new segmentation algorithm

fixes the 'blocky sky problem' (saturation problem: when luma was flat,
chroma noise was taking over, resulting in random segment id assigned.
When just using a common uniform segment was better).

+ side clean-up and readibility/experimentability MACRO'ization
+ added '-map 7' option

Change-Id: I35982a9e43c0fecbfdd7b05e4813e8ba8c121d71
This commit is contained in:
skal 2012-09-03 19:40:52 +02:00
parent 2cf1f81590
commit 5725cabac0
6 changed files with 135 additions and 95 deletions

View File

@ -49,8 +49,6 @@ extern VP8CPUInfo VP8GetCPUInfo;
//------------------------------------------------------------------------------ //------------------------------------------------------------------------------
// Encoding // Encoding
int VP8GetAlpha(const int histo[]);
// Transforms // Transforms
// VP8Idct: Does one of two inverse transforms. If do_two is set, the transforms // VP8Idct: Does one of two inverse transforms. If do_two is set, the transforms
// will be done for (ref, in, dst) and (ref + 4, in + 16, dst + 4). // will be done for (ref, in, dst) and (ref + 4, in + 16, dst + 4).
@ -85,10 +83,11 @@ typedef int (*VP8QuantizeBlock)(int16_t in[16], int16_t out[16],
int n, const struct VP8Matrix* const mtx); int n, const struct VP8Matrix* const mtx);
extern VP8QuantizeBlock VP8EncQuantizeBlock; extern VP8QuantizeBlock VP8EncQuantizeBlock;
// Compute susceptibility based on DCT-coeff histograms: // Collect histogram for susceptibility calculation and accumulate in histo[].
// the higher, the "easier" the macroblock is to compress. struct VP8Histogram;
typedef int (*VP8CHisto)(const uint8_t* ref, const uint8_t* pred, typedef void (*VP8CHisto)(const uint8_t* ref, const uint8_t* pred,
int start_block, int end_block); int start_block, int end_block,
struct VP8Histogram* const histo);
extern const int VP8DspScan[16 + 4 + 4]; extern const int VP8DspScan[16 + 4 + 4];
extern VP8CHisto VP8CollectHistogram; extern VP8CHisto VP8CollectHistogram;

