mirror of
https://github.com/webmproject/libwebp.git
synced 2024-12-27 06:08:21 +01:00
Move some codec logic out of ./dsp .
The functions containing magic constants are moved out of ./dsp . VP8LPopulationCost got put back in ./enc VP8LGetCombinedEntropy is now unrefined (refinement happening in ./enc) VP8LBitsEntropy is now unrefined (refinement happening in ./enc) VP8LHistogramEstimateBits got put back in ./enc VP8LHistogramEstimateBitsBulk got deleted. Change-Id: I09c4101eebbc6f174403157026fe4a23a5316beb
This commit is contained in:
parent
357f455dec
commit
47ddd5a4cc
@ -29,9 +29,6 @@ extern "C" {
|
||||
#include "../enc/delta_palettization.h"
|
||||
#endif // WEBP_EXPERIMENTAL_FEATURES
|
||||
|
||||
// Not a trivial literal symbol.
|
||||
#define VP8L_NON_TRIVIAL_SYM (0xffffffff)
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Decoding
|
||||
|
||||
@ -219,25 +216,24 @@ typedef VP8LStreaks (*VP8LCostCombinedCountFunc)(const uint32_t* X,
|
||||
extern VP8LCostCountFunc VP8LHuffmanCostCount;
|
||||
extern VP8LCostCombinedCountFunc VP8LHuffmanCostCombinedCount;
|
||||
|
||||
// Get the symbol entropy for the distribution 'population'.
|
||||
// Set 'trivial_sym', if there's only one symbol present in the distribution.
|
||||
double VP8LPopulationCost(const uint32_t* const population, int length,
|
||||
uint32_t* const trivial_sym);
|
||||
typedef struct { // small struct to hold bit entropy results
|
||||
double entropy; // entropy
|
||||
uint32_t sum; // sum of the population
|
||||
int nonzeros; // number of non-zero elements in the population
|
||||
uint32_t max_val; // maximum value in the population
|
||||
uint32_t nonzero_code; // index of the last non-zero in the population
|
||||
} VP8LBitEntropy;
|
||||
|
||||
void VP8LBitEntropyInit(VP8LBitEntropy* const entropy);
|
||||
|
||||
// Get the combined symbol entropy for the distributions 'X' and 'Y'.
|
||||
double VP8LGetCombinedEntropy(const uint32_t* const X,
|
||||
const uint32_t* const Y, int length);
|
||||
void VP8LGetCombinedEntropyUnrefined(const uint32_t* const X,
|
||||
const uint32_t* const Y, int length,
|
||||
VP8LBitEntropy* bit_entropy,
|
||||
VP8LStreaks* stats);
|
||||
|
||||
double VP8LBitsEntropy(const uint32_t* const array, int n,
|
||||
uint32_t* const trivial_symbol);
|
||||
|
||||
// Estimate how many bits the combined entropy of literals and distance
|
||||
// approximately maps to.
|
||||
double VP8LHistogramEstimateBits(const VP8LHistogram* const p);
|
||||
|
||||
// This function estimates the cost in bits excluding the bits needed to
|
||||
// represent the entropy code itself.
|
||||
double VP8LHistogramEstimateBitsBulk(const VP8LHistogram* const p);
|
||||
void VP8LBitsEntropyUnrefined(const uint32_t* const array, int n,
|
||||
VP8LBitEntropy* entropy);
|
||||
|
||||
typedef void (*VP8LHistogramAddFunc)(const VP8LHistogram* const a,
|
||||
const VP8LHistogram* const b,
|
||||
|
@ -440,125 +440,56 @@ static float PredictionCostSpatialHistogram(const int accumulated[4][256],
|
||||
return (float)retval;
|
||||
}
|
||||
|
||||
static WEBP_INLINE double BitsEntropyRefine(int nonzeros, int sum, int max_val,
|
||||
double retval) {
|
||||
double mix;
|
||||
if (nonzeros < 5) {
|
||||
if (nonzeros <= 1) {
|
||||
return 0;
|
||||
}
|
||||
// Two symbols, they will be 0 and 1 in a Huffman code.
