big code clean-up and refactoring and optimization

* de-inline some function
* make VP8LBackwardRefs be more like a vectorwith max capacity
* add bit_cost_ field to VP8LHistogram
* general code simplifications
* remove some memmov() from HistogramRefine
* simplify HistogramDistance()
...

Change-Id: I16904d9fa2380e1cf4a3fdddf56ed1fcadfa25dc
This commit is contained in:
Pascal Massimino 2012-04-30 12:18:50 +00:00 committed by James Zern
parent 41b5c8ff71
commit 1a210ef1a9
5 changed files with 322 additions and 328 deletions

View File

@ -83,7 +83,7 @@ typedef struct {
static int VP8LHashChainInit(VP8LHashChain* const p, int size) {
int i;
p->chain_ = (int*)malloc(size * sizeof(*p->chain_));
if (!p->chain_) {
if (p->chain_ == NULL) {
return 0;
}
for (i = 0; i < size; ++i) {
@ -177,55 +177,50 @@ static int VP8LHashChainFindCopy(
return best_length >= kMinLength;
}
static WEBP_INLINE void PushBackCopy(int length, PixOrCopy* const stream,
int* const stream_size) {
static WEBP_INLINE void PushBackCopy(VP8LBackwardRefs* const refs, int length) {
while (length >= kMaxLength) {
stream[*stream_size] = PixOrCopyCreateCopy(1, kMaxLength);
++(*stream_size);
refs->refs[refs->size++] = PixOrCopyCreateCopy(1, kMaxLength);
length -= kMaxLength;
}
if (length > 0) {
stream[*stream_size] = PixOrCopyCreateCopy(1, length);
++(*stream_size);
refs->refs[refs->size++] = PixOrCopyCreateCopy(1, length);
}
}
void VP8LBackwardReferencesRle(
int xsize, int ysize, const uint32_t* const argb, PixOrCopy* const stream,
int* const stream_size) {
int xsize, int ysize, const uint32_t* const argb,
VP8LBackwardRefs* const refs) {
const int pix_count = xsize * ysize;
int match_len = 0;
int i;
*stream_size = 0;
refs->size = 0;
for (i = 0; i < pix_count; ++i) {
if (i >= 1 && argb[i] == argb[i - 1]) {
++match_len;
} else {
PushBackCopy(match_len, stream, stream_size);
PushBackCopy(refs, match_len);
match_len = 0;
stream[*stream_size] = PixOrCopyCreateLiteral(argb[i]);
++(*stream_size);
refs->refs[refs->size++] = PixOrCopyCreateLiteral(argb[i]);
}
}
PushBackCopy(match_len, stream, stream_size);
PushBackCopy(refs, match_len);
}
// Returns 1 when successful.
int VP8LBackwardReferencesHashChain(
int xsize, int ysize, int use_color_cache, const uint32_t* const argb,
int cache_bits, int quality, PixOrCopy* const stream,
int* const stream_size) {
int cache_bits, int quality, VP8LBackwardRefs* const refs) {
int i;
int ok = 0;
const int pix_count = xsize * ysize;
VP8LHashChain* hash_chain = (VP8LHashChain*)malloc(sizeof(*hash_chain));
VP8LColorCache hashers;
if (!hash_chain ||
if (hash_chain == NULL ||
!VP8LColorCacheInit(&hashers, cache_bits) ||
!VP8LHashChainInit(hash_chain, pix_count)) {
goto Error;
}
*stream_size = 0;
refs->size = 0;
for (i = 0; i < pix_count; ) {
// Alternative#1: Code the pixels starting at 'i' using backward reference.
int offset = 0;
@ -256,11 +251,11 @@ int VP8LBackwardReferencesHashChain(
// Alternative#2 is a better match. So push pixel at 'i' as literal.
if (use_color_cache && VP8LColorCacheContains(&hashers, argb[i])) {
const int ix = VP8LColorCacheGetIndex(&hashers, argb[i]);
stream[*stream_size] = PixOrCopyCreateCacheIdx(ix);
refs->refs[refs->size] = PixOrCopyCreateCacheIdx(ix);
} else {
stream[*stream_size] = PixOrCopyCreateLiteral(argb[i]);
refs->refs[refs->size] = PixOrCopyCreateLiteral(argb[i]);
}
++(*stream_size);
++refs->size;
VP8LColorCacheInsert(&hashers, argb[i]);
i++; // Backward reference to be done for next pixel.
len = len2;
@ -270,8 +265,7 @@ int VP8LBackwardReferencesHashChain(
if (len >= kMaxLength) {
len = kMaxLength - 1;
}
stream[*stream_size] = PixOrCopyCreateCopy(offset, len);
++(*stream_size);
refs->refs[refs->size++] = PixOrCopyCreateCopy(offset, len);
for (k = 0; k < len; ++k) {
VP8LColorCacheInsert(&hashers, argb[i + k]);
if (k != 0 && i + k + 1 < pix_count) {
@ -284,11 +278,11 @@ int VP8LBackwardReferencesHashChain(
if (use_color_cache && VP8LColorCacheContains(&hashers, argb[i])) {
// push pixel as a PixOrCopyCreateCacheIdx pixel
int ix = VP8LColorCacheGetIndex(&hashers, argb[i]);
stream[*stream_size] = PixOrCopyCreateCacheIdx(ix);
refs->refs[refs->size] = PixOrCopyCreateCacheIdx(ix);
} else {
stream[*stream_size] = PixOrCopyCreateLiteral(argb[i]);
refs->refs[refs->size] = PixOrCopyCreateLiteral(argb[i]);
}
++(*stream_size);
++refs->size;
VP8LColorCacheInsert(&hashers, argb[i]);
if (i + 1 < pix_count) {
VP8LHashChainInsert(hash_chain, &argb[i], i);
@ -304,6 +298,8 @@ Error:
return ok;
}
// -----------------------------------------------------------------------------
typedef struct {
double alpha_[VALUES_IN_BYTE];
double red_[VALUES_IN_BYTE];
@ -317,32 +313,26 @@ static int CostModelBuild(CostModel* const p, int xsize, int ysize,
int recursion_level, int use_color_cache,
const uint32_t* const argb, int cache_bits) {
int ok = 0;
int stream_size;
VP8LHistogram histo;
int i;
PixOrCopy* stream = (PixOrCopy*)malloc(xsize * ysize * sizeof(*stream));
if (stream == NULL) {
goto Error;
}
VP8LBackwardRefs refs;
if (!VP8LBackwardRefsAlloc(&refs, xsize * ysize)) goto Error;
p->cache_bits_ = cache_bits;
if (recursion_level > 0) {
if (!VP8LBackwardReferencesTraceBackwards(xsize, ysize, recursion_level - 1,
use_color_cache, argb, cache_bits,
&stream[0], &stream_size)) {
&refs)) {
goto Error;
}
} else {
const int quality = 100;
if (!VP8LBackwardReferencesHashChain(xsize, ysize, use_color_cache, argb,
cache_bits, quality,
&stream[0], &stream_size)) {
cache_bits, quality, &refs)) {
goto Error;
}
}
VP8LHistogramInit(&histo, cache_bits);
for (i = 0; i < stream_size; ++i) {
VP8LHistogramAddSinglePixOrCopy(&histo, stream[i]);
}
VP8LHistogramCreate(&histo, &refs, cache_bits);
VP8LConvertPopulationCountTableToBitEstimates(
VP