multi-threaded segment analysis

When -mt is used, the analysis pass will be split in two
and each halves performed in parallel. This gives a 5%-9% speed-up.

This was a good occasion to revamp the iterator and analysis-loop
code. As a result, the default (non-mt) behaviour is a tad (~1%) faster.

Change-Id: Id0828c2ebe2e968db8ca227da80af591d6a4055f
This commit is contained in:
skal
2013-09-05 09:13:36 +02:00
parent 7e2d65950f
commit 93402f02db
6 changed files with 200 additions and 76 deletions

View File

@ -55,13 +55,21 @@ void VP8IteratorSetRow(VP8EncIterator* const it, int y) {
void VP8IteratorReset(VP8EncIterator* const it) {
VP8Encoder* const enc = it->enc_;
VP8IteratorSetRow(it, 0);
it->count_down_ = enc->mb_w_ * enc->mb_h_;
VP8IteratorSetCountDown(it, enc->mb_w_ * enc->mb_h_); // default
InitTop(it);
InitLeft(it);
memset(it->bit_count_, 0, sizeof(it->bit_count_));
it->do_trellis_ = 0;
}
void VP8IteratorSetCountDown(VP8EncIterator* const it, int count_down) {
it->count_down_ = it->count_down0_ = count_down;
}
int VP8IteratorIsDone(const VP8EncIterator* const it) {
return (it->count_down_ <= 0);
}
void VP8IteratorInit(VP8Encoder* const enc, VP8EncIterator* const it) {
it->enc_ = enc;
it->y_stride_ = enc->pic_->y_stride;
@ -81,9 +89,10 @@ void VP8IteratorInit(VP8Encoder* const enc, VP8EncIterator* const it) {
int VP8IteratorProgress(const VP8EncIterator* const it, int delta) {
VP8Encoder* const enc = it->enc_;
if (delta && enc->pic_->progress_hook != NULL) {
const int percent = (enc->mb_h_ <= 1)
const int done = it->count_down0_ - it->count_down_;
const int percent = (it->count_down0_ <= 0)
? it->percent0_
: it->percent0_ + delta * it->y_ / (enc->mb_h_ - 1);
: it->percent0_ + delta * done / it->count_down0_;
return WebPReportProgress(enc->pic_, percent, &enc->percent_);
}
return 1;
@ -93,6 +102,8 @@ int VP8IteratorProgress(const VP8EncIterator* const it, int delta) {
// Import the source samples into the cache. Takes care of replicating
// boundary pixels if necessary.
static WEBP_INLINE int MinSize(int a, int b) { return (a < b) ? a : b; }
static void ImportBlock(const uint8_t* src, int src_stride,
uint8_t* dst, int w, int h, int size) {
int i;
@ -110,30 +121,55 @@ static void ImportBlock(const uint8_t* src, int src_stride,
}
}
void VP8IteratorImport(const VP8EncIterator* const it) {
static void ImportLine(const uint8_t* src, int src_stride,
uint8_t* dst, int len, int total_len) {
int i;
for (i = 0; i < len; ++i, src += src_stride) dst[i] = *src;
for (; i < total_len; ++i) dst[i] = dst[len - 1];
}
void VP8IteratorImport(VP8EncIterator* const it, uint8_t* tmp_32) {
const VP8Encoder* const enc = it->enc_;
const int x = it->x_, y = it->y_;
const WebPPicture* const pic = enc->pic_;
const uint8_t* const ysrc = pic->y + (y * pic->y_stride + x) * 16;
const uint8_t* const ysrc = pic->y + (y * pic->y_stride + x) * 16;
const uint8_t* const usrc = pic->u + (y * pic->uv_stride + x) * 8;
const uint8_t* const vsrc = pic->v + (y * pic->uv_stride + x) * 8;
uint8_t* const ydst = it->yuv_in_ + Y_OFF;
uint8_t* const udst = it->yuv_in_ + U_OFF;
uint8_t* const vdst = it->yuv_in_ + V_OFF;
int w = (pic->width - x * 16);
int h = (pic->height - y * 16);
const int w = MinSize(pic->width - x * 16, 16);
const int h = MinSize(pic->height - y * 16, 16);
