apply clang-format

(Debian clang-format version 19.1.7 (3+build4)) with `--style=Google`.

Manual changes:
* clang-format disabled around macros with stringification (mostly
  assembly)
* some inline assembly strings were adjusted to avoid awkward line
  breaks
* trailing commas, `//` or suffixes (`ull`) added to help array
  formatting
* thread_utils.c: parameter comments were changed to the more common
  /*...=*/ style to improve formatting

The automatically generated code under swig/ was skipped.

Bug: 433996651
Change-Id: Iea3f24160d78d2a2653971cdf13fa932e47ff1b3
This commit is contained in:
clang-format
2025-07-28 18:23:12 -07:00
committed by James Zern
parent b569988d3f
commit 44257cb826
224 changed files with 16312 additions and 16734 deletions

View File

@@ -11,14 +11,15 @@
//
// Entropy encoding (Huffman) for webp lossless.
#include "src/utils/huffman_encode_utils.h"
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include "src/utils/huffman_encode_utils.h"
#include "src/webp/types.h"
#include "src/utils/utils.h"
#include "src/webp/format_constants.h"
#include "src/webp/types.h"
// -----------------------------------------------------------------------------
// Util function to optimize the symbol map for RLE coding
@@ -53,8 +54,7 @@ static void OptimizeHuffmanForRle(int length, uint8_t* const good_for_rle,
int stride = 0;
for (i = 0; i < length + 1; ++i) {
if (i == length || counts[i] != symbol) {
if ((symbol == 0 && stride >= 5) ||
(symbol != 0 && stride >= 7)) {
if ((symbol == 0 && stride >= 5) || (symbol != 0 && stride >= 7)) {
int k;
for (k = 0; k < stride; ++k) {
good_for_rle[i - k - 1] = 1;
@@ -75,8 +75,7 @@ static void OptimizeHuffmanForRle(int length, uint8_t* const good_for_rle,
uint32_t limit = counts[0];
uint32_t sum = 0;
for (i = 0; i < length + 1; ++i) {
if (i == length || good_for_rle[i] ||
(i != 0 && good_for_rle[i - 1]) ||
if (i == length || good_for_rle[i] || (i != 0 && good_for_rle[i - 1]) ||
!ValuesShouldBeCollapsedToStrideAverage(counts[i], limit)) {
if (stride >= 4 || (stride >= 3 && sum == 0)) {
uint32_t k;
@@ -100,8 +99,9 @@ static void OptimizeHuffmanForRle(int length, uint8_t* const good_for_rle,
if (i < length - 3) {
// All interesting strides have a count of at least 4,
// at least when non-zeros.
limit = (counts[i] + counts[i + 1] +
counts[i + 2] + counts[i + 3] + 2) / 4;
limit =
(counts[i] + counts[i + 1] + counts[i + 2] + counts[i + 3] + 2) /
4;
} else if (i < length) {
limit = counts[i];
} else {
@@ -165,8 +165,8 @@ static void SetBitDepths(const HuffmanTree* const tree,
//
// See https://en.wikipedia.org/wiki/Huffman_coding
static void GenerateOptimalTree(const uint32_t* const histogram,
int histogram_size,
HuffmanTree* tree, int tree_depth_limit,
int histogram_size, HuffmanTree* tree,
int tree_depth_limit,
uint8_t* const bit_depths) {
uint32_t count_min;
HuffmanTree* tree_pool;
@@ -179,7 +179,7 @@ static void GenerateOptimalTree(const uint32_t* const histogram,
}
}
if (tree_size_orig == 0) { // pretty optimal already!
if (tree_size_orig == 0) { // pretty optimal already!
return;
}
@@ -190,7 +190,7 @@ static void GenerateOptimalTree(const uint32_t* const histogram,
// If we actually start running inside this loop a lot, we would perhaps
// be better off with the Katajainen algorithm.
assert(tree_size_orig <= (1 << (tree_depth_limit - 1)));
for (count_min = 1; ; count_min *= 2) {
for (count_min = 1;; count_min *= 2) {
int tree_size = tree_size_orig;
// We need to pack the Huffman tree in tree_depth_limit bits.
// So, we try by faking histogram entries to be at least 'count_min'.
@@ -261,8 +261,8 @@ static void GenerateOptimalTree(const uint32_t* const histogram,
// Coding of the Huffman tree values
static HuffmanTreeToken* CodeRepeatedValues(int repetitions,
HuffmanTreeToken* tokens,
int value, int prev_value) {
HuffmanTreeToken* tokens, int value,
int prev_value) {
assert(value <= MAX_ALLOWED_CODE_LENGTH);
if (value != prev_value) {
tokens->code = value;
@@ -300,7 +300,7 @@ static HuffmanTreeToken* CodeRepeatedZeros(int repetitions,
if (repetitions < 3) {
int i;
for (i = 0; i < repetitions; ++i) {
tokens->code = 0; // 0-value
tokens->code = 0; // 0-value
tokens->extra_bits = 0;
++tokens;
}
@@ -348,17 +348,16 @@ int VP8LCreateCompressedHuffmanTree(const HuffmanTreeCode* const tree,
i += runs;
assert(tokens <= ending_token);
}
(void)ending_token; // suppress 'unused variable' warning
(void)ending_token; // suppress 'unused variable' warning
return (int)(tokens - starting_token);
}
// -----------------------------------------------------------------------------
// Pre-reversed 4-bit values.
static const uint8_t kReversedBits[16] = {
0x0, 0x8, 0x4, 0xc, 0x2, 0xa, 0x6, 0xe,
0x1, 0x9, 0x5, 0xd, 0x3, 0xb, 0x7, 0xf
};
static const uint8_t kReversedBits[16] = {0x0, 0x8, 0x4, 0xc, 0x2, 0xa,
0x6, 0xe, 0x1, 0x9, 0x5, 0xd,
0x3, 0xb, 0x7, 0xf};
static uint32_t ReverseBits(int num_bits, uint32_t bits) {
uint32_t retval = 0;
@@ -378,7 +377,7 @@ static void ConvertBitDepthsToSymbols(HuffmanTreeCode* const tree) {
int i;
int len;
uint32_t next_code[MAX_ALLOWED_CODE_LENGTH + 1];
int depth_count[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 };
int depth_count[MAX_ALLOWED_CODE_LENGTH + 1] = {0};
assert(tree != NULL);
len = tree->num_symbols;