Add VP8L prefix to backward ref & histogram methods.

Change-Id: I8c14fb219a1d7830d3244aa780c91c9964867330
This commit is contained in:
Vikas Arora 2012-04-10 03:56:07 +00:00 committed by James Zern
parent fcba7be2d3
commit 32714ce3be
4 changed files with 147 additions and 154 deletions

View File

@ -32,7 +32,7 @@ static const uint8_t plane_to_code_lut[128] = {
static const int kMinLength = 2;
int DistanceToPlaneCode(int xsize, int dist) {
int VP8LDistanceToPlaneCode(int xsize, int dist) {
int yoffset = dist / xsize;
int xoffset = dist - yoffset * xsize;
if (xoffset <= 8 && yoffset < 8) {
@ -193,7 +193,7 @@ static WEBP_INLINE void PushBackCopy(int length,
}
}
void BackwardReferencesRle(int xsize, int ysize, const uint32_t* argb,
void VP8LBackwardReferencesRle(int xsize, int ysize, const uint32_t* argb,
PixOrCopy* stream, int* stream_size) {
const int pix_count = xsize * ysize;
int streak = 0;
@ -213,10 +213,10 @@ void BackwardReferencesRle(int xsize, int ysize, const uint32_t* argb,
}
// Returns 1 when successful.
int BackwardReferencesHashChain(int xsize, int ysize, int use_palette,
int VP8LBackwardReferencesHashChain(int xsize, int ysize, int use_palette,
const uint32_t* argb, int palette_bits,
int quality,
PixOrCopy* stream, int* stream_size) {
int quality, PixOrCopy* stream,
int* stream_size) {
const int pix_count = xsize * ysize;
int i;
int ok = 0;
@ -320,7 +320,7 @@ static int CostModel_Build(CostModel* p, int xsize, int ysize,
const uint32_t* argb, int palette_bits) {
int ok = 0;
int stream_size;
Histogram histo;
VP8LHistogram histo;
int i;
PixOrCopy* stream = (PixOrCopy*)malloc(xsize * ysize * sizeof(*stream));
if (stream == NULL) {
@ -328,34 +328,33 @@ static int CostModel_Build(CostModel* p, int xsize, int ysize,
}
p->palette_bits_ = palette_bits;
if (recursion_level > 0) {
if (!BackwardReferencesTraceBackwards(xsize, ysize, recursion_level - 1,
use_palette, argb,
palette_bits,
if (!VP8LBackwardReferencesTraceBackwards(xsize, ysize, recursion_level - 1,
use_palette, argb, palette_bits,
&stream[0], &stream_size)) {
goto Error;
}
} else {
const int quality = 100;
if (!BackwardReferencesHashChain(xsize, ysize, use_palette, argb,
if (!VP8LBackwardReferencesHashChain(xsize, ysize, use_palette, argb,
palette_bits, quality,
&stream[0], &stream_size)) {
goto Error;
}
}
HistogramInit(&histo, palette_bits);
VP8LHistogramInit(&histo, palette_bits);
for (i = 0; i < stream_size; ++i) {
HistogramAddSinglePixOrCopy(&histo, stream[i]);
VP8LHistogramAddSinglePixOrCopy(&histo, stream[i]);
}
ConvertPopulationCountTableToBitEstimates(
HistogramNumPixOrCopyCodes(&histo),
VP8LConvertPopulationCountTableToBitEstimates(
VP8LHistogramNumCodes(&histo),
&histo.literal_[0], &p->literal_[0]);
ConvertPopulationCountTableToBitEstimates(
VP8LConvertPopulationCountTableToBitEstimates(
VALUES_IN_BYTE, &histo.red_[0], &p->red_[0]);
ConvertPopulationCountTableToBitEstimates(
VP8LConvertPopulationCountTableToBitEstimates(
VALUES_IN_BYTE, &histo.blue_[0], &p->blue_[0]);
ConvertPopulationCountTableToBitEstimates(
VP8LConvertPopulationCountTableToBitEstimates(
VALUES_IN_BYTE, &histo.alpha_[0], &p->alpha_[0]);
ConvertPopulationCountTableToBitEstimates(
VP8LConvertPopulationCountTableToBitEstimates(
DISTANCE_CODES_MAX, &histo.distance_[0], &p->distance_[0]);
ok = 1;
Error:
@ -440,7 +439,7 @@ static int BackwardReferencesHashChainDistanceOnly(
&offset, &len);
}
if (len >= kMinLength) {
const int code = DistanceToPlaneCode(xsize, offset);
const int code = VP8LDistanceToPlaneCode(xsize, offset);
const double distance_cost =
prev_cost + CostModel_DistanceCost(cost_model, code);
int k;
@ -601,7 +600,7 @@ Error:
}
// Returns 1 on success.