const int uv_w = (w + 1) >> 1;
const int uv_h = (h + 1) >> 1;
if (w > 16) w = 16;
if (h > 16) h = 16;
ImportBlock(ysrc, pic->y_stride, it->yuv_in_ + Y_OFF, w, h, 16);
ImportBlock(usrc, pic->uv_stride, it->yuv_in_ + U_OFF, uv_w, uv_h, 8);
ImportBlock(vsrc, pic->uv_stride, it->yuv_in_ + V_OFF, uv_w, uv_h, 8);
// Luma plane
ImportBlock(ysrc, pic->y_stride, ydst, w, h, 16);
if (tmp_32 == NULL) return;
{ // U/V planes
const int uv_w = (w + 1) >> 1;
const int uv_h = (h + 1) >> 1;
ImportBlock(usrc, pic->uv_stride, udst, uv_w, uv_h, 8);
ImportBlock(vsrc, pic->uv_stride, vdst, uv_w, uv_h, 8);
// Import source (uncompressed) samples into boundary.
if (x == 0) {
InitLeft(it);
} else {
if (y == 0) {
it->y_left_[-1] = it->u_left_[-1] = it->v_left_[-1] = 127;
} else {
it->y_left_[-1] = ysrc[- 1 - pic->y_stride];
it->u_left_[-1] = usrc[- 1 - pic->uv_stride];
it->v_left_[-1] = vsrc[- 1 - pic->uv_stride];
}
ImportLine(ysrc - 1, pic->y_stride, it->y_left_, h, 16);
ImportLine(usrc - 1, pic->uv_stride, it->u_left_, uv_h, 8);
ImportLine(vsrc - 1, pic->uv_stride, it->v_left_, uv_h, 8);
}
it->y_top_ = tmp_32 + 0;
it->uv_top_ = tmp_32 + 16;
if (y == 0) {
memset(tmp_32, 127, 32 * sizeof(*tmp_32));
} else {
ImportLine(ysrc - pic->y_stride, 1, tmp_32, w, 16);
ImportLine(usrc - pic->uv_stride, 1, tmp_32 + 16, uv_w, 8);
ImportLine(vsrc - pic->uv_stride, 1, tmp_32 + 16 + 8, uv_w, 8);
}
}
@ -251,40 +287,40 @@ void VP8IteratorBytesToNz(VP8EncIterator* const it) {
//------------------------------------------------------------------------------
// Advance to the next position, doing the bookeeping.
int VP8IteratorNext(VP8EncIterator* const it,
const uint8_t* const block_to_save) {
void VP8IteratorSaveBoundary(VP8EncIterator* const it,
const uint8_t* const block_to_save) {
VP8Encoder* const enc = it->enc_;
if (block_to_save != NULL) {
const int x = it->x_, y = it->y_;
const uint8_t* const ysrc = block_to_save + Y_OFF;
const uint8_t* const usrc = block_to_save + U_OFF;
if (x < enc->mb_w_ - 1) { // left
int i;
for (i = 0; i < 16; ++i) {
it->y_left_[i] = ysrc[15 + i * BPS];
}
for (i = 0; i < 8; ++i) {
it->u_left_[i] = usrc[7 + i * BPS];
it->v_left_[i] = usrc[15 + i * BPS];
}
// top-left (before 'top'!)
it->y_left_[-1] = it->y_top_[15];
it->u_left_[-1] = it->uv_top_[0 + 7];
it->v_left_[-1] = it->uv_top_[8 + 7];
const int x = it->x_, y = it->y_;
const uint8_t* const ysrc = block_to_save + Y_OFF;
const uint8_t* const usrc = block_to_save + U_OFF;
if (x < enc->mb_w_ - 1) { // left
int i;
for (i = 0; i < 16; ++i) {
it->y_left_[i] = ysrc[15 + i * BPS];
}
if (y < enc->mb_h_ - 1) { // top
memcpy(it->y_top_, ysrc + 15 * BPS, 16);
memcpy(it->uv_top_, usrc + 7 * BPS, 8 + 8);
for (i = 0; i < 8; ++i) {
it->u_left_[i] = usrc[7 + i * BPS];
it->v_left_[i] = usrc[15 + i * BPS];
}
// top-left (before 'top'!)
it->y_left_[-1] = it->y_top_[15];
it->u_left_[-1] = it->uv_top_[0 + 7];
it->v_left_[-1] = it->uv_top_[8 + 7];
}
if (y < enc->mb_h_ - 1) { // top
memcpy(it->y_top_, ysrc + 15 * BPS, 16);
memcpy(it->uv_top_, usrc + 7 * BPS, 8 + 8);
}
}
int VP8IteratorNext(VP8EncIterator* const it) {
it->preds_ += 4;
it->mb_ += 1;
it->nz_ += 1;
it->y_top_ += 16;
it->uv_top_ += 16;
it->x_ += 1;
if (it->x_ == enc->mb_w_) {
if (it->x_ == it->enc_->mb_w_) {
VP8IteratorSetRow(it, ++it->y_);
}
return (0 < --it->count_down_);