) | (g >> 3);
|
||||
const uint8_t gb = (g << 5) | b;
|
||||
#ifdef WEBP_SWAP_16BIT_CSP
|
||||
rgb[0] = gb;
|
||||
rgb[1] = rg;
|
||||
#else
|
||||
rgb[0] = rg;
|
||||
rgb[1] = gb;
|
||||
#endif
|
||||
}
|
||||
|
||||
static WEBP_INLINE void VP8YuvToRgba4444(uint8_t y, uint8_t u, uint8_t v,
|
||||
uint8_t* const argb) {
|
||||
const int r = VP8Clip8(VP8YUVToR(y, u));
|
||||
const int g = VP8ClipN(VP8YUVToG(y, u, v), 4);
|
||||
const int b = VP8Clip8(VP8YUVToB(y, v));
|
||||
const uint8_t rg = (r & 0xf0) | g;
|
||||
const uint8_t ba = b | 0x0f; // overwrite the lower 4 bits
|
||||
#ifdef WEBP_SWAP_16BIT_CSP
|
||||
argb[0] = ba;
|
||||
argb[1] = rg;
|
||||
#else
|
||||
argb[0] = rg;
|
||||
argb[1] = ba;
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif // WEBP_YUV_USE_TABLE
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
// Alpha handling variants
|
||||
|
||||
static WEBP_INLINE void VP8YuvToArgb(uint8_t y, uint8_t u, uint8_t v,
|
||||
uint8_t* const argb) {
|
||||
argb[0] = 0xff;
|
||||
@ -228,6 +240,28 @@ static WEBP_INLINE void VP8YuvToRgba(uint8_t y, uint8_t u, uint8_t v,
|
||||
// Must be called before everything, to initialize the tables.
|
||||
void VP8YUVInit(void);
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
// SSE2 extra functions (mostly for upsampling_sse2.c)
|
||||
|
||||
#if defined(WEBP_USE_SSE2)
|
||||
|
||||
#ifdef FANCY_UPSAMPLING
|
||||
// Process 32 pixels and store the result (24b or 32b per pixel) in *dst.
|
||||
extern void VP8YuvToRgba32(const uint8_t* y, const uint8_t* u, const uint8_t* v,
|
||||
uint8_t* dst);
|
||||
extern void VP8YuvToRgb32(const uint8_t* y, const uint8_t* u, const uint8_t* v,
|
||||
uint8_t* dst);
|
||||
extern void VP8YuvToBgra32(const uint8_t* y, const uint8_t* u, const uint8_t* v,
|
||||
uint8_t* dst);
|
||||
extern void VP8YuvToBgr32(const uint8_t* y, const uint8_t* u, const uint8_t* v,
|
||||
uint8_t* dst);
|
||||
#endif // FANCY_UPSAMPLING
|
||||
|
||||
// Must be called to initialize tables before using the functions.
|
||||
extern void VP8YUVInitSSE2(void);
|
||||
|
||||
#endif // WEBP_USE_SSE2
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// RGB -> YUV conversion
|
||||
|
||||
@ -257,7 +291,7 @@ static WEBP_INLINE int VP8RGBToV(int r, int g, int b) {
|
||||
#else
|
||||
|
||||
// This JPEG-YUV colorspace, only for comparison!
|
||||
// These are also 16-bit precision coefficients from Rec.601, but with full
|
||||
// These are also 16bit precision coefficients from Rec.601, but with full
|
||||
// [0..255] output range.
|
||||
static WEBP_INLINE int VP8RGBToY(int r, int g, int b) {
|
||||
const int kRound = (1 << (YUV_FIX - 1));
|
||||
|
Reference in New Issue
Block a user