int BackwardReferencesTraceBackwards(int xsize, int ysize,
int VP8LBackwardReferencesTraceBackwards(int xsize, int ysize,
int recursive_cost_model,
int use_palette,
const uint32_t* argb,
@ -638,18 +637,19 @@ Error:
return ok;
}
void BackwardReferences2DLocality(int xsize, int data_size, PixOrCopy* data) {
void VP8LBackwardReferences2DLocality(int xsize, int data_size,
PixOrCopy* data) {
int i;
for (i = 0; i < data_size; ++i) {
if (PixOrCopyIsCopy(&data[i])) {
int dist = data[i].argb_or_offset;
int transformed_dist = DistanceToPlaneCode(xsize, dist);
int transformed_dist = VP8LDistanceToPlaneCode(xsize, dist);
data[i].argb_or_offset = transformed_dist;
}
}
}
int VerifyBackwardReferences(const uint32_t* argb, int xsize, int ysize,
int VP8LVerifyBackwardReferences(const uint32_t* argb, int xsize, int ysize,
int palette_bits,
const PixOrCopy* lit,
int lit_size) {
@ -717,7 +717,7 @@ int VerifyBackwardReferences(const uint32_t* argb, int xsize, int ysize,
// Returns 1 on success.
static int ComputePaletteHistogram(const uint32_t* argb, int xsize, int ysize,
PixOrCopy* stream, int stream_size,
int palette_bits, Histogram* histo) {
int palette_bits, VP8LHistogram* histo) {
int pixel_index = 0;
int i;
uint32_t k;
@ -732,12 +732,12 @@ static int ComputePaletteHistogram(const uint32_t* argb, int xsize, int ysize,
VP8LColorCacheContains(&hashers, argb[pixel_index])) {
// push pixel as a palette pixel
const int ix = VP8LColorCacheGetIndex(&hashers, argb[pixel_index]);
HistogramAddSinglePixOrCopy(histo, PixOrCopyCreatePaletteIx(ix));
VP8LHistogramAddSinglePixOrCopy(histo, PixOrCopyCreatePaletteIx(ix));
} else {
HistogramAddSinglePixOrCopy(histo, v);
VP8LHistogramAddSinglePixOrCopy(histo, v);
}
} else {
HistogramAddSinglePixOrCopy(histo, v);
VP8LHistogramAddSinglePixOrCopy(histo, v);
}
for (k = 0; k < PixOrCopyLength(&v); ++k) {
VP8LColorCacheInsert(&hashers, argb[pixel_index]);
@ -752,7 +752,7 @@ static int ComputePaletteHistogram(const uint32_t* argb, int xsize, int ysize,
}
// Returns how many bits are to be used for a palette.
