Add EncodeImageInternal() method.

Most of changes in enc/vp8l.c is cherry-picked from src/lossless/encode.c

Change-Id: I27938cb2590eccbfe1db0a454343e856bd483e75
This commit is contained in:
Vikas Arora 2012-04-12 11:31:17 +00:00 committed by James Zern
parent 6b38378acb
commit 84547f540c
7 changed files with 760 additions and 43 deletions

View File

@ -304,7 +304,7 @@ int VP8LBackwardReferencesHashChain(int xsize, int ysize, int use_palette,
Error: Error:
VP8LHashChain_Delete(hash_chain); VP8LHashChain_Delete(hash_chain);
free(hash_chain); free(hash_chain);
VP8LColorCacheDelete(&hashers); VP8LColorCacheClear(&hashers);
return ok; return ok;
} }
@ -506,7 +506,7 @@ Error:
free(hash_chain); free(hash_chain);
free(cost_model); free(cost_model);
free(cost); free(cost);
VP8LColorCacheDelete(&hashers); VP8LColorCacheClear(&hashers);
return ok; return ok;
} }
@ -597,7 +597,7 @@ Error:
if (hash_chain) { if (hash_chain) {
free(hash_chain); free(hash_chain);
} }
VP8LColorCacheDelete(&hashers); VP8LColorCacheClear(&hashers);
return ok; return ok;
} }
@ -664,7 +664,7 @@ int VP8LVerifyBackwardReferences(const uint32_t* argb, int xsize, int ysize,
if (argb[num_pixels] != PixOrCopyArgb(&lit[i])) { if (argb[num_pixels] != PixOrCopyArgb(&lit[i])) {
printf("i %d, pixel %d, original: 0x%08x, literal: 0x%08x\n", printf("i %d, pixel %d, original: 0x%08x, literal: 0x%08x\n",
i, num_pixels, argb[num_pixels], PixOrCopyArgb(&lit[i])); i, num_pixels, argb[num_pixels], PixOrCopyArgb(&lit[i]));
VP8LColorCacheDelete(&hashers); VP8LColorCacheClear(&hashers);
return 0; return 0;
} }
VP8LColorCacheInsert(&hashers, argb[num_pixels]); VP8LColorCacheInsert(&hashers, argb[num_pixels]);
@ -677,7 +677,7 @@ int VP8LVerifyBackwardReferences(const uint32_t* argb, int xsize, int ysize,
"palette_entry: 0x%08x\n", "palette_entry: 0x%08x\n",
i, num_pixels, argb[num_pixels], PixOrCopyPaletteIx(&lit[i]), i, num_pixels, argb[num_pixels], PixOrCopyPaletteIx(&lit[i]),
palette_entry); palette_entry);
VP8LColorCacheDelete(&hashers); VP8LColorCacheClear(&hashers);
return 0; return 0;
} }
VP8LColorCacheInsert(&hashers, argb[num_pixels]); VP8LColorCacheInsert(&hashers, argb[num_pixels]);
@ -686,7 +686,7 @@ int VP8LVerifyBackwardReferences(const uint32_t* argb, int xsize, int ysize,
int k; int k;
if (PixOrCopyDistance(&lit[i]) == 0) { if (PixOrCopyDistance(&lit[i]) == 0) {
printf("Bw reference with zero distance.\n"); printf("Bw reference with zero distance.\n");
VP8LColorCacheDelete(&hashers); VP8LColorCacheClear(&hashers);
return 0; return 0;
} }
for (k = 0; k < lit[i].len; ++k) { for (k = 0; k < lit[i].len; ++k) {
@ -696,7 +696,7 @@ int VP8LVerifyBackwardReferences(const uint32_t* argb, int xsize, int ysize,
i, num_pixels, argb[num_pixels], i, num_pixels, argb[num_pixels],
argb[num_pixels - PixOrCopyDistance(&lit[i])], argb[num_pixels - PixOrCopyDistance(&lit[i])],
PixOrCopyDistance(&lit[i])); PixOrCopyDistance(&lit[i]));
VP8LColorCacheDelete(&hashers); VP8LColorCacheClear(&hashers);
return 0; return 0;
} }
VP8LColorCacheInsert(&hashers, argb[num_pixels]); VP8LColorCacheInsert(&hashers, argb[num_pixels]);
@ -708,11 +708,11 @@ int VP8LVerifyBackwardReferences(const uint32_t* argb, int xsize, int ysize,
const int pix_count = xsize * ysize; const int pix_count = xsize * ysize;
if (num_pixels != pix_count) { if (num_pixels != pix_count) {
printf("verify failure: %d != %d\n", num_pixels, pix_count); printf("verify failure: %d != %d\n", num_pixels, pix_count);
VP8LColorCacheDelete(&hashers); VP8LColorCacheClear(&hashers);
return 0; return 0;
} }
} }
VP8LColorCacheDelete(&hashers); VP8LColorCacheClear(&hashers);
return 1; return 1;
} }
@ -749,7 +749,7 @@ static int ComputePaletteHistogram(const uint32_t* argb, int xsize, int ysize,
assert(pixel_index == xsize * ysize); assert(pixel_index == xsize * ysize);
(void)xsize; // xsize is not used in non-debug compilations otherwise. (void)xsize; // xsize is not used in non-debug compilations otherwise.
(void)ysize; // ysize is not used in non-debug compilations otherwise. (void)ysize; // ysize is not used in non-debug compilations otherwise.
VP8LColorCacheDelete(&hashers); VP8LColorCacheClear(&hashers);
return 1; return 1;
} }