View File

@ -17,31 +17,18 @@
extern "C" { extern "C" {
#endif #endif
static WEBP_INLINE uint8_t clip_8b(int v) {
return (!(v & ~0xff)) ? v : (v < 0) ? 0 : 255;
}
static WEBP_INLINE int clip_max(int v, int max) {
return (v > max) ? max : v;
}
//------------------------------------------------------------------------------ //------------------------------------------------------------------------------
// Compute susceptibility based on DCT-coeff histograms: // Compute susceptibility based on DCT-coeff histograms:
// the higher, the "easier" the macroblock is to compress. // the higher, the "easier" the macroblock is to compress.
static int ClipAlpha(int alpha) {
return alpha < 0 ? 0 : alpha > 255 ? 255 : alpha;
}
int VP8GetAlpha(const int histo[MAX_COEFF_THRESH + 1]) {
int num = 0, den = 0, val = 0;
int k;
int alpha;
// note: changing this loop to avoid the numerous "k + 1" slows things down.
for (k = 0; k < MAX_COEFF_THRESH; ++k) {
if (histo[k + 1]) {
val += histo[k + 1];
num += val * (k + 1);
den += (k + 1) * (k + 1);
}
}
// we scale the value to a usable [0..255] range
alpha = den ? 10 * num / den - 5 : 0;
return ClipAlpha(alpha);
}
const int VP8DspScan[16 + 4 + 4] = { const int VP8DspScan[16 + 4 + 4] = {
// Luma // Luma
0 + 0 * BPS, 4 + 0 * BPS, 8 + 0 * BPS, 12 + 0 * BPS, 0 + 0 * BPS, 4 + 0 * BPS, 8 + 0 * BPS, 12 + 0 * BPS,
@ -53,27 +40,23 @@ const int VP8DspScan[16 + 4 + 4] = {
8 + 0 * BPS, 12 + 0 * BPS, 8 + 4 * BPS, 12 + 4 * BPS // V 8 + 0 * BPS, 12 + 0 * BPS, 8 + 4 * BPS, 12 + 4 * BPS // V
}; };
static int CollectHistogram(const uint8_t* ref, const uint8_t* pred, static void CollectHistogram(const uint8_t* ref, const uint8_t* pred,
int start_block, int end_block) { int start_block, int end_block,
int histo[MAX_COEFF_THRESH + 1] = { 0 }; VP8Histogram* const histo) {
int16_t out[16]; int j;
int j, k;
for (j = start_block; j < end_block; ++j) { for (j = start_block; j < end_block; ++j) {
int k;
int16_t out[16];
VP8FTransform(ref + VP8DspScan[j], pred + VP8DspScan[j], out); VP8FTransform(ref + VP8DspScan[j], pred + VP8DspScan[j], out);
// Convert coefficients to bin (within out[]). // Convert coefficients to bin.
for (k = 0; k < 16; ++k) { for (k = 0; k < 16; ++k) {
const int v = abs(out[k]) >> 2; const int v = abs(out[k]) >> 3; // TODO(skal): add rounding?
out[k] = (v > MAX_COEFF_THRESH) ? MAX_COEFF_THRESH : v; const int clipped_value = clip_max(v, MAX_COEFF_THRESH);
} histo->distribution[clipped_value]++;
// Use bin to update histogram.
for (k = 0; k < 16; ++k) {
histo[out[k]]++;
} }
} }
return VP8GetAlpha(histo);
} }
//------------------------------------------------------------------------------ //------------------------------------------------------------------------------
@ -89,15 +72,12 @@ static void InitTables(void) {
if (!tables_ok) { if (!tables_ok) {
int i; int i;
for (i = -255; i <= 255 + 255; ++i) { for (i = -255; i <= 255 + 255; ++i) {
clip1[255 + i] = (i < 0) ? 0 : (i > 255) ? 255 : i; clip1[255 + i] = clip_8b(i);
} }
tables_ok = 1; tables_ok = 1;
} }
} }
static WEBP_INLINE uint8_t clip_8b(int v) {
return (!(v & ~0xff)) ? v : v < 0 ? 0 : 255;
}
//------------------------------------------------------------------------------ //------------------------------------------------------------------------------
// Transforms (Paragraph 14.4) // Transforms (Paragraph 14.4)