int CalculateEstimateForPaletteSize(const uint32_t* argb,
int VP8LCalculateEstimateForPaletteSize(const uint32_t* argb,
int xsize, int ysize,
int* best_palette_bits) {
int ok = 0;
@ -763,17 +763,17 @@ int CalculateEstimateForPaletteSize(const uint32_t* argb,
static const double kSmallPenaltyForLargePalette = 4.0;
static const int quality = 30;
if (stream == NULL ||
!BackwardReferencesHashChain(xsize, ysize,
0, argb, 0, quality, stream, &stream_size)) {
!VP8LBackwardReferencesHashChain(xsize, ysize, 0, argb, 0, quality,
stream, &stream_size)) {
goto Error;
}
for (palette_bits = 0; palette_bits < 12; ++palette_bits) {
double cur_entropy;
Histogram histo;
HistogramInit(&histo, palette_bits);
VP8LHistogram histo;
VP8LHistogramInit(&histo, palette_bits);
ComputePaletteHistogram(argb, xsize, ysize, &stream[0], stream_size,
palette_bits, &histo);
cur_entropy = HistogramEstimateBits(&histo) +
cur_entropy = VP8LHistogramEstimateBits(&histo) +
kSmallPenaltyForLargePalette * palette_bits;
if (palette_bits == 0 || cur_entropy < lowest_entropy) {
*best_palette_bits = palette_bits;

View File

@ -173,7 +173,7 @@ static WEBP_INLINE void PixOrCopyLengthCodeAndBits(
// Ridiculously simple backward references for images where it is unlikely
// that there are large backward references (photos).
void BackwardReferencesRle(
void VP8LBackwardReferencesRle(
int xsize,
int ysize,
const uint32_t *argb,
@ -182,7 +182,7 @@ void BackwardReferencesRle(
// This is a simple fast function for obtaining backward references
// based on simple heuristics. Returns 1 on success.
int BackwardReferencesHashChain(
int VP8LBackwardReferencesHashChain(
int xsize,
int ysize,
int use_palette,
@ -195,7 +195,7 @@ int BackwardReferencesHashChain(
// This method looks for a shortest path through the backward reference
// network based on a cost model generated by a first round of compression.
// Returns 1 on success.
int BackwardReferencesTraceBackwards(
int VP8LBackwardReferencesTraceBackwards(
int xsize,
int ysize,
int recursive_cost_model,
@ -208,22 +208,22 @@ int BackwardReferencesTraceBackwards(
// Convert backward references that are of linear distance along
// the image scan lines to have a 2d locality indexing where
// smaller values are used for backward references that are close by.
void BackwardReferences2DLocality(int xsize, int data_size,
void VP8LBackwardReferences2DLocality(int xsize, int data_size,
PixOrCopy *data);
// Internals of locality transform exposed for testing use.
int DistanceToPlaneCode(int xsize, int distance);
int VP8LDistanceToPlaneCode(int xsize, int distance);
// Returns true if the given backward references actually produce
// the image given in tuple (argb, xsize, ysize).
int VerifyBackwardReferences(const uint32_t* argb,
int VP8LVerifyBackwardReferences(const uint32_t* argb,
int xsize, int ysize,
int palette_bits,
const PixOrCopy *lit,
int lit_size);
// Produce an estimate for a good emerging palette size for the image.