View File

@ -59,7 +59,7 @@ static WEBP_INLINE int BitsLog2Floor(uint32_t n) {
} }
#endif #endif
static WEBP_INLINE int BitsLog2Ceiling(uint32_t n) { static WEBP_INLINE int VP8LBitsLog2Ceiling(uint32_t n) {
int floor = BitsLog2Floor(n); int floor = BitsLog2Floor(n);
if (n == (n & ~(n - 1))) // zero or a power of two. if (n == (n & ~(n - 1))) // zero or a power of two.
return floor; return floor;

View File

@ -21,6 +21,7 @@
#include "./vp8li.h" #include "./vp8li.h"
#include "../dsp/lossless.h" #include "../dsp/lossless.h"
#include "../utils/bit_writer.h" #include "../utils/bit_writer.h"
#include "../utils/huffman_encode.h"
#if defined(__cplusplus) || defined(c_plusplus) #if defined(__cplusplus) || defined(c_plusplus)
extern "C" { extern "C" {
@ -164,18 +165,728 @@ static void BundleColorMap(const uint32_t* const argb,
} }
} }
static int GetBackwardReferences(int width, int height,
const uint32_t* argb,
int quality, int use_color_cache,
int cache_bits, int use_2d_locality,
PixOrCopy** backward_refs,
int* backward_refs_size) {
int ok = 0;
// Backward Reference using LZ77.
int lz77_is_useful;
int backward_refs_rle_size;
int backward_refs_lz77_size;
const int num_pix = width * height;
VP8LHistogram* histo_rle;
PixOrCopy* backward_refs_lz77 = (PixOrCopy*)
malloc(num_pix * sizeof(*backward_refs_lz77));
PixOrCopy* backward_refs_rle = (PixOrCopy*)
malloc(num_pix * sizeof(*backward_refs_lz77));
VP8LHistogram* histo_lz77 = (VP8LHistogram*)malloc(2 * sizeof(*histo_lz77));
if (backward_refs_lz77 == NULL || backward_refs_rle == NULL ||
histo_lz77 == NULL) {
free(backward_refs_lz77);
free(backward_refs_rle);
goto End;
}
*backward_refs = NULL;
histo_rle = histo_lz77 + 1;
if (!VP8LBackwardReferencesHashChain(width, height, use_color_cache,
argb, cache_bits, quality,
backward_refs_lz77,
&backward_refs_lz77_size)) {
goto End;
}
VP8LHistogramInit(histo_lz77, cache_bits);
VP8LHistogramCreate(histo_lz77, backward_refs_lz77, backward_refs_lz77_size);
// Backward Reference using RLE only.
VP8LBackwardReferencesRle(width, height, argb, backward_refs_rle,
&backward_refs_rle_size);
VP8LHistogramInit(histo_rle, cache_bits);
VP8LHistogramCreate(histo_rle, backward_refs_rle, backward_refs_rle_size);
// Check if LZ77 is useful.
lz77_is_useful = (VP8LHistogramEstimateBits(histo_rle) >
VP8LHistogramEstimateBits(histo_lz77));
// Choose appropriate backward reference.
if (quality >= 50 && lz77_is_useful) {
const int recursion_level = (num_pix < 320 * 200) ? 1 : 0;
PixOrCopy* const backward_refs_trace =
(PixOrCopy*)malloc(num_pix * sizeof(*backward_refs_trace));
int backward_refs_trace_size;
free(backward_refs_rle);
free(backward_refs_lz77);
if (backward_refs_trace == NULL ||
!VP8LBackwardReferencesTraceBackwards(width, height,
recursion_level, use_color_cache,
argb, cache_bits,
backward_refs_trace,
&backward_refs_trace_size)) {
free(backward_refs_trace);
goto End;
}
*backward_refs = backward_refs_trace;
*backward_refs_size = backward_refs_trace_size;
} else {
if (lz77_is_useful) {
*backward_refs = backward_refs_lz77;
*backward_refs_size = backward_refs_lz77_size;
free(backward_refs_rle);
} else {
*backward_refs = backward_refs_rle;
*backward_refs_size = backward_refs_rle_size;
free(backward_refs_lz77);
}
}
if (use_2d_locality) {
// Use backward reference with 2D locality.
VP8LBackwardReferences2DLocality(width, *backward_refs_size,
*backward_refs);
}
ok = 1;
End:
free(histo_lz77);
if (!ok) {
free(*backward_refs);
*backward_refs = NULL;
}
return ok;
}
static void DeleteHistograms(int size, VP8LHistogram** histograms) {
if (histograms != NULL) {
int i;
for (i = 0; i < size; ++i) {
free(histograms[i]);
}
free(histograms);
}
}
static int GetHistImageSymbols(int xsize, int ysize,
PixOrCopy* backward_refs,
int backward_refs_size,
int quality, int histogram_bits,
int cache_bits,
VP8LHistogram*** histogram_image,