|
||||
// Let's mix in a bit of entropy to favor good clustering when
|
||||
// distributions of these are combined.
|
||||
if (nonzeros == 2) {
|
||||
return 0.99 * sum + 0.01 * retval;
|
||||
}
|
||||
// No matter what the entropy says, we cannot be better than min_limit
|
||||
// with Huffman coding. I am mixing a bit of entropy into the
|
||||
// min_limit since it produces much better (~0.5 %) compression results
|
||||
// perhaps because of better entropy clustering.
|
||||
if (nonzeros == 3) {
|
||||
mix = 0.95;
|
||||
} else {
|
||||
mix = 0.7; // nonzeros == 4.
|
||||
}
|
||||
} else {
|
||||
mix = 0.627;
|
||||
void VP8LBitEntropyInit(VP8LBitEntropy* const entropy) {
|
||||
entropy->entropy = 0.;
|
||||
entropy->sum = 0;
|
||||
entropy->nonzeros = 0;
|
||||
entropy->max_val = 0;
|
||||
entropy->nonzero_code = VP8L_NON_TRIVIAL_SYM;
|
||||
}
|
||||
|
||||
{
|
||||
double min_limit = 2 * sum - max_val;
|
||||
min_limit = mix * min_limit + (1.0 - mix) * retval;
|
||||
return (retval < min_limit) ? min_limit : retval;
|
||||
}
|
||||
}
|
||||
|
||||
// Returns the entropy for the symbols in the input array.
|
||||
// Also sets trivial_symbol to the code value, if the array has only one code
|
||||
// value. Otherwise, set it to VP8L_NON_TRIVIAL_SYM.
|
||||
double VP8LBitsEntropy(const uint32_t* const array, int n,
|
||||
uint32_t* const trivial_symbol) {
|
||||
double retval = 0.;
|
||||
uint32_t sum = 0;
|
||||
uint32_t nonzero_code = VP8L_NON_TRIVIAL_SYM;
|
||||
int nonzeros = 0;
|
||||
uint32_t max_val = 0;
|
||||
void VP8LBitsEntropyUnrefined(const uint32_t* const array, int n,
|
||||
VP8LBitEntropy* entropy) {
|
||||
int i;
|
||||
|
||||
VP8LBitEntropyInit(entropy);
|
||||
|
||||
for (i = 0; i < n; ++i) {
|
||||
if (array[i] != 0) {
|
||||
sum += array[i];
|
||||
nonzero_code = i;
|
||||
++nonzeros;
|
||||
retval -= VP8LFastSLog2(array[i]);
|
||||
if (max_val < array[i]) {
|
||||
max_val = array[i];
|
||||
entropy->sum += array[i];
|
||||
entropy->nonzero_code = i;
|
||||
++entropy->nonzeros;
|
||||
entropy->entropy -= VP8LFastSLog2(array[i]);
|
||||
if (entropy->max_val < array[i]) {
|
||||
entropy->max_val = array[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
retval += VP8LFastSLog2(sum);
|
||||
if (trivial_symbol != NULL) {
|
||||
*trivial_symbol = (nonzeros == 1) ? nonzero_code : VP8L_NON_TRIVIAL_SYM;
|
||||
}
|
||||
return BitsEntropyRefine(nonzeros, sum, max_val, retval);
|
||||
entropy->entropy += VP8LFastSLog2(entropy->sum);
|
||||
}
|
||||
|
||||
static double InitialHuffmanCost(void) {
|
||||
// Small bias because Huffman code length is typically not stored in
|
||||
// full length.