int CalculateEstimateForPaletteSize(const uint32_t *argb,
int VP8LCalculateEstimateForPaletteSize(const uint32_t *argb,
int xsize, int ysize,
int *best_palette_bits);

View File

@ -116,7 +116,7 @@ static WEBP_INLINE double FastLog(int v) {
return log(v);
}
void ConvertPopulationCountTableToBitEstimates(
void VP8LConvertPopulationCountTableToBitEstimates(
int num_symbols,
const int* const population_counts,
double* const output) {
@ -145,7 +145,8 @@ void ConvertPopulationCountTableToBitEstimates(
}
}
void HistogramAddSinglePixOrCopy(Histogram* const p, const PixOrCopy v) {
void VP8LHistogramAddSinglePixOrCopy(VP8LHistogram* const p,
const PixOrCopy v) {
if (PixOrCopyIsLiteral(&v)) {
++p->alpha_[PixOrCopyLiteral(&v, 3)];
++p->red_[PixOrCopyLiteral(&v, 2)];
@ -165,17 +166,17 @@ void HistogramAddSinglePixOrCopy(Histogram* const p, const PixOrCopy v) {
}
}
void HistogramBuild(Histogram* const p,
void VP8LHistogramCreate(VP8LHistogram* const p,
const PixOrCopy* const literal_and_length,
int n_literal_and_length) {
int i;
HistogramClear(p);
VP8LHistogramClear(p);
for (i = 0; i < n_literal_and_length; ++i) {
HistogramAddSinglePixOrCopy(p, literal_and_length[i]);
VP8LHistogramAddSinglePixOrCopy(p, literal_and_length[i]);
}
}
double ShannonEntropy(const int* const array, int n) {
double VP8LShannonEntropy(const int* const array, int n) {
int i;
double retval = 0;
int sum = 0;
@ -208,7 +209,7 @@ static double BitsEntropy(const int* const array, int n) {
}
}
retval -= sum * FastLog(sum);
retval *= -1.4426950408889634; // 1.0 / -FastLog(2);
retval *= -1.4426950408889634; // 1.0 / -Log(2);
mix = 0.627;
if (nonzeros < 5) {
if (nonzeros <= 1) {
@ -240,8 +241,8 @@ static double BitsEntropy(const int* const array, int n) {
return retval;
}
double HistogramEstimateBitsBulk(const Histogram* const p) {
double retval = BitsEntropy(&p->literal_[0], HistogramNumPixOrCopyCodes(p)) +
double VP8LHistogramEstimateBitsBulk(const VP8LHistogram* const p) {
double retval = BitsEntropy(&p->literal_[0], VP8LHistogramNumCodes(p)) +
BitsEntropy(&p->red_[0], 256) +
BitsEntropy(&p->blue_[0], 256) +
BitsEntropy(&p->alpha_[0], 256) +
@ -258,8 +259,8 @@ double HistogramEstimateBitsBulk(const Histogram* const p) {
return retval;
}
double HistogramEstimateBits(const Histogram* const p) {
return HistogramEstimateBitsHeader(p) + HistogramEstimateBitsBulk(p);
double VP8LHistogramEstimateBits(const VP8LHistogram* const p) {
return VP8LHistogramEstimateBitsHeader(p) + VP8LHistogramEstimateBitsBulk(p);
}
// Returns the cost encode the rle-encoded entropy code.
@ -301,35 +302,33 @@ static double HuffmanCost(const int* const population, int length) {
return retval;
}
double HistogramEstimateBitsHeader(const Histogram* const p) {
double VP8LHistogramEstimateBitsHeader(const VP8LHistogram* const p) {
return HuffmanCost(&p->alpha_[0], 256) +
HuffmanCost(&p->red_[0], 256) +
HuffmanCost(&p->literal_[0], HistogramNumPixOrCopyCodes(p)) +
HuffmanCost(&p->literal_[0], VP8LHistogramNumCodes(p)) +
HuffmanCost(&p->blue_[0], 256) +
HuffmanCost(&p->distance_[0], DISTANCE_CODES_MAX);
}
int BuildHistogramImage(int xsize, int ysize,
int histobits,
int palettebits,
int VP8LHistogramBuildImage(int xsize, int ysize,
int histobits, int palettebits,
const PixOrCopy* backward_refs,
int backward_refs_size,
Histogram*** image_arg,
int* image_size) {
VP8LHistogram*** image_arg, int* image_size) {
int histo_xsize = histobits ? (xsize + (1 << histobits) - 1) >> histobits : 1;
int histo_ysize = histobits ? (ysize + (1 << histobits) - 1) >> histobits : 1;
int i;
int x = 0;
int y = 0;
Histogram** image;
VP8LHistogram** image;
*image_arg = NULL;
*image_size = histo_xsize * histo_ysize;
image = (Histogram**)calloc(*image_size, sizeof(*image));
image = (VP8LHistogram**)calloc(*image_size, sizeof(*image));
if (image == NULL) {
return 0;
}
for (i = 0; i < *image_size; ++i) {
image[i] = (Histogram*)malloc(sizeof(*image[i]));
image[i] = (VP8LHistogram*)malloc(sizeof(*image[i]));
if (!image[i]) {
int k;
for (k = 0; k < *image_size; ++k) {
@ -338,14 +337,14 @@ int BuildHistogramImage(int xsize, int ysize,
free(image);
return 0;
}
HistogramInit(image[i], palettebits);
VP8LHistogramInit(image[i], palettebits);
}
// x and y trace the position in the image.