int* histogram_image_size,
uint32_t* histogram_symbols) {
// Build histogram image.
int ok = 0;
int i;
int histogram_image_raw_size;
VP8LHistogram** histogram_image_raw = NULL;
*histogram_image = 0;
if (!VP8LHistogramBuildImage(xsize, ysize, histogram_bits, cache_bits,
backward_refs, backward_refs_size,
&histogram_image_raw,
&histogram_image_raw_size)) {
goto Error;
}
// Collapse similar histograms.
if (!VP8LHistogramCombine(histogram_image_raw, histogram_image_raw_size,
quality, histogram_image, histogram_image_size)) {
goto Error;
}
// Refine histogram image.
for (i = 0; i < histogram_image_raw_size; ++i) {
histogram_symbols[i] = -1;
}
VP8LHistogramRefine(histogram_image_raw, histogram_image_raw_size,
histogram_symbols, *histogram_image_size,
*histogram_image);
ok = 1;
Error:
if (!ok) {
DeleteHistograms(*histogram_image_size, *histogram_image);
}
DeleteHistograms(histogram_image_raw_size, histogram_image_raw);
return ok;
}
// Heuristics for selecting the stride ranges to collapse.
static int ValuesShouldBeCollapsedToStrideAverage(int a, int b) {
return abs(a - b) < 4;
}
// Change the population counts in a way that the consequent
// Hufmann tree compression, especially its rle-part will be more
// likely to compress this data more efficiently.
//
// length contains the size of the histogram.
// data contains the population counts.
static int OptimizeHuffmanForRle(int length, int* counts) {
int stride;
int limit;
int sum;
uint8_t* good_for_rle;
// 1) Let's make the Huffman code more compatible with rle encoding.
int i;
for (; length >= 0; --length) {
if (length == 0) {
return 1; // All zeros.
}
if (counts[length - 1] != 0) {
// Now counts[0..length - 1] does not have trailing zeros.
break;
}
}
// 2) Let's mark all population counts that already can be encoded
// with an rle code.
good_for_rle = (uint8_t*)calloc(length, 1);
if (good_for_rle == NULL) {
return 0;
}
{
// Let's not spoil any of the existing good rle codes.
// Mark any seq of 0's that is longer as 5 as a good_for_rle.
// Mark any seq of non-0's that is longer as 7 as a good_for_rle.
int symbol = counts[0];
int stride = 0;
for (i = 0; i < length + 1; ++i) {
if (i == length || counts[i] != symbol) {
if ((symbol == 0 && stride >= 5) ||
(symbol != 0 && stride >= 7)) {
int k;
for (k = 0; k < stride; ++k) {
good_for_rle[i - k - 1] = 1;
}
}
stride = 1;
if (i != length) {
symbol = counts[i];
}
} else {
++stride;
}
}
}
// 3) Let's replace those population counts that lead to more rle codes.
stride = 0;
limit = counts[0];
sum = 0;
for (i = 0; i < length + 1; ++i) {
if (i == length || good_for_rle[i] ||
(i != 0 && good_for_rle[i - 1]) ||
!ValuesShouldBeCollapsedToStrideAverage(counts[i], limit)) {
if (stride >= 4 || (stride >= 3 && sum == 0)) {
int k;
// The stride must end, collapse what we have, if we have enough (4).
int count = (sum + stride / 2) / stride;
if (count < 1) {
count = 1;
}
if (sum == 0) {
// Don't make an all zeros stride to be upgraded to ones.
count = 0;
}
for (k = 0; k < stride; ++k) {
// We don't want to change value at counts[i],
// that is already belonging to the next stride. Thus - 1.
counts[i - k - 1] = count;
}
}
stride = 0;
sum = 0;
if (i < length - 3) {
// All interesting strides have a count of at least 4,
// at least when non-zeros.
limit = (counts[i] + counts[i + 1] +
counts[i + 2] + counts[i + 3] + 2) / 4;
} else if (i < length) {
limit = counts[i];
} else {
limit = 0;
}
}
++stride;
if (i != length) {
sum += counts[i];
if (stride >= 4) {
limit = (sum + stride / 2) / stride;
}
}
}
free(good_for_rle);
return 1;
}
static int GetHuffBitLengthsAndCodes(
int histogram_image_size, VP8LHistogram** histogram_image,
int use_color_cache, int** bit_length_sizes,
uint16_t*** bit_codes, uint8_t*** bit_lengths) {
int i, k;
int ok = 1;
for (i = 0; i < histogram_image_size; ++i) {