|
||||
static const int kHuffmanCodeOfHuffmanCodeSize = CODE_LENGTH_CODES * 3;
|
||||
static const double kSmallBias = 9.1;
|
||||
return kHuffmanCodeOfHuffmanCodeSize - kSmallBias;
|
||||
}
|
||||
|
||||
// Finalize the Huffman cost based on streak numbers and length type (<3 or >=3)
|
||||
static double FinalHuffmanCost(const VP8LStreaks* const stats) {
|
||||
double retval = InitialHuffmanCost();
|
||||
retval += stats->counts[0] * 1.5625 + 0.234375 * stats->streaks[0][1];
|
||||
retval += stats->counts[1] * 2.578125 + 0.703125 * stats->streaks[1][1];
|
||||
retval += 1.796875 * stats->streaks[0][0];
|
||||
retval += 3.28125 * stats->streaks[1][0];
|
||||
return retval;
|
||||
}
|
||||
|
||||
// Trampolines
|
||||
static double HuffmanCost(const uint32_t* const population, int length) {
|
||||
const VP8LStreaks stats = VP8LHuffmanCostCount(population, length);
|
||||
return FinalHuffmanCost(&stats);
|
||||
}
|
||||
|
||||
// Aggregated costs
|
||||
double VP8LPopulationCost(const uint32_t* const population, int length,
|
||||
uint32_t* const trivial_sym) {
|
||||
return
|
||||
VP8LBitsEntropy(population, length, trivial_sym) +
|
||||
HuffmanCost(population, length);
|
||||
}
|
||||
|
||||
double VP8LGetCombinedEntropy(const uint32_t* const X,
|
||||
const uint32_t* const Y, int length) {
|
||||
double bits_entropy_combined;
|
||||
double huffman_cost_combined;
|
||||
void VP8LGetCombinedEntropyUnrefined(const uint32_t* const X,
|
||||
const uint32_t* const Y, int length,
|
||||
VP8LBitEntropy* bit_entropy,
|
||||
VP8LStreaks* stats) {
|
||||
int i;
|
||||
|
||||
// Bit entropy variables.
|
||||
double retval = 0.;
|
||||
int sum = 0;
|
||||
int nonzeros = 0;
|
||||
uint32_t max_val = 0;
|
||||
int i_prev;
|
||||
uint32_t xy;
|
||||
|
||||
// Huffman cost variables.
|
||||
int streak = 0;
|
||||
uint32_t xy_prev;
|
||||
VP8LStreaks stats;
|
||||
memset(&stats, 0, sizeof(stats));
|
||||
memset(stats, 0, sizeof(*stats));
|
||||
|
||||
VP8LBitEntropyInit(bit_entropy);
|
||||
|
||||
// Treat the first value for the huffman cost: this is keeping the original
|
||||
// behavior, even though there is no first streak.
|
||||
// TODO(vrabaud): study proper behavior
|
||||
xy = X[0] + Y[0];
|
||||
++stats.streaks[xy != 0][0];
|
||||
++stats->streaks[xy != 0][0];
|
||||
xy_prev = xy;
|
||||
i_prev = 0;
|
||||
|
||||
@ -571,17 +502,17 @@ double VP8LGetCombinedEntropy(const uint32_t* const X,
|
||||
|
||||
// Gather info for the bit entropy.
|
||||
if (xy_prev != 0) {
|
||||
sum += xy_prev * streak;
|
||||
nonzeros += streak;
|
||||
retval -= VP8LFastSLog2(xy_prev) * streak;
|
||||
if (max_val < xy_prev) {
|
||||
max_val = xy_prev;
|
||||
bit_entropy->sum += xy_prev * streak;
|
||||
bit_entropy->nonzeros += streak;
|
||||
bit_entropy->entropy -= VP8LFastSLog2(xy_prev) * streak;
|
||||
if (bit_entropy->max_val < xy_prev) {
|
||||
bit_entropy->max_val = xy_prev;
|
||||
}
|
||||
}
|
||||
|
||||
// Gather info for the huffman cost.