for (i = 0; i < backward_refs_size; ++i) {
const PixOrCopy v = backward_refs[i];
const int ix =
histobits ? (y >> histobits) * histo_xsize + (x >> histobits) : 0;
HistogramAddSinglePixOrCopy(image[ix], v);
VP8LHistogramAddSinglePixOrCopy(image[ix], v);
x += PixOrCopyLength(&v);
while (x >= xsize) {
x -= xsize;
@ -356,11 +355,8 @@ int BuildHistogramImage(int xsize, int ysize,
return 1;
}
int CombineHistogramImage(Histogram** in,
int in_size,
int quality,
Histogram*** out_arg,
int* out_size) {
int VP8LHistogramCombine(VP8LHistogram** in, int in_size, int quality,
VP8LHistogram*** out_arg, int* out_size) {
int ok = 0;
int i;
unsigned int seed = 0;
@ -368,7 +364,7 @@ int CombineHistogramImage(Histogram** in,
int inner_iters = 10 + quality / 2;
int iter;
double* bit_costs = (double*)malloc(in_size * sizeof(*bit_costs));
Histogram** out = (Histogram**)calloc(in_size, sizeof(*out));
VP8LHistogram** out = (VP8LHistogram**)calloc(in_size, sizeof(*out));
*out_arg = out;
*out_size = in_size;
if (bit_costs == NULL || out == NULL) {
@ -376,13 +372,13 @@ int CombineHistogramImage(Histogram** in,
}
// Copy
for (i = 0; i < in_size; ++i) {
Histogram* new_histo = (Histogram*)malloc(sizeof(*new_histo));
VP8LHistogram* new_histo = (VP8LHistogram*)malloc(sizeof(*new_histo));
if (new_histo == NULL) {
goto Error;
}
*new_histo = *(in[i]);
out[i] = new_histo;
bit_costs[i] = HistogramEstimateBits(out[i]);
bit_costs[i] = VP8LHistogramEstimateBits(out[i]);
}
// Collapse similar histograms.
for (iter = 0; iter < in_size * 3 && *out_size >= 2; ++iter) {
@ -394,7 +390,7 @@ int CombineHistogramImage(Histogram** in,
for (k = 0; k < inner_iters; ++k) {
// Choose two, build a combo out of them.
double cost_val;
Histogram* combo;
VP8LHistogram* combo;
int ix0 = rand_r(&seed) % *out_size;
int ix1;
int diff = ((k & 7) + 1) % (*out_size - 1);
@ -405,13 +401,14 @@ int CombineHistogramImage(Histogram** in,
if (ix0 == ix1) {
continue;
}
combo = (Histogram*)malloc(sizeof(*combo));
combo = (VP8LHistogram*)malloc(sizeof(*combo));
if (combo == NULL) {
goto Error;
}
*combo = *out[ix0];
HistogramAdd(combo, out[ix1]);
cost_val = HistogramEstimateBits(combo) - bit_costs[ix0] - bit_costs[ix1];
VP8LHistogramAdd(combo, out[ix1]);
cost_val =
VP8LHistogramEstimateBits(combo) - bit_costs[ix0] - bit_costs[ix1];
if (best_val > cost_val) {
best_val = cost_val;
best_ix0 = ix0;
@ -420,7 +417,7 @@ int CombineHistogramImage(Histogram** in,
free(combo);
}
if (best_val < 0.0) {
HistogramAdd(out[best_ix0], out[best_ix1]);
VP8LHistogramAdd(out[best_ix0], out[best_ix1]);
bit_costs[best_ix0] =
best_val + bit_costs[best_ix0] + bit_costs[best_ix1];
// Erase (*out)[best_ix1]
@ -453,42 +450,39 @@ Error:
// What is the bit cost of moving square_histogram from
// cur_symbol to candidate_symbol.