const int num_literals = VP8LHistogramNumCodes(histogram_image[i]);
k = 0;
(*bit_length_sizes)[5 * i] = num_literals;
(*bit_lengths)[5 * i] = (uint8_t*)calloc(num_literals, 1);
(*bit_codes)[5 * i] = (uint16_t*)
malloc(num_literals * sizeof(*(*bit_codes)[5 * i]));
if ((*bit_lengths)[5 * i] == NULL || (*bit_codes)[5 * i] == NULL) {
ok = 0;
goto Error;
}
// For each component, optimize histogram for Huffman with RLE compression.
ok = ok && OptimizeHuffmanForRle(num_literals,
histogram_image[i]->literal_);
if (!use_color_cache) {
// Implies that palette_bits == 0,
// and so number of palette entries = (1 << 0) = 1.
// Optimization might have smeared population count in this single
// palette entry, so zero it out.
histogram_image[i]->literal_[256 + kLengthCodes] = 0;
}
ok = ok && OptimizeHuffmanForRle(256, histogram_image[i]->red_);
ok = ok && OptimizeHuffmanForRle(256, histogram_image[i]->blue_);
ok = ok && OptimizeHuffmanForRle(256, histogram_image[i]->alpha_);
ok = ok && OptimizeHuffmanForRle(DISTANCE_CODES_MAX,
histogram_image[i]->distance_);
// Create a Huffman tree (in the form of bit lengths) for each component.
ok = ok && VP8LCreateHuffmanTree(histogram_image[i]->literal_, num_literals,
15, (*bit_lengths)[5 * i]);
for (k = 1; k < 5; ++k) {
int val = 256;
if (k == 4) {
val = DISTANCE_CODES_MAX;
}
(*bit_length_sizes)[5 * i + k] = val;
(*bit_lengths)[5 * i + k] = (uint8_t*)calloc(val, 1);
(*bit_codes)[5 * i + k] = (uint16_t*)calloc(val, sizeof(bit_codes[0]));
if ((*bit_lengths)[5 * i + k] == NULL ||
(*bit_codes)[5 * i + k] == NULL) {
ok = 0;
goto Error;
}
}
ok = ok && VP8LCreateHuffmanTree(histogram_image[i]->red_, 256, 15,
(*bit_lengths)[5 * i + 1]) &&
VP8LCreateHuffmanTree(histogram_image[i]->blue_, 256, 15,
(*bit_lengths)[5 * i + 2]) &&
VP8LCreateHuffmanTree(histogram_image[i]->alpha_, 256, 15,
(*bit_lengths)[5 * i + 3]) &&
VP8LCreateHuffmanTree(histogram_image[i]->distance_,
DISTANCE_CODES_MAX, 15,
(*bit_lengths)[5 * i + 4]);
// Create the actual bit codes for the bit lengths.
for (k = 0; k < 5; ++k) {
int ix = 5 * i + k;
VP8LConvertBitDepthsToSymbols((*bit_lengths)[ix], (*bit_length_sizes)[ix],
(*bit_codes)[ix]);
}
}
return ok;
Error:
{
int idx;
for (idx = 0; idx <= 5 * i + k; ++idx) {
free((*bit_lengths)[idx]);
free((*bit_codes)[idx]);
}
}
return 0;
}
static void ShiftHistogramImage(uint32_t* image , int image_size) {
int i;
for (i = 0; i < image_size; ++i) {
image[i] <<= 8;
image[i] |= 0xff000000;
}
}
static int PackLiteralBitLengths(const uint8_t* bit_lengths,
int cache_bits, int use_color_cache,
int* new_length_size,
uint8_t** new_lengths) {
int i;
int num_codes = 256;
const int cache_size = 1 << cache_bits;
*new_length_size = 256 + kLengthCodes;
if (use_color_cache) {
*new_length_size += cache_size;
}
*new_lengths = (uint8_t*)malloc(*new_length_size);
if (*new_lengths == NULL) {
return 0;
}
num_codes += kLengthCodes;
if (use_color_cache) {
num_codes += cache_size;
}
for (i = 0; i < num_codes; ++i) {
(*new_lengths)[i] = bit_lengths[i];
}
return 1;
}
static void ClearHuffmanTreeIfOnlyOneSymbol(const int num_symbols,
uint8_t* lengths,
uint16_t* symbols) {
int k;
int count = 0;
for (k = 0; k < num_symbols; ++k) {
if (lengths[k] != 0) ++count;
if (count > 1) return;
}
for (k = 0; k < num_symbols; ++k) {
lengths[k] = 0;
symbols[k] = 0;
}
}
static void StoreHuffmanTreeOfHuffmanTreeToBitMask(
VP8LBitWriter* const bw, const uint8_t* code_length_bitdepth) {
// RFC 1951 will calm you down if you are worried about this funny sequence.
// This sequence is tuned from that, but more weighted for lower symbol count,
// and more spiking histograms.
int i;
static const uint8_t kStorageOrder[CODE_LENGTH_CODES] = {
17, 18, 0, 1, 2, 3, 4, 5, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
};
// Throw away trailing zeros:
int codes_to_store = sizeof(kStorageOrder);