|
||||
stats.counts[xy != 0] += (streak > 3);
|
||||
stats.streaks[xy != 0][(streak > 3)] += streak;
|
||||
stats->counts[xy != 0] += (streak > 3);
|
||||
stats->streaks[xy != 0][(streak > 3)] += streak;
|
||||
|
||||
xy_prev = xy;
|
||||
i_prev = i;
|
||||
@ -591,47 +522,17 @@ double VP8LGetCombinedEntropy(const uint32_t* const X,
|
||||
// Finish off the last streak for bit entropy.
|
||||
if (xy != 0) {
|
||||
streak = i - i_prev;
|
||||
sum += xy * streak;
|
||||
nonzeros += streak;
|
||||
retval -= VP8LFastSLog2(xy) * streak;
|
||||
if (max_val < xy) {
|
||||
max_val = xy;
|
||||
bit_entropy->sum += xy * streak;
|
||||
bit_entropy->nonzeros += streak;
|
||||
bit_entropy->entropy -= VP8LFastSLog2(xy) * streak;
|
||||
if (bit_entropy->max_val < xy) {
|
||||
bit_entropy->max_val = xy;
|
||||
}
|
||||
}
|
||||
// Huffman cost is not updated with the last streak to keep original behavior.
|
||||
// TODO(vrabaud): study proper behavior
|
||||
|
||||
retval += VP8LFastSLog2(sum);
|
||||
bits_entropy_combined = BitsEntropyRefine(nonzeros, sum, max_val, retval);
|
||||
|
||||
huffman_cost_combined = FinalHuffmanCost(&stats);
|
||||
|
||||
return bits_entropy_combined + huffman_cost_combined;
|
||||
}
|
||||
|
||||
// Estimates the Entropy + Huffman + other block overhead size cost.
|
||||
double VP8LHistogramEstimateBits(const VP8LHistogram* const p) {
|
||||
return
|
||||
VP8LPopulationCost(
|
||||
p->literal_, VP8LHistogramNumCodes(p->palette_code_bits_), NULL)
|
||||
+ VP8LPopulationCost(p->red_, NUM_LITERAL_CODES, NULL)
|
||||
+ VP8LPopulationCost(p->blue_, NUM_LITERAL_CODES, NULL)
|
||||
+ VP8LPopulationCost(p->alpha_, NUM_LITERAL_CODES, NULL)
|
||||
+ VP8LPopulationCost(p->distance_, NUM_DISTANCE_CODES, NULL)
|
||||
+ VP8LExtraCost(p->literal_ + NUM_LITERAL_CODES, NUM_LENGTH_CODES)
|
||||
+ VP8LExtraCost(p->distance_, NUM_DISTANCE_CODES);
|
||||
}
|
||||
|
||||
double VP8LHistogramEstimateBitsBulk(const VP8LHistogram* const p) {
|
||||
return
|
||||
VP8LBitsEntropy(p->literal_, VP8LHistogramNumCodes(p->palette_code_bits_),
|
||||
NULL)
|
||||
+ VP8LBitsEntropy(p->red_, NUM_LITERAL_CODES, NULL)
|
||||
+ VP8LBitsEntropy(p->blue_, NUM_LITERAL_CODES, NULL)
|
||||
+ VP8LBitsEntropy(p->alpha_, NUM_LITERAL_CODES, NULL)
|
||||
+ VP8LBitsEntropy(p->distance_, NUM_DISTANCE_CODES, NULL)
|
||||
+ VP8LExtraCost(p->literal_ + NUM_LITERAL_CODES, NUM_LENGTH_CODES)
|
||||
+ VP8LExtraCost(p->distance_, NUM_DISTANCE_CODES);
|
||||
bit_entropy->entropy += VP8LFastSLog2(bit_entropy->sum);
|
||||
}
|
||||
|
||||
static WEBP_INLINE void UpdateHisto(int histo_argb[4][256], uint32_t argb) {
|
||||
|
@ -156,6 +156,108 @@ void VP8LHistogramAddSinglePixOrCopy(VP8LHistogram* const histo,
|
||||
}
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// Entropy-related functions.