View File

@ -25,13 +25,15 @@ extern "C" {
// Compute susceptibility based on DCT-coeff histograms: // Compute susceptibility based on DCT-coeff histograms:
// the higher, the "easier" the macroblock is to compress. // the higher, the "easier" the macroblock is to compress.
static int CollectHistogramSSE2(const uint8_t* ref, const uint8_t* pred, static void CollectHistogramSSE2(const uint8_t* ref, const uint8_t* pred,
int start_block, int end_block) { int start_block, int end_block,
int histo[MAX_COEFF_THRESH + 1] = { 0 }; VP8Histogram* const histo) {
int16_t out[16];
int j, k;
const __m128i max_coeff_thresh = _mm_set1_epi16(MAX_COEFF_THRESH); const __m128i max_coeff_thresh = _mm_set1_epi16(MAX_COEFF_THRESH);
int j;
for (j = start_block; j < end_block; ++j) { for (j = start_block; j < end_block; ++j) {
int16_t out[16];
int k;
VP8FTransform(ref + VP8DspScan[j], pred + VP8DspScan[j], out); VP8FTransform(ref + VP8DspScan[j], pred + VP8DspScan[j], out);
// Convert coefficients to bin (within out[]). // Convert coefficients to bin (within out[]).
@ -47,9 +49,9 @@ static int CollectHistogramSSE2(const uint8_t* ref, const uint8_t* pred,
const __m128i xor1 = _mm_xor_si128(out1, sign1); const __m128i xor1 = _mm_xor_si128(out1, sign1);
const __m128i abs0 = _mm_sub_epi16(xor0, sign0); const __m128i abs0 = _mm_sub_epi16(xor0, sign0);
const __m128i abs1 = _mm_sub_epi16(xor1, sign1); const __m128i abs1 = _mm_sub_epi16(xor1, sign1);
// v = abs(out) >> 2 // v = abs(out) >> 3
const __m128i v0 = _mm_srai_epi16(abs0, 2); const __m128i v0 = _mm_srai_epi16(abs0, 3);
const __m128i v1 = _mm_srai_epi16(abs1, 2); const __m128i v1 = _mm_srai_epi16(abs1, 3);
// bin = min(v, MAX_COEFF_THRESH) // bin = min(v, MAX_COEFF_THRESH)
const __m128i bin0 = _mm_min_epi16(v0, max_coeff_thresh); const __m128i bin0 = _mm_min_epi16(v0, max_coeff_thresh);
const __m128i bin1 = _mm_min_epi16(v1, max_coeff_thresh); const __m128i bin1 = _mm_min_epi16(v1, max_coeff_thresh);
@ -58,13 +60,11 @@ static int CollectHistogramSSE2(const uint8_t* ref, const uint8_t* pred,
_mm_storeu_si128((__m128i*)&out[8], bin1); _mm_storeu_si128((__m128i*)&out[8], bin1);
} }
// Use bin to update histogram. // Convert coefficients to bin.
for (k = 0; k < 16; ++k) { for (k = 0; k < 16; ++k) {
histo[out[k]]++; histo->distribution[out[k]]++;
} }
} }
return VP8GetAlpha(histo);
} }
//------------------------------------------------------------------------------ //------------------------------------------------------------------------------

View File

@ -23,10 +23,6 @@ extern "C" {
#define MAX_ITERS_K_MEANS 6 #define MAX_ITERS_K_MEANS 6
static int ClipAlpha(int alpha) {
return alpha < 0 ? 0 : alpha > 255 ? 255 : alpha;
}
//------------------------------------------------------------------------------ //------------------------------------------------------------------------------
// Smooth the segment map by replacing isolated block by the majority of its // Smooth the segment map by replacing isolated block by the majority of its
// neighbours. // neighbours.
@ -115,7 +111,7 @@ static void SetSegmentProbas(VP8Encoder* const enc) {
} }
static WEBP_INLINE int clip(int v, int m, int M) { static WEBP_INLINE int clip(int v, int m, int M) {
return v < m ? m : v > M ? M : v; return (v < m) ? m : (v > M) ? M : v;
} }
static void SetSegmentAlphas(VP8Encoder* const enc, static void SetSegmentAlphas(VP8Encoder* const enc,
@ -141,23 +137,64 @@ static void SetSegmentAlphas(VP8Encoder* const enc,
} }
} }
//------------------------------------------------------------------------------
// Compute susceptibility based on DCT-coeff histograms:
// the higher, the "easier" the macroblock is to compress.
#define MAX_ALPHA 255 // 8b of precision for susceptibilities.
#define ALPHA_SCALE (2 * MAX_ALPHA) // scaling factor for alpha.
#define DEFAULT_ALPHA (-1)
#define IS_BETTER_ALPHA(alpha, best_alpha) ((alpha) > (best_alpha))
static int FinalAlphaValue(int alpha) {
alpha = MAX_ALPHA - alpha;
return clip(alpha, 0, MAX_ALPHA);
}
static int GetAlpha(const VP8Histogram* const histo) {
int max_value = 0, last_non_zero = 1;
int k;
int alpha;
for (k = 0; k <= MAX_COEFF_THRESH; ++k) {
const int value = histo->distribution[k];
if (value > 0) {
if (value > max_value) max_value = value;
last_non_zero = k;
}
}
// 'alpha' will later be clipped to [0..MAX_ALPHA] range, clamping outer
// values which happen to be mostly noise. This leaves the maximum precision
// for handling the useful small values which contribute most.
alpha = (max_value > 1) ? ALPHA_SCALE * last_non_zero / max_value : 0;
return alpha;
}
static void MergeHistograms(const VP8Histogram* const in,
VP8Histogram* const out) {
int i;
for (i = 0; i <= MAX_COEFF_THRESH; ++i) {
out->distribution[i] += in->distribution[i];
}
}
//------------------------------------------------------------------------------ //------------------------------------------------------------------------------
// Simplified k-Means, to assign Nb segments based on alpha-histogram // Simplified k-Means, to assign Nb segments based on alpha-histogram
static void AssignSegments(VP8Encoder* const enc, const int alphas[256]) { static void AssignSegments(VP8Encoder* const enc,
const int alphas[MAX_ALPHA + 1]) {
const int nb = enc->segment_hdr_.num_segments_; const int nb = enc->segment_hdr_.num_segments_;
int centers[NUM_MB_SEGMENTS]; int centers[NUM_MB_SEGMENTS];
int weighted_average = 0; int weighted_average = 0;
int map[256]; int map[MAX_ALPHA + 1];
int a, n, k; int a, n, k;
int min_a = 0, max_a = 255, range_a; int min_a = 0, max_a = MAX_ALPHA, range_a;
// 'int' type is ok for histo, and won't overflow // 'int' type is ok for histo, and won't overflow
int accum[NUM_MB_SEGMENTS], dist_accum[NUM_MB_SEGMENTS]; int accum[NUM_MB_SEGMENTS], dist_accum[NUM_MB_SEGMENTS];
// bracket the input // bracket the input
for (n = 0; n < 256 && alphas[n] == 0; ++n) {} for (n = 0; n <= MAX_ALPHA && alphas[n] == 0; ++n) {}
min_a = n; min_a = n;
for (n = 255; n > min_a && alphas[n] == 0; --n) {} for (n = MAX_ALPHA; n > min_a && alphas[n] == 0; --n) {}
max_a = n; max_a = n;
range_a = max_a - min_a; range_a = max_a - min_a;
@ -210,7 +247,7 @@ static void AssignSegments(VP8Encoder* const enc, const int alphas[256]) {
VP8MBInfo* const mb = &enc->mb_info_[n]; VP8MBInfo* const mb = &enc->mb_info_[n];
const int alpha = mb->alpha_; const int alpha = mb->alpha_;
mb->segment_ = map[alpha]; mb->segment_ = map[alpha];
mb->alpha_ = centers[map[alpha]]; // just for the record. mb->alpha_ = centers[map[alpha]]; // for the record.
} }
if (nb > 1) { if (nb > 1) {
@ -236,15 +273,19 @@ static void AssignSegments(VP8Encoder* const enc, const int alphas[256]) {
static int MBAnalyzeBestIntra16Mode(VP8EncIterator* const it) { static int MBAnalyzeBestIntra16Mode(VP8EncIterator* const it) {
const int max_mode = (it->enc_->method_ >= 3) ? MAX_INTRA16_MODE : 4; const int max_mode = (it->enc_->method_ >= 3) ? MAX_INTRA16_MODE : 4;
int mode; int mode;
int best_alpha = -1; int best_alpha = DEFAULT_ALPHA;
int best_mode = 0; int best_mode = 0;
VP8MakeLuma16Preds(it); VP8MakeLuma16Preds(it);
for (mode = 0; mode < max_mode; ++mode) { for (mode = 0; mode < max_mode; ++mode) {
const int alpha = VP8CollectHistogram(it->yuv_in_ + Y_OFF, VP8Histogram histo = { { 0 } };