for (; codes_to_store > 4; --codes_to_store) {
if (code_length_bitdepth[kStorageOrder[codes_to_store - 1]] != 0) {
break;
}
}
// How many code length codes we write above the first four (see RFC 1951).
VP8LWriteBits(bw, 4, codes_to_store - 4);
for (i = 0; i < codes_to_store; ++i) {
VP8LWriteBits(bw, 3, code_length_bitdepth[kStorageOrder[i]]);
}
}
static void StoreHuffmanTreeToBitMask(
VP8LBitWriter* const bw,
const uint8_t* huffman_tree,
const uint8_t* huffman_tree_extra_bits,
const int num_symbols,
const uint8_t* code_length_bitdepth,
const uint16_t* code_length_bitdepth_symbols) {
int i;
for (i = 0; i < num_symbols; ++i) {
const int ix = huffman_tree[i];
VP8LWriteBits(bw, code_length_bitdepth[ix],
code_length_bitdepth_symbols[ix]);
switch (ix) {
case 16:
VP8LWriteBits(bw, 2, huffman_tree_extra_bits[i]);
break;
case 17:
VP8LWriteBits(bw, 3, huffman_tree_extra_bits[i]);
break;
case 18:
VP8LWriteBits(bw, 7, huffman_tree_extra_bits[i]);
break;
}
}
}
static int StoreHuffmanCode(VP8LBitWriter* const bw,
uint8_t* bit_lengths, int bit_lengths_size) {
int i;
int ok = 0;
int count = 0;
int symbols[2] = { 0, 0 };
int huffman_tree_size = 0;
uint8_t code_length_bitdepth[CODE_LENGTH_CODES];
uint16_t code_length_bitdepth_symbols[CODE_LENGTH_CODES];
int huffman_tree_histogram[CODE_LENGTH_CODES];
uint8_t* huffman_tree_extra_bits;
uint8_t* huffman_tree = (uint8_t*)malloc(bit_lengths_size *
(sizeof(*huffman_tree) +
sizeof(*huffman_tree_extra_bits)));
if (huffman_tree == NULL) goto End;
huffman_tree_extra_bits =
huffman_tree + (bit_lengths_size * sizeof(*huffman_tree));
for (i = 0; i < bit_lengths_size; ++i) {
if (bit_lengths[i] != 0) {
if (count < 2) symbols[count] = i;
++count;
}
}
if (count <= 2) {
int num_bits = 4;
// 0, 1 or 2 symbols to encode.
VP8LWriteBits(bw, 1, 1);
if (count == 0) {
VP8LWriteBits(bw, 3, 0);
ok = 1;
goto End;
}
while (symbols[count - 1] >= (1 << num_bits)) num_bits += 2;
VP8LWriteBits(bw, 3, (num_bits - 4) / 2 + 1);
VP8LWriteBits(bw, 1, count - 1);
for (i = 0; i < count; ++i) {
VP8LWriteBits(bw, num_bits, symbols[i]);
}
ok = 1;
goto End;
}
VP8LWriteBits(bw, 1, 0);
VP8LCreateCompressedHuffmanTree(bit_lengths, bit_lengths_size,
&huffman_tree_size, huffman_tree,
huffman_tree_extra_bits);
memset(huffman_tree_histogram, 0, sizeof(huffman_tree_histogram));
for (i = 0; i < huffman_tree_size; ++i) {
++huffman_tree_histogram[huffman_tree[i]];
}
memset(code_length_bitdepth, 0, sizeof(code_length_bitdepth));
memset(code_length_bitdepth_symbols, 0, sizeof(code_length_bitdepth_symbols));
if (!VP8LCreateHuffmanTree(huffman_tree_histogram, CODE_LENGTH_CODES,
7, code_length_bitdepth)) {
goto End;
}
VP8LConvertBitDepthsToSymbols(code_length_bitdepth, CODE_LENGTH_CODES,
code_length_bitdepth_symbols);
StoreHuffmanTreeOfHuffmanTreeToBitMask(bw, code_length_bitdepth);
ClearHuffmanTreeIfOnlyOneSymbol(CODE_LENGTH_CODES,
code_length_bitdepth,
code_length_bitdepth_symbols);
{
int num_trailing_zeros = 0;
int trailing_zero_bits = 0;
int trimmed_length;
int write_length;
int length;
for (i = huffman_tree_size; i > 0; --i) {
int ix = huffman_tree[i - 1];
if (ix == 0 || ix == 17 || ix == 18) {
++num_trailing_zeros;
trailing_zero_bits += code_length_bitdepth[ix];
if (ix == 17) trailing_zero_bits += 3;
if (ix == 18) trailing_zero_bits += 7;
} else {
break;
}
}
trimmed_length = huffman_tree_size - num_trailing_zeros;
write_length = (trimmed_length > 1 && trailing_zero_bits > 12);
length = write_length ? trimmed_length : huffman_tree_size;
VP8LWriteBits(bw, 1, write_length);
if (write_length) {
const int nbits = VP8LBitsLog2Ceiling(trimmed_length - 1);
const int nbitpairs = nbits == 0 ? 1 : (nbits + 1) / 2;
VP8LWriteBits(bw, 3, nbitpairs - 1);
VP8LWriteBits(bw, nbitpairs * 2, trimmed_length - 2);
}
StoreHuffmanTreeToBitMask(bw, huffman_tree, huffman_tree_extra_bits,
length, code_length_bitdepth,
code_length_bitdepth_symbols);