|
||||
|
||||
static WEBP_INLINE double BitsEntropyRefine(const VP8LBitEntropy* entropy) {
|
||||
double mix;
|
||||
if (entropy->nonzeros < 5) {
|
||||
if (entropy->nonzeros <= 1) {
|
||||
return 0;
|
||||
}
|
||||
// Two symbols, they will be 0 and 1 in a Huffman code.
|
||||
// Let's mix in a bit of entropy to favor good clustering when
|
||||
// distributions of these are combined.
|
||||
if (entropy->nonzeros == 2) {
|
||||
return 0.99 * entropy->sum + 0.01 * entropy->entropy;
|
||||
}
|
||||
// No matter what the entropy says, we cannot be better than min_limit
|
||||
// with Huffman coding. I am mixing a bit of entropy into the
|
||||
// min_limit since it produces much better (~0.5 %) compression results
|
||||
// perhaps because of better entropy clustering.
|
||||
if (entropy->nonzeros == 3) {
|
||||
mix = 0.95;
|
||||
} else {
|
||||
mix = 0.7; // nonzeros == 4.
|
||||
}
|
||||
} else {
|
||||
mix = 0.627;
|
||||
}
|
||||
|
||||
{
|
||||
double min_limit = 2 * entropy->sum - entropy->max_val;
|
||||
min_limit = mix * min_limit + (1.0 - mix) * entropy->entropy;
|
||||
return (entropy->entropy < min_limit) ? min_limit : entropy->entropy;
|
||||
}
|
||||
}
|
||||
|
||||
double VP8LBitsEntropy(const uint32_t* const array, int n,
|
||||
uint32_t* const trivial_symbol) {
|
||||
VP8LBitEntropy entropy;
|
||||
VP8LBitsEntropyUnrefined(array, n, &entropy);
|
||||
if (trivial_symbol != NULL) {
|
||||
*trivial_symbol =
|
||||
(entropy.nonzeros == 1) ? entropy.nonzero_code : VP8L_NON_TRIVIAL_SYM;
|
||||
}
|
||||
|
||||
return BitsEntropyRefine(&entropy);
|
||||
}
|
||||
|
||||
static double InitialHuffmanCost(void) {
|
||||
// Small bias because Huffman code length is typically not stored in
|
||||
// full length.
|
||||
static const int kHuffmanCodeOfHuffmanCodeSize = CODE_LENGTH_CODES * 3;
|
||||
static const double kSmallBias = 9.1;
|
||||
return kHuffmanCodeOfHuffmanCodeSize - kSmallBias;
|
||||
}
|
||||
|
||||
// Finalize the Huffman cost based on streak numbers and length type (<3 or >=3)
|
||||
static double FinalHuffmanCost(const VP8LStreaks* const stats) {
|
||||
double retval = InitialHuffmanCost();
|
||||
retval += stats->counts[0] * 1.5625 + 0.234375 * stats->streaks[0][1];
|
||||
retval += stats->counts[1] * 2.578125 + 0.703125 * stats->streaks[1][1];
|
||||
retval += 1.796875 * stats->streaks[0][0];
|
||||
retval += 3.28125 * stats->streaks[1][0];
|
||||
return retval;
|
||||
}
|
||||
|
||||
// Trampolines
|
||||
static double HuffmanCost(const uint32_t* const population, int length) {
|
||||
const VP8LStreaks stats = VP8LHuffmanCostCount(population, length);
|
||||
return FinalHuffmanCost(&stats);
|
||||
}
|
||||
|
||||
// Get the symbol entropy for the distribution 'population'.
|
||||
// Set 'trivial_sym', if there's only one symbol present in the distribution.
