mirror of
https://github.com/webmproject/libwebp.git
synced 2025-01-15 17:18:23 +01:00
cosmetics: fix some typos
Change-Id: I0d6efebd817815139db5ae87236fd8911df4d53c
This commit is contained in:
parent
cb261f790f
commit
4931c3294b
@ -493,7 +493,7 @@ static int Disto4x4(const uint8_t* const a, const uint8_t* const b,
|
|||||||
// q12/14 tmp[12-15]
|
// q12/14 tmp[12-15]
|
||||||
|
|
||||||
// These are still in 01 45 23 67 order. We fix it easily in the addition
|
// These are still in 01 45 23 67 order. We fix it easily in the addition
|
||||||
// case but the subtraction propegates them.
|
// case but the subtraction propagates them.
|
||||||
"vswp d3, d27 \n"
|
"vswp d3, d27 \n"
|
||||||
"vswp d19, d31 \n"
|
"vswp d19, d31 \n"
|
||||||
|
|
||||||
|
@ -644,7 +644,7 @@ static int TTransformSSE2(const uint8_t* inA, const uint8_t* inB,
|
|||||||
__m128i tmp_0, tmp_1, tmp_2, tmp_3;
|
__m128i tmp_0, tmp_1, tmp_2, tmp_3;
|
||||||
const __m128i zero = _mm_setzero_si128();
|
const __m128i zero = _mm_setzero_si128();
|
||||||
|
|
||||||
// Load, combine and tranpose inputs.
|
// Load, combine and transpose inputs.
|
||||||
{
|
{
|
||||||
const __m128i inA_0 = _mm_loadl_epi64((__m128i*)&inA[BPS * 0]);
|
const __m128i inA_0 = _mm_loadl_epi64((__m128i*)&inA[BPS * 0]);
|
||||||
const __m128i inA_1 = _mm_loadl_epi64((__m128i*)&inA[BPS * 1]);
|
const __m128i inA_1 = _mm_loadl_epi64((__m128i*)&inA[BPS * 1]);
|
||||||
|
@ -51,7 +51,7 @@ extern "C" {
|
|||||||
(out) = _mm_sub_epi8(tmp0, tmp4); /* (k + in + 1) / 2 - lsb_correction */ \
|
(out) = _mm_sub_epi8(tmp0, tmp4); /* (k + in + 1) / 2 - lsb_correction */ \
|
||||||
} while (0)
|
} while (0)
|
||||||
|
|
||||||
// pack and store two alterning pixel rows
|
// pack and store two alternating pixel rows
|
||||||
#define PACK_AND_STORE(a, b, da, db, out) do { \
|
#define PACK_AND_STORE(a, b, da, db, out) do { \
|
||||||
const __m128i t_a = _mm_avg_epu8(a, da); /* (9a + 3b + 3c + d + 8) / 16 */ \
|
const __m128i t_a = _mm_avg_epu8(a, da); /* (9a + 3b + 3c + d + 8) / 16 */ \
|
||||||
const __m128i t_b = _mm_avg_epu8(b, db); /* (3a + 9b + c + 3d + 8) / 16 */ \
|
const __m128i t_b = _mm_avg_epu8(b, db); /* (3a + 9b + c + 3d + 8) / 16 */ \
|
||||||
|
@ -201,7 +201,7 @@ static uint32_t GetFilterMap(const uint8_t* alpha, int width, int height,
|
|||||||
const int kMinColorsForFilterNone = 16;
|
const int kMinColorsForFilterNone = 16;
|
||||||
const int kMaxColorsForFilterNone = 192;
|
const int kMaxColorsForFilterNone = 192;
|
||||||
const int num_colors = GetNumColors(alpha, width, height, width);
|
const int num_colors = GetNumColors(alpha, width, height, width);
|
||||||
// For low number of colors, NONE yeilds better compression.
|
// For low number of colors, NONE yields better compression.