}
ok = 1;
End:
free(huffman_tree);
return ok;
}
static void StoreImageToBitMask(
VP8LBitWriter* const bw, int width, int histo_bits,
const PixOrCopy* literals, int literals_size,
const uint32_t* histogram_symbols,
uint8_t** const bitdepths, uint16_t** const bit_symbols) {
// x and y trace the position in the image.
int x = 0;
int y = 0;
const int histo_xsize = histo_bits ? VP8LSubSampleSize(width, histo_bits) : 1;
int i;
for (i = 0; i < literals_size; ++i) {
const PixOrCopy v = literals[i];
const int histogram_ix = histogram_symbols[histo_bits ?
(y >> histo_bits) * histo_xsize +
(x >> histo_bits) : 0];
if (PixOrCopyIsPaletteIx(&v)) {
const int code = PixOrCopyPaletteIx(&v);
int literal_ix = 256 + kLengthCodes + code;
VP8LWriteBits(bw, bitdepths[5 * histogram_ix][literal_ix],
bit_symbols[5 * histogram_ix][literal_ix]);
} else if (PixOrCopyIsLiteral(&v)) {
static const int order[] = {1, 2, 0, 3};
int k;
for (k = 0; k < 4; ++k) {
const int code = PixOrCopyLiteral(&v, order[k]);
VP8LWriteBits(bw, bitdepths[5 * histogram_ix + k][code],
bit_symbols[5 * histogram_ix + k][code]);
}
} else {
int bits, n_bits;
int code, distance;
int len_ix;
PixOrCopyLengthCodeAndBits(&v, &code, &n_bits, &bits);
len_ix = 256 + code;
VP8LWriteBits(bw, bitdepths[5 * histogram_ix][len_ix],
bit_symbols[5 * histogram_ix][len_ix]);
VP8LWriteBits(bw, n_bits, bits);
distance = PixOrCopyDistance(&v);
PrefixEncode(distance, &code, &n_bits, &bits);
VP8LWriteBits(bw, bitdepths[5 * histogram_ix + 4][code],
bit_symbols[5 * histogram_ix + 4][code]);
VP8LWriteBits(bw, n_bits, bits);
}
x += PixOrCopyLength(&v);
while (x >= width) {
x -= width;
++y;
}
}
}
static int EncodeImageInternal(VP8LBitWriter* const bw, static int EncodeImageInternal(VP8LBitWriter* const bw,
const uint32_t* const argb, const uint32_t* const argb,
int width, int height, int quality, int width, int height, int quality,
int cache_bits, int histogram_bits) { int cache_bits, int histogram_bits) {
(void)bw; int i;
(void)argb; int ok = 0;
(void)width; int histogram_image_size;
(void)height; int write_histogram_image;
(void)quality; int* bit_lengths_sizes = NULL;
(void)cache_bits; uint8_t** bit_lengths = NULL;
(void)histogram_bits; uint16_t** bit_codes = NULL;
return 1; const int use_2d_locality = 1;
int backward_refs_size;
const int use_color_cache = cache_bits ? 1 : 0;
const int histogram_image_xysize = VP8LSubSampleSize(width, histogram_bits) *
VP8LSubSampleSize(height, histogram_bits);
VP8LHistogram** histogram_image;
PixOrCopy* backward_refs;
uint32_t* histogram_symbols = (uint32_t*)
calloc(histogram_image_xysize, sizeof(*histogram_symbols));
if (histogram_symbols == NULL) goto Error;
// Calculate backward references from ARGB image.
if (!GetBackwardReferences(width, height, argb, quality,
use_color_cache, cache_bits, use_2d_locality,
&backward_refs, &backward_refs_size)) {
goto Error;
}
// Build histogram image & symbols from backward references.
if (!GetHistImageSymbols(width, height, backward_refs, backward_refs_size,
quality, histogram_bits, cache_bits,
&histogram_image, &histogram_image_size,
histogram_symbols)) {
goto Error;
}
// Create Huffman bit lengths & codes for each histogram image.
bit_lengths_sizes = (int*)calloc(5 * histogram_image_size,
sizeof(*bit_lengths_sizes));
bit_lengths = (uint8_t**)calloc(5 * histogram_image_size,
sizeof(*bit_lengths));
bit_codes = (uint16_t**)calloc(5 * histogram_image_size,
sizeof(*bit_codes));
if (bit_lengths_sizes == NULL || bit_lengths == NULL || bit_codes == NULL ||
!GetHuffBitLengthsAndCodes(histogram_image_size, histogram_image,
use_color_cache, &bit_lengths_sizes,
&bit_codes, &bit_lengths)) {
goto Error;
}
// Huffman image + meta huffman.
write_histogram_image = (histogram_image_size > 1);
VP8LWriteBits(bw, 1, write_histogram_image);
if (write_histogram_image) {
int nbits;