|
||||
static double PopulationCost(const uint32_t* const population, int length,
|
||||
uint32_t* const trivial_sym) {
|
||||
return VP8LBitsEntropy(population, length, trivial_sym) +
|
||||
HuffmanCost(population, length);
|
||||
}
|
||||
|
||||
static WEBP_INLINE double GetCombinedEntropy(const uint32_t* const X,
|
||||
const uint32_t* const Y,
|
||||
int length) {
|
||||
VP8LBitEntropy bit_entropy;
|
||||
VP8LStreaks stats;
|
||||
VP8LGetCombinedEntropyUnrefined(X, Y, length, &bit_entropy, &stats);
|
||||
|
||||
return BitsEntropyRefine(&bit_entropy) + FinalHuffmanCost(&stats);
|
||||
}
|
||||
|
||||
// Estimates the Entropy + Huffman + other block overhead size cost.
|
||||
double VP8LHistogramEstimateBits(const VP8LHistogram* const p) {
|
||||
return
|
||||
PopulationCost(
|
||||
p->literal_, VP8LHistogramNumCodes(p->palette_code_bits_), NULL)
|
||||
+ PopulationCost(p->red_, NUM_LITERAL_CODES, NULL)
|
||||
+ PopulationCost(p->blue_, NUM_LITERAL_CODES, NULL)
|
||||
+ PopulationCost(p->alpha_, NUM_LITERAL_CODES, NULL)
|
||||
+ PopulationCost(p->distance_, NUM_DISTANCE_CODES, NULL)
|
||||
+ VP8LExtraCost(p->literal_ + NUM_LITERAL_CODES, NUM_LENGTH_CODES)
|
||||
+ VP8LExtraCost(p->distance_, NUM_DISTANCE_CODES);
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// Various histogram combine/cost-eval functions
|
||||
|
||||
@ -165,26 +267,25 @@ static int GetCombinedHistogramEntropy(const VP8LHistogram* const a,
|
||||
double* cost) {
|
||||
const int palette_code_bits = a->palette_code_bits_;
|
||||
assert(a->palette_code_bits_ == b->palette_code_bits_);
|
||||
*cost += VP8LGetCombinedEntropy(a->literal_, b->literal_,
|
||||
*cost += GetCombinedEntropy(a->literal_, b->literal_,
|
||||
VP8LHistogramNumCodes(palette_code_bits));
|
||||
*cost += VP8LExtraCostCombined(a->literal_ + NUM_LITERAL_CODES,
|
||||
b->literal_ + NUM_LITERAL_CODES,
|
||||
NUM_LENGTH_CODES);
|
||||
if (*cost > cost_threshold) return 0;
|
||||
|
||||
*cost += VP8LGetCombinedEntropy(a->red_, b->red_, NUM_LITERAL_CODES);
|
||||
*cost += GetCombinedEntropy(a->red_, b->red_, NUM_LITERAL_CODES);
|
||||
if (*cost > cost_threshold) return 0;
|
||||
|
||||
*cost += VP8LGetCombinedEntropy(a->blue_, b->blue_, NUM_LITERAL_CODES);
|
||||
*cost += GetCombinedEntropy(a->blue_, b->blue_, NUM_LITERAL_CODES);
|
||||
if (*cost > cost_threshold) return 0;
|
||||
|
||||
*cost += VP8LGetCombinedEntropy(a->alpha_, b->alpha_, NUM_LITERAL_CODES);
|
||||
*cost += GetCombinedEntropy(a->alpha_, b->alpha_, NUM_LITERAL_CODES);
|
||||
if (*cost > cost_threshold) return 0;
|
||||
|
||||
*cost += VP8LGetCombinedEntropy(a->distance_, b->distance_,
|
||||
NUM_DISTANCE_CODES);
|
||||
*cost += VP8LExtraCostCombined(a->distance_, b->distance_,
|
||||
NUM_DISTANCE_CODES);
|
||||
*cost += GetCombinedEntropy(a->distance_, b->distance_, NUM_DISTANCE_CODES);
|
||||