|
||||||
filter = (num_colors <= kMinColorsForFilterNone) ? WEBP_FILTER_NONE :
|
filter = (num_colors <= kMinColorsForFilterNone) ? WEBP_FILTER_NONE :
|
||||||
EstimateBestFilter(alpha, width, height, width);
|
EstimateBestFilter(alpha, width, height, width);
|
||||||
bit_map |= 1 << filter;
|
bit_map |= 1 << filter;
|
||||||
|
@ -156,7 +156,7 @@ static void GetParamsForHashChainFindCopy(int quality, int xsize,
|
|||||||
*window_size = (max_window_size > WINDOW_SIZE) ? WINDOW_SIZE
|
*window_size = (max_window_size > WINDOW_SIZE) ? WINDOW_SIZE
|
||||||
: max_window_size;
|
: max_window_size;
|
||||||
*iter_pos = 8 + (quality >> 3);
|
*iter_pos = 8 + (quality >> 3);
|
||||||
// For lower entropy images, the rigourous search loop in HashChainFindCopy
|
// For lower entropy images, the rigorous search loop in HashChainFindCopy
|
||||||
// can be relaxed.
|
// can be relaxed.
|
||||||
*iter_limit = (cache_bits > 0) ? iter_neg : iter_neg / 2;
|
*iter_limit = (cache_bits > 0) ? iter_neg : iter_neg / 2;
|
||||||
}
|
}
|
||||||
|
@ -739,7 +739,7 @@ static double GetPSNR(uint64_t mse, uint64_t size) {
|
|||||||
//------------------------------------------------------------------------------
|
//------------------------------------------------------------------------------
|
||||||
// StatLoop(): only collect statistics (number of skips, token usage, ...).
|
// StatLoop(): only collect statistics (number of skips, token usage, ...).
|
||||||
// This is used for deciding optimal probabilities. It also modifies the
|
// This is used for deciding optimal probabilities. It also modifies the
|
||||||
// quantizer value if some target (size, PNSR) was specified.
|
// quantizer value if some target (size, PSNR) was specified.
|
||||||
|
|
||||||
static void SetLoopParams(VP8Encoder* const enc, float q) {
|
static void SetLoopParams(VP8Encoder* const enc, float q) {
|
||||||
// Make sure the quality parameter is inside valid bounds
|
// Make sure the quality parameter is inside valid bounds
|
||||||
|
@ -285,7 +285,7 @@ void VP8IteratorBytesToNz(VP8EncIterator* const it) {
|
|||||||
#undef BIT
|
#undef BIT
|
||||||
|
|
||||||
//------------------------------------------------------------------------------
|
//------------------------------------------------------------------------------
|
||||||
// Advance to the next position, doing the bookeeping.
|
// Advance to the next position, doing the bookkeeping.
|
||||||
|
|
||||||
void VP8IteratorSaveBoundary(VP8EncIterator* const it) {
|
void VP8IteratorSaveBoundary(VP8EncIterator* const it) {
|
||||||
VP8Encoder* const enc = it->enc_;
|
VP8Encoder* const enc = it->enc_;
|
||||||
|
@ -25,7 +25,7 @@
|
|||||||
|
|
||||||
#define MID_ALPHA 64 // neutral value for susceptibility
|
#define MID_ALPHA 64 // neutral value for susceptibility
|
||||||
#define MIN_ALPHA 30 // lowest usable value for susceptibility
|
#define MIN_ALPHA 30 // lowest usable value for susceptibility
|
||||||
#define MAX_ALPHA 100 // higher meaninful value for susceptibility
|
#define MAX_ALPHA 100 // higher meaningful value for susceptibility
|
||||||
|
|
||||||
#define SNS_TO_DQ 0.9 // Scaling constant between the sns value and the QP
|
#define SNS_TO_DQ 0.9 // Scaling constant between the sns value and the QP
|
||||||
// power-law modulation. Must be strictly less than 1.
|
// power-law modulation. Must be strictly less than 1.
|
||||||
@ -292,7 +292,7 @@ static double QualityToCompression(double c) {
|
|||||||
// exponent is somewhere between 2.8 and 3.2, but we're mostly interested
|
// exponent is somewhere between 2.8 and 3.2, but we're mostly interested
|
||||||
// in the mid-quant range. So we scale the compressibility inversely to
|
// in the mid-quant range. So we scale the compressibility inversely to
|
||||||
// this power-law: quant ~= compression ^ 1/3. This law holds well for
|
// this power-law: quant ~= compression ^ 1/3. This law holds well for
|
||||||
// low quant. Finer modelling for high-quant would make use of kAcTable[]
|
// low quant. Finer modeling for high-quant would make use of kAcTable[]
|
||||||
// more explicitly.
|
// more explicitly.