int image_size_bits;
int num_histograms;
uint32_t* histogram_argb = (uint32_t*)
malloc(histogram_image_xysize * sizeof(*histogram_argb));
if (histogram_argb == NULL) goto Error;
memcpy(histogram_argb, histogram_symbols,
histogram_image_xysize * sizeof(*histogram_argb));
ShiftHistogramImage(histogram_argb, histogram_image_xysize);
VP8LWriteBits(bw, 4, histogram_bits);
if (!EncodeImageInternal(bw, histogram_argb,
VP8LSubSampleSize(width, histogram_bits),
VP8LSubSampleSize(height, histogram_bits),
quality, 0, 0)) {
free(histogram_argb);
goto Error;
}
image_size_bits = VP8LBitsLog2Ceiling(histogram_image_size - 1);
VP8LWriteBits(bw, 4, image_size_bits);
VP8LWriteBits(bw, image_size_bits, histogram_image_size - 2);
num_histograms = 5 * histogram_image_size;
nbits = VP8LBitsLog2Ceiling(num_histograms);
VP8LWriteBits(bw, 4, nbits);
for (i = 0; i < num_histograms; ++i) {
VP8LWriteBits(bw, nbits, i);
}
free(histogram_argb);
}
// Color Cache parameters.
VP8LWriteBits(bw, 1, use_color_cache);
if (use_color_cache) {
VP8LWriteBits(bw, 4, cache_bits);
}
// Store Huffman codes.
for (i = 0; i < histogram_image_size; ++i) {
int k;
int literal_lengths_size;
uint8_t* literal_lengths;
// TODO(vikasa): Evaluate and remove the call to PackLiteralBitLengths.
if (!PackLiteralBitLengths(bit_lengths[5 * i], cache_bits, use_color_cache,
&literal_lengths_size, &literal_lengths)) {
goto Error;
}
if (!StoreHuffmanCode(bw, literal_lengths, literal_lengths_size)) {
goto Error;
}
free(literal_lengths);
for (k = 1; k < 5; ++k) {
if (!StoreHuffmanCode(bw, bit_lengths[5 * i + k],
bit_lengths_sizes[5 * i + k])) {
goto Error;
}
}
}
// Free combined histograms.
DeleteHistograms(histogram_image_size, histogram_image);
// Emit no bits if there is only one symbol in the histogram.
// This gives better compression for some images.
for (i = 0; i < 5 * histogram_image_size; ++i) {
ClearHuffmanTreeIfOnlyOneSymbol(bit_lengths_sizes[i], bit_lengths[i],
bit_codes[i]);
}
// Store actual literals.
StoreImageToBitMask(bw, width, histogram_bits, backward_refs,
backward_refs_size, histogram_symbols,
bit_lengths, bit_codes);
ok = 1;
Error:
for (i = 0; i < 5 * histogram_image_size; ++i) {
free(bit_lengths[i]);
free(bit_codes[i]);
}
free(bit_lengths_sizes);
free(bit_lengths);
free(bit_codes);
free(histogram_symbols);
return ok;
} }
static int EvalAndApplySubtractGreen(VP8LBitWriter* const bw, static int EvalAndApplySubtractGreen(VP8LBitWriter* const bw,
@ -310,7 +1021,6 @@ static WebPEncodingError WriteImage(VP8LEncoder* const enc,
static VP8LEncoder* InitVP8LEncoder(const WebPConfig* const config, static VP8LEncoder* InitVP8LEncoder(const WebPConfig* const config,
WebPPicture* const picture) { WebPPicture* const picture) {
VP8LEncoder* enc; VP8LEncoder* enc;
(void)config;
enc = (VP8LEncoder*)malloc(sizeof(*enc)); enc = (VP8LEncoder*)malloc(sizeof(*enc));
if (enc == NULL) { if (enc == NULL) {
@ -319,6 +1029,7 @@ static VP8LEncoder* InitVP8LEncoder(const WebPConfig* const config,
} }
memset(enc, 0, sizeof(*enc)); memset(enc, 0, sizeof(*enc));
enc->config_ = config;
enc->pic_ = picture; enc->pic_ = picture;
enc->use_lz77_ = 1; enc->use_lz77_ = 1;
enc->palette_bits_ = 7; enc->palette_bits_ = 7;
@ -463,6 +1174,7 @@ int VP8LEncodeImage(const WebPConfig* const config,
if (enc->use_palette_) { if (enc->use_palette_) {
err = ApplyPalette(&bw, enc, width, height, quality); err = ApplyPalette(&bw, enc, width, height, quality);
if (err != VP8_ENC_OK) goto Error; if (err != VP8_ENC_OK) goto Error;
use_color_cache = 0;
} }
// In case image is not packed. // In case image is not packed.
@ -495,7 +1207,6 @@ int VP8LEncodeImage(const WebPConfig* const config,
err = VP8_ENC_ERROR_INVALID_CONFIGURATION; err = VP8_ENC_ERROR_INVALID_CONFIGURATION;
goto Error; goto Error;
} }
use_color_cache = 0;
} }
if (use_color_cache) { if (use_color_cache) {