static double HistogramDistance(const Histogram* const square_histogram,
static double HistogramDistance(const VP8LHistogram* const square_histogram,
int cur_symbol,
int candidate_symbol,
Histogram** candidate_histograms) {
VP8LHistogram** candidate_histograms) {
double new_bit_cost;
double previous_bit_cost;
Histogram modified;
VP8LHistogram modified;
if (cur_symbol == candidate_symbol) {
return 0; // Going nowhere. No savings.
}
previous_bit_cost =
HistogramEstimateBits(candidate_histograms[candidate_symbol]);
VP8LHistogramEstimateBits(candidate_histograms[candidate_symbol]);
if (cur_symbol != -1) {
previous_bit_cost +=
HistogramEstimateBits(candidate_histograms[cur_symbol]);
VP8LHistogramEstimateBits(candidate_histograms[cur_symbol]);
}
// Compute the bit cost of the histogram where the data moves to.
modified = *candidate_histograms[candidate_symbol];
HistogramAdd(&modified, square_histogram);
new_bit_cost = HistogramEstimateBits(&modified);
VP8LHistogramAdd(&modified, square_histogram);
new_bit_cost = VP8LHistogramEstimateBits(&modified);
// Compute the bit cost of the histogram where the data moves away.
if (cur_symbol != -1) {
modified = *candidate_histograms[cur_symbol];
HistogramRemove(&modified, square_histogram);
new_bit_cost += HistogramEstimateBits(&modified);
VP8LHistogramRemove(&modified, square_histogram);
new_bit_cost += VP8LHistogramEstimateBits(&modified);
}
return new_bit_cost - previous_bit_cost;
}
void RefineHistogramImage(Histogram** raw,
int raw_size,
uint32_t* symbols,
int out_size,
Histogram** out) {
void VP8LHistogramRefine(VP8LHistogram** raw, int raw_size,
uint32_t* symbols, int out_size, VP8LHistogram** out) {
int i;
// Find the best 'out' histogram for each of the raw histograms
for (i = 0; i < raw_size; ++i) {
@ -507,9 +501,9 @@ void RefineHistogramImage(Histogram** raw,
// Recompute each out based on raw and symbols.
for (i = 0; i < out_size; ++i) {
HistogramClear(out[i]);
VP8LHistogramClear(out[i]);
}
for (i = 0; i < raw_size; ++i) {
HistogramAdd(out[symbols[i]], raw[i]);
VP8LHistogramAdd(out[symbols[i]], raw[i]);
}
}

View File

@ -36,9 +36,9 @@ typedef struct {
// Backward reference prefix-code histogram.
int distance_[DISTANCE_CODES_MAX];
int palette_code_bits_;
} Histogram;
} VP8LHistogram;
static WEBP_INLINE void HistogramClear(Histogram* const p) {
static WEBP_INLINE void VP8LHistogramClear(VP8LHistogram* const p) {
memset(&p->literal_[0], 0, sizeof(p->literal_));
memset(&p->red_[0], 0, sizeof(p->red_));
memset(&p->blue_[0], 0, sizeof(p->blue_));
@ -46,36 +46,36 @@ static WEBP_INLINE void HistogramClear(Histogram* const p) {
memset(&p->distance_[0], 0, sizeof(p->distance_));
}
static WEBP_INLINE void HistogramInit(Histogram* const p,
static WEBP_INLINE void VP8LHistogramInit(VP8LHistogram* const p,
int palette_code_bits) {
p->palette_code_bits_ = palette_code_bits;
HistogramClear(p);
VP8LHistogramClear(p);
}
// Create the histogram.