*cost +=
|
||||
VP8LExtraCostCombined(a->distance_, b->distance_, NUM_DISTANCE_CODES);
|
||||
if (*cost > cost_threshold) return 0;
|
||||
|
||||
return 1;
|
||||
@ -262,17 +363,17 @@ static void UpdateDominantCostRange(
|
||||
|
||||
static void UpdateHistogramCost(VP8LHistogram* const h) {
|
||||
uint32_t alpha_sym, red_sym, blue_sym;
|
||||
const double alpha_cost = VP8LPopulationCost(h->alpha_, NUM_LITERAL_CODES,
|
||||
const double alpha_cost = PopulationCost(h->alpha_, NUM_LITERAL_CODES,
|
||||
&alpha_sym);
|
||||
const double distance_cost =
|
||||
VP8LPopulationCost(h->distance_, NUM_DISTANCE_CODES, NULL) +
|
||||
PopulationCost(h->distance_, NUM_DISTANCE_CODES, NULL) +
|
||||
VP8LExtraCost(h->distance_, NUM_DISTANCE_CODES);
|
||||
const int num_codes = VP8LHistogramNumCodes(h->palette_code_bits_);
|
||||
h->literal_cost_ = VP8LPopulationCost(h->literal_, num_codes, NULL) +
|
||||
h->literal_cost_ = PopulationCost(h->literal_, num_codes, NULL) +
|
||||
VP8LExtraCost(h->literal_ + NUM_LITERAL_CODES,
|
||||
NUM_LENGTH_CODES);
|
||||
h->red_cost_ = VP8LPopulationCost(h->red_, NUM_LITERAL_CODES, &red_sym);
|
||||
h->blue_cost_ = VP8LPopulationCost(h->blue_, NUM_LITERAL_CODES, &blue_sym);
|
||||
h->red_cost_ = PopulationCost(h->red_, NUM_LITERAL_CODES, &red_sym);
|
||||
h->blue_cost_ = PopulationCost(h->blue_, NUM_LITERAL_CODES, &blue_sym);
|
||||
h->bit_cost_ = h->literal_cost_ + h->red_cost_ + h->blue_cost_ +
|
||||
alpha_cost + distance_cost;
|
||||
if ((alpha_sym | red_sym | blue_sym) == VP8L_NON_TRIVIAL_SYM) {
|
||||
|
@ -24,6 +24,9 @@
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
// Not a trivial literal symbol.
|
||||
#define VP8L_NON_TRIVIAL_SYM (0xffffffff)
|
||||
|
||||
// A simple container for histograms of data.
|
||||
typedef struct {
|
||||
// literal_ contains green literal, palette-code and
|
||||
@ -103,6 +106,16 @@ int VP8LGetHistoImageSymbols(int xsize, int ysize,
|
||||
VP8LHistogramSet* const tmp_histos,
|
||||
uint16_t* const histogram_symbols);
|
||||
|
||||
// Returns the entropy for the symbols in the input array.
|
||||
// Also sets trivial_symbol to the code value, if the array has only one code
|
||||
// value. Otherwise, set it to VP8L_NON_TRIVIAL_SYM.
|
||||
double VP8LBitsEntropy(const uint32_t* const array, int n,
|
||||
uint32_t* const trivial_symbol);
|
||||
|
||||
// Estimate how many bits the combined entropy of literals and distance
|
||||
// approximately maps to.
|
||||
double VP8LHistogramEstimateBits(const VP8LHistogram* const p);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
@ -16,6 +16,7 @@
|
||||
#include <stdlib.h>
|
||||
|
||||
#include "./backward_references.h"
|
||||
#include "./histogram.h"
|
||||
#include "./vp8enci.h"
|
||||
#include "./vp8li.h"
|
||||
#include "../dsp/lossless.h"
|
||||
|
Loading…
Reference in New Issue
Block a user