View File

@ -32,14 +32,17 @@ int VP8LColorCacheInit(VP8LColorCache* const cc, int hash_bits) {
return 1; return 1;
} }
void VP8LColorCacheDelete(VP8LColorCache* const cc) { void VP8LColorCacheClear(VP8LColorCache* const cc) {
if (cc != NULL) { if (cc != NULL) {
free(cc->colors_); free(cc->colors_);
free(cc);
} }
} }
void VP8LColorCacheDelete(VP8LColorCache* const cc) {
VP8LColorCacheClear(cc);
free(cc);
}
#if defined(__cplusplus) || defined(c_plusplus) #if defined(__cplusplus) || defined(c_plusplus)
} }
#endif #endif

View File

@ -59,6 +59,9 @@ static WEBP_INLINE int VP8LColorCacheContains(const VP8LColorCache* const cc,
int VP8LColorCacheInit(VP8LColorCache* const color_cache, int hash_bits); int VP8LColorCacheInit(VP8LColorCache* const color_cache, int hash_bits);
// Delete the color cache. // Delete the color cache.
void VP8LColorCacheClear(VP8LColorCache* const color_cache);
// Delete the color_cache object.
void VP8LColorCacheDelete(VP8LColorCache* const color_cache); void VP8LColorCacheDelete(VP8LColorCache* const color_cache);
//------------------------------------------------------------------------------ //------------------------------------------------------------------------------

View File

@ -70,9 +70,9 @@ static void SetDepth(const HuffmanTree* p,
// we are not planning to use this with extremely long blocks. // we are not planning to use this with extremely long blocks.
// //
// See http://en.wikipedia.org/wiki/Huffman_coding // See http://en.wikipedia.org/wiki/Huffman_coding
int CreateHuffmanTree(const int* const histogram, int histogram_size, int VP8LCreateHuffmanTree(const int* const histogram, int histogram_size,
int tree_depth_limit, int tree_depth_limit,
uint8_t* const bit_depths) { uint8_t* const bit_depths) {
HuffmanTree* tree; HuffmanTree* tree;
HuffmanTree* tree_pool; HuffmanTree* tree_pool;
int tree_pool_size; int tree_pool_size;
@ -241,11 +241,11 @@ static void WriteHuffmanTreeRepetitionsZeros(
} }
} }
void CreateCompressedHuffmanTree(const uint8_t* depth, void VP8LCreateCompressedHuffmanTree(const uint8_t* depth,
int depth_size, int depth_size,
int* num_symbols, int* num_symbols,
uint8_t* tree, uint8_t* tree,
uint8_t* extra_bits_data) { uint8_t* extra_bits_data) {
int prev_value = 8; // 8 is the initial value for rle. int prev_value = 8; // 8 is the initial value for rle.
int i; int i;
for (i = 0; i < depth_size;) { for (i = 0; i < depth_size;) {
@ -280,8 +280,8 @@ static uint32_t ReverseBits(int num_bits, uint32_t bits) {
return retval; return retval;
} }
void ConvertBitDepthsToSymbols(const uint8_t* depth, int len, void VP8LConvertBitDepthsToSymbols(const uint8_t* depth, int len,
uint16_t* bits) { uint16_t* bits) {
// This function is based on RFC 1951. // This function is based on RFC 1951.
// //
// In deflate, all bit depths are [1..15] // In deflate, all bit depths are [1..15]
@ -313,5 +313,6 @@ void ConvertBitDepthsToSymbols(const uint8_t* depth, int len,
} }
} }
} }
#undef MAX_BITS
#endif #endif

View File

@ -31,21 +31,20 @@ extern "C" {
// See http://en.wikipedia.org/wiki/Huffman_coding // See http://en.wikipedia.org/wiki/Huffman_coding
// //
// Returns 0 when an error has occured. // Returns 0 when an error has occured.
int CreateHuffmanTree(const int* data, int VP8LCreateHuffmanTree(const int* data, const int length,
const int length, const int tree_limit, uint8_t* depth);
const int tree_limit,
uint8_t* depth);
// Write a huffman tree from bit depths into the deflate representation // Write a huffman tree from bit depths into the deflate representation
// of a Huffman tree. In deflate, the generated Huffman tree is to be // of a Huffman tree. In deflate, the generated Huffman tree is to be
// compressed once more using a Huffman tree. // compressed once more using a Huffman tree.
void CreateCompressedHuffmanTree(const uint8_t* depth, int len, void VP8LCreateCompressedHuffmanTree(const uint8_t* depth, int len,
int* num_symbols, int* num_symbols,
uint8_t* tree, uint8_t* tree,
uint8_t* extra_bits_data); uint8_t* extra_bits_data);
// Get the actual bit values for a tree of bit depths. // Get the actual bit values for a tree of bit depths.
void ConvertBitDepthsToSymbols(const uint8_t* depth, int len, uint16_t* bits); void VP8LConvertBitDepthsToSymbols(const uint8_t* depth, int len,
uint16_t* bits);
#if defined(__cplusplus) || defined(c_plusplus) #if defined(__cplusplus) || defined(c_plusplus)
} }