//
// The input data is the PixOrCopy data, which models the
// literals, stop codes and backward references (both distances and lengths)
void HistogramBuild(Histogram* const p,
void VP8LHistogramCreate(VP8LHistogram* const p,
const PixOrCopy* const literal_and_length,
int n_literal_and_length);
void HistogramAddSinglePixOrCopy(Histogram* const p, const PixOrCopy v);
void VP8LHistogramAddSinglePixOrCopy(VP8LHistogram* const p, const PixOrCopy v);
// Estimate how many bits the combined entropy of literals and distance
// approximately maps to.
double HistogramEstimateBits(const Histogram* const p);
double VP8LHistogramEstimateBits(const VP8LHistogram* const p);
// This function estimates the Huffman dictionary + other block overhead
// size for creating a new deflate block.
double HistogramEstimateBitsHeader(const Histogram* const p);
double VP8LHistogramEstimateBitsHeader(const VP8LHistogram* const p);
// This function estimates the cost in bits excluding the bits needed to
// represent the entropy code itself.
double HistogramEstimateBitsBulk(const Histogram* const p);
double VP8LHistogramEstimateBitsBulk(const VP8LHistogram* const p);
static WEBP_INLINE void HistogramAdd(Histogram* const p,
const Histogram* const a) {
static WEBP_INLINE void VP8LHistogramAdd(VP8LHistogram* const p,
const VP8LHistogram* const a) {
int i;
for (i = 0; i < PIX_OR_COPY_CODES_MAX; ++i) {
p->literal_[i] += a->literal_[i];
@ -90,8 +90,8 @@ static WEBP_INLINE void HistogramAdd(Histogram* const p,
}
}
static WEBP_INLINE void HistogramRemove(Histogram* const p,
const Histogram* const a) {
static WEBP_INLINE void VP8LHistogramRemove(VP8LHistogram* const p,
const VP8LHistogram* const a) {
int i;
for (i = 0; i < PIX_OR_COPY_CODES_MAX; ++i) {
p->literal_[i] -= a->literal_[i];
@ -111,39 +111,38 @@ static WEBP_INLINE void HistogramRemove(Histogram* const p,
}
}
static WEBP_INLINE int HistogramNumPixOrCopyCodes(const Histogram* const p) {
static WEBP_INLINE int VP8LHistogramNumCodes(const VP8LHistogram* const p) {
return 256 + kLengthCodes + (1 << p->palette_code_bits_);
}
void ConvertPopulationCountTableToBitEstimates(
void VP8LConvertPopulationCountTableToBitEstimates(
int n, const int* const population_counts, double* const output);
double ShannonEntropy(const int* const array, int n);
double VP8LShannonEntropy(const int* const array, int n);
// Build a 2d image of histograms, subresolutioned by (1 << histobits) to
// the original image.
int BuildHistogramImage(int xsize, int ysize,
int histobits,
int palette_bits,
int VP8LHistogramBuildImage(int xsize, int ysize,
int histobits, int palette_bits,
const PixOrCopy* backward_refs,
int backward_refs_size,
Histogram*** image,
VP8LHistogram*** image,
int* histogram_size);
// Combines several histograms into fewer histograms.
int CombineHistogramImage(Histogram** in,
int VP8LHistogramCombine(VP8LHistogram** in,
int in_size,
int quality,
Histogram*** out,
VP8LHistogram*** out,
int* out_size);
// Moves histograms from one cluster to another if smaller entropy can
// be achieved by doing that.
void RefineHistogramImage(Histogram** raw,
void VP8LHistogramRefine(VP8LHistogram** raw,
int raw_size,
uint32_t* symbols,
int out_size,
Histogram** out);
VP8LHistogram** out);
#if defined(__cplusplus) || defined(c_plusplus)
}