webp-lossless-bitstream-spec: convert BNF to ABNF

this has a better canonical reference [1] and is preferred in IETF docs

[1] https://www.rfc-editor.org/rfc/rfc5234

Bug: webp:448
Change-Id: I3f0bd34d3ca4c62b255d5d6cbae0c55e2940dfb5
This commit is contained in:
James Zern 2022-10-10 22:14:19 -07:00
parent 87e36c485a
commit 72776530d8

View File

@ -1076,33 +1076,41 @@ The interpretation of S depends on its value:
7 Overall Structure of the Format 7 Overall Structure of the Format
--------------------------------- ---------------------------------
Below is a view into the format in Backus-Naur form. It does not cover Below is a view into the format in Augmented Backus-Naur Form ([ABNF]). It does
all details. End-of-image (EOI) is only implicitly coded into the number not cover all details. End-of-image (EOI) is only implicitly coded into the
of pixels (xsize * ysize). number of pixels (xsize * ysize).
#### 7.1 Basic Structure #### 7.1 Basic Structure
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
<format> ::= <RIFF header><image size><image stream> format = RIFF-header image-size image-stream
<image stream> ::= <optional-transform><spatially-coded image> RIFF-header = "RIFF" 4OCTET "WEBP" "VP8L" 4OCTET %x2F
image-size = 14BIT 14BIT ; width - 1, height - 1
image-stream = optional-transform spatially-coded-image
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#### 7.2 Structure of Transforms #### 7.2 Structure of Transforms
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
<optional-transform> ::= optional-transform = (%b1 transform optional-transform) / %b0
(1-bit value 1; <transform> <optional-transform>) | 1-bit value 0 transform = predictor-tx / color-tx / subtract-green-tx
<transform> ::= <predictor-tx> | <color-tx> | <subtract-green-tx> | transform =/ color-indexing-tx
<color-indexing-tx>
<predictor-tx> ::= 2-bit value 0; <predictor image> predictor-tx = %b00 predictor-image
<predictor image> ::= 3-bit sub-pixel code ; <entropy-coded image> predictor-image = 3BIT ; sub-pixel code
<color-tx> ::= 2-bit value 1; <color image> entropy-coded-image
<color image> ::= 3-bit sub-pixel code ; <entropy-coded image>
<subtract-green-tx> ::= 2-bit value 2 color-tx = %b01 color-image
<color-indexing-tx> ::= 2-bit value 3; <color-indexing image> color-image = 3BIT ; sub-pixel code
<color-indexing image> ::= 8-bit color count; <entropy-coded image> entropy-coded-image
subtract-green-tx = %b10
color-indexing-tx = %b11 color-indexing-image
color-indexing-image = 8BIT ; color count
entropy-coded-image
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@ -1111,35 +1119,40 @@ of pixels (xsize * ysize).
\[AMENDED2\] \[AMENDED2\]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
<spatially-coded image> ::= <color cache info><meta prefix><data> spatially-coded-image = color-cache-info meta-prefix data
<entropy-coded image> ::= <color cache info><data> entropy-coded-image = color-cache-info data
<color cache info> ::=
1 bit value 0 | (1-bit value 1; 4-bit value for color cache size) color-cache-info = %b0
<meta prefix> ::= 1-bit value 0 | color-cache-info =/ (%b1 4BIT) ; 1 followed by color cache size
(1-bit value 1; <entropy image>)
<data> ::= <prefix codes><lz77-coded image> meta-prefix = %b0 / (%b1 entropy-image)
<entropy image> ::= 3-bit subsample value; <entropy-coded image>
<prefix codes> ::= <prefix code group> | data = prefix-codes lz77-coded-image
<prefix code group><prefix codes> entropy-image = 3BIT ; subsample value
<prefix code group> ::= <prefix code><prefix code><prefix code> entropy-coded-image
<prefix code><prefix code>
See "Interpretation of Meta Prefix Codes" to prefix-codes = prefix-code-group *prefix-codes
understand what each of these five prefix prefix-code-group =
codes are for. 5prefix-code ; See "Interpretation of Meta Prefix Codes" to
<prefix code> ::= <simple prefix code> | <normal prefix code> ; understand what each of these five prefix
<simple prefix code> ::= see "Simple code length code" for details ; codes are for.
<normal prefix code> ::= <code length code>; encoded code lengths
<code length code> ::= see section "Normal code length code" prefix-code = simple-prefix-code / normal-prefix-code
<lz77-coded image> ::= ((<argb-pixel> | <lz77-copy> | simple-prefix-code = ; see "Simple code length code" for details
<color-cache-code>) <lz77-coded image>) | "" normal-prefix-code = code-length-code encoded-code-lengths
code-length-code = ; see section "Normal code length code"
lz77-coded-image =
*((argb-pixel / lz77-copy / color-cache-code) lz77-coded-image)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A possible example sequence: A possible example sequence:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
<RIFF header><image size>1-bit value 1<subtract-green-tx> RIFF-header image-size %b1 subtract-green-tx
1-bit value 1<predictor-tx>1-bit value 0<color cache info> %b1 predictor-tx %b0 color-cache-info
1-bit value 0<prefix codes><lz77-coded image> %b0 prefix-codes lz77-coded-image
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[ABNF]: https://www.rfc-editor.org/rfc/rfc5234
[canonical_huff]: https://en.wikipedia.org/wiki/Canonical_Huffman_code [canonical_huff]: https://en.wikipedia.org/wiki/Canonical_Huffman_code