it->yuv_p_ + VP8I16ModeOffsets[mode], int alpha;
0, 16);
if (alpha > best_alpha) { VP8CollectHistogram(it->yuv_in_ + Y_OFF,
it->yuv_p_ + VP8I16ModeOffsets[mode],
0, 16, &histo);
alpha = GetAlpha(&histo);
if (IS_BETTER_ALPHA(alpha, best_alpha)) {
best_alpha = alpha; best_alpha = alpha;
best_mode = mode; best_mode = mode;
} }
@ -257,45 +298,58 @@ static int MBAnalyzeBestIntra4Mode(VP8EncIterator* const it,
int best_alpha) { int best_alpha) {
uint8_t modes[16]; uint8_t modes[16];
const int max_mode = (it->enc_->method_ >= 3) ? MAX_INTRA4_MODE : NUM_BMODES; const int max_mode = (it->enc_->method_ >= 3) ? MAX_INTRA4_MODE : NUM_BMODES;
int i4_alpha = 0; int i4_alpha;
VP8Histogram total_histo = { { 0 } };
int cur_histo = 0;
VP8IteratorStartI4(it); VP8IteratorStartI4(it);
do { do {
int mode; int mode;
int best_mode_alpha = -1; int best_mode_alpha = DEFAULT_ALPHA;
VP8Histogram histos[2];
const uint8_t* const src = it->yuv_in_ + Y_OFF + VP8Scan[it->i4_]; const uint8_t* const src = it->yuv_in_ + Y_OFF + VP8Scan[it->i4_];
VP8MakeIntra4Preds(it); VP8MakeIntra4Preds(it);
for (mode = 0; mode < max_mode; ++mode) { for (mode = 0; mode < max_mode; ++mode) {
const int alpha = VP8CollectHistogram(src, int alpha;
it->yuv_p_ + VP8I4ModeOffsets[mode],
0, 1); memset(&histos[cur_histo], 0, sizeof(histos[cur_histo]));
if (alpha > best_mode_alpha) { VP8CollectHistogram(src, it->yuv_p_ + VP8I4ModeOffsets[mode],
0, 1, &histos[cur_histo]);
alpha = GetAlpha(&histos[cur_histo]);
if (IS_BETTER_ALPHA(alpha, best_mode_alpha)) {
best_mode_alpha = alpha; best_mode_alpha = alpha;
modes[it->i4_] = mode; modes[it->i4_] = mode;
cur_histo ^= 1; // keep track of best histo so far.
} }
} }
i4_alpha += best_mode_alpha; // accumulate best histogram
MergeHistograms(&histos[cur_histo ^ 1], &total_histo);
// Note: we reuse the original samples for predictors // Note: we reuse the original samples for predictors
} while (VP8IteratorRotateI4(it, it->yuv_in_ + Y_OFF)); } while (VP8IteratorRotateI4(it, it->yuv_in_ + Y_OFF));
if (i4_alpha > best_alpha) { i4_alpha = GetAlpha(&total_histo);
if (IS_BETTER_ALPHA(i4_alpha, best_alpha)) {
VP8SetIntra4Mode(it, modes); VP8SetIntra4Mode(it, modes);
best_alpha = ClipAlpha(i4_alpha); best_alpha = i4_alpha;
} }
return best_alpha; return best_alpha;
} }
static int MBAnalyzeBestUVMode(VP8EncIterator* const it) { static int MBAnalyzeBestUVMode(VP8EncIterator* const it) {
int best_alpha = -1; int best_alpha = DEFAULT_ALPHA;
int best_mode = 0; int best_mode = 0;
const int max_mode = (it->enc_->method_ >= 3) ? MAX_UV_MODE : 4; const int max_mode = (it->enc_->method_ >= 3) ? MAX_UV_MODE : 4;
int mode; int mode;
VP8MakeChroma8Preds(it); VP8MakeChroma8Preds(it);
for (mode = 0; mode < max_mode; ++mode) { for (mode = 0; mode < max_mode; ++mode) {
const int alpha = VP8CollectHistogram(it->yuv_in_ + U_OFF, VP8Histogram histo = { { 0 } };
it->yuv_p_ + VP8UVModeOffsets[mode], int alpha;
16, 16 + 4 + 4); VP8CollectHistogram(it->yuv_in_ + U_OFF,
if (alpha > best_alpha) { it->yuv_p_ + VP8UVModeOffsets[mode],
16, 16 + 4 + 4, &histo);
alpha = GetAlpha(&histo);
if (IS_BETTER_ALPHA(alpha, best_alpha)) {
best_alpha = alpha; best_alpha = alpha;
best_mode = mode; best_mode = mode;
} }
@ -305,7 +359,7 @@ static int MBAnalyzeBestUVMode(VP8EncIterator* const it) {
} }
static void MBAnalyze(VP8EncIterator* const it, static void MBAnalyze(VP8EncIterator* const it,
int alphas[256], int* const uv_alpha) { int alphas[MAX_ALPHA + 1], int* const uv_alpha) {
const VP8Encoder* const enc = it->enc_; const VP8Encoder* const enc = it->enc_;
int best_alpha, best_uv_alpha; int best_alpha, best_uv_alpha;
@ -324,10 +378,11 @@ static void MBAnalyze(VP8EncIterator* const it,
best_uv_alpha = MBAnalyzeBestUVMode(it); best_uv_alpha = MBAnalyzeBestUVMode(it);
// Final susceptibility mix // Final susceptibility mix
best_alpha = (best_alpha + best_uv_alpha + 1) / 2; best_alpha = (3 * best_alpha + best_uv_alpha + 2) >> 2;
best_alpha = FinalAlphaValue(best_alpha);
alphas[best_alpha]++; alphas[best_alpha]++;
*uv_alpha += best_uv_alpha; *uv_alpha += best_uv_alpha;
it->mb_->alpha_ = best_alpha; // Informative only. it->mb_->alpha_ = best_alpha; // for later remapping.
} }
//------------------------------------------------------------------------------ //------------------------------------------------------------------------------
@ -342,7 +397,7 @@ static void MBAnalyze(VP8EncIterator* const it,
int VP8EncAnalyze(VP8Encoder* const enc) { int VP8EncAnalyze(VP8Encoder* const enc) {
int ok = 1; int ok = 1;
int alphas[256] = { 0 }; int alphas[MAX_ALPHA + 1] = { 0 };
VP8EncIterator it; VP8EncIterator it;
VP8IteratorInit(enc, &it); VP8IteratorInit(enc, &it);

View File

@ -736,6 +736,7 @@ static void StoreSideInfo(const VP8EncIterator* const it) {
const int b = (int)((it->luma_bits_ + it->uv_bits_ + 7) >> 3); const int b = (int)((it->luma_bits_ + it->uv_bits_ + 7) >> 3);
*info = (b > 255) ? 255 : b; break; *info = (b > 255) ? 255 : b; break;
} }
case 7: *info = mb->alpha_; break;
default: *info = 0; break; default: *info = 0; break;
}; };
} }

View File

@ -29,9 +29,6 @@ extern "C" {
#define ENC_MIN_VERSION 2 #define ENC_MIN_VERSION 2
#define ENC_REV_VERSION 0 #define ENC_REV_VERSION 0
// size of histogram used by CollectHistogram.
#define MAX_COEFF_THRESH 64
// intra prediction modes // intra prediction modes
enum { B_DC_PRED = 0, // 4x4 modes enum { B_DC_PRED = 0, // 4x4 modes
B_TM_PRED = 1, B_TM_PRED = 1,
@ -162,6 +159,14 @@ static WEBP_INLINE int QUANTDIV(int n, int iQ, int B) {
} }
extern const uint8_t VP8Zigzag[16]; extern const uint8_t VP8Zigzag[16];
// size of histogram used by CollectHistogram.
#define MAX_COEFF_THRESH 31
typedef struct VP8Histogram VP8Histogram;
struct VP8Histogram {
// TODO(skal): we only need to store the max_value and last_non_zero actually.
int distribution[MAX_COEFF_THRESH + 1];
};
//------------------------------------------------------------------------------ //------------------------------------------------------------------------------
// Headers // Headers