|
||||||
const double v = pow(linear_c, 1 / 3.);
|
const double v = pow(linear_c, 1 / 3.);
|
||||||
return v;
|
return v;
|
||||||
@ -814,7 +814,7 @@ static int ReconstructUV(VP8EncIterator* const it, VP8ModeScore* const rd,
|
|||||||
|
|
||||||
//------------------------------------------------------------------------------
|
//------------------------------------------------------------------------------
|
||||||
// RD-opt decision. Reconstruct each modes, evalue distortion and bit-cost.
|
// RD-opt decision. Reconstruct each modes, evalue distortion and bit-cost.
|
||||||
// Pick the mode is lower RD-cost = Rate + lamba * Distortion.
|
// Pick the mode is lower RD-cost = Rate + lambda * Distortion.
|
||||||
|
|
||||||
static void StoreMaxDelta(VP8SegmentInfo* const dqm, const int16_t DCs[16]) {
|
static void StoreMaxDelta(VP8SegmentInfo* const dqm, const int16_t DCs[16]) {
|
||||||
// We look at the first three AC coefficients to determine what is the average
|
// We look at the first three AC coefficients to determine what is the average
|
||||||
|
@ -256,7 +256,7 @@ typedef struct {
|
|||||||
int lambda_trellis_i16_, lambda_trellis_i4_, lambda_trellis_uv_;
|
int lambda_trellis_i16_, lambda_trellis_i4_, lambda_trellis_uv_;
|
||||||
} VP8SegmentInfo;
|
} VP8SegmentInfo;
|
||||||
|
|
||||||
// Handy transcient struct to accumulate score and info during RD-optimization
|
// Handy transient struct to accumulate score and info during RD-optimization
|
||||||
// and mode evaluation.
|
// and mode evaluation.
|
||||||
typedef struct {
|
typedef struct {
|
||||||
score_t D, SD; // Distortion, spectral distortion
|
score_t D, SD; // Distortion, spectral distortion
|
||||||
|
@ -157,7 +157,7 @@ static void MapConfigToTools(VP8Encoder* const enc) {
|
|||||||
// non-zero: 196
|
// non-zero: 196
|
||||||
// lf-stats: 2048
|
// lf-stats: 2048
|
||||||
// total: 68635
|
// total: 68635
|
||||||
// Transcient object sizes:
|
// Transient object sizes:
|
||||||
// VP8EncIterator: 352
|
// VP8EncIterator: 352
|
||||||
// VP8ModeScore: 912
|
// VP8ModeScore: 912
|
||||||
// VP8SegmentInfo: 532
|
// VP8SegmentInfo: 532
|
||||||
|
@ -256,7 +256,7 @@ void VP8LWriteBits(VP8LBitWriter* const bw, int n_bits, uint32_t bits) {
|
|||||||
uint8_t* p = &bw->buf_[bw->bit_pos_ >> 3];
|
uint8_t* p = &bw->buf_[bw->bit_pos_ >> 3];
|
||||||
const int bits_reserved_in_first_byte = bw->bit_pos_ & 7;
|
const int bits_reserved_in_first_byte = bw->bit_pos_ & 7;
|
||||||
const int bits_left_to_write = n_bits - 8 + bits_reserved_in_first_byte;
|
const int bits_left_to_write = n_bits - 8 + bits_reserved_in_first_byte;
|
||||||
// implicit & 0xff is assumed for uint8_t arithmetics
|
// implicit & 0xff is assumed for uint8_t arithmetic
|
||||||
*p++ |= bits << bits_reserved_in_first_byte;
|
*p++ |= bits << bits_reserved_in_first_byte;
|
||||||
bits >>= 8 - bits_reserved_in_first_byte;
|
bits >>= 8 - bits_reserved_in_first_byte;
|
||||||
if (bits_left_to_write >= 1) {
|
if (bits_left_to_write >= 1) {
|
||||||
|
@ -27,7 +27,7 @@ static int ValuesShouldBeCollapsedToStrideAverage(int a, int b) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
// Change the population counts in a way that the consequent
|
// Change the population counts in a way that the consequent
|
||||||
// Hufmann tree compression, especially its RLE-part, give smaller output.
|
// Huffman tree compression, especially its RLE-part, give smaller output.
|
||||||
static int OptimizeHuffmanForRle(int length, int* const counts) {
|
static int OptimizeHuffmanForRle(int length, int* const counts) {
|
||||||
uint8_t* good_for_rle;
|
uint8_t* good_for_rle;
|
||||||
// 1) Let's make the Huffman code more compatible with rle encoding.
|
// 1) Let's make the Huffman code more compatible with rle encoding.
|
||||||
|
Loading…
Reference in New Issue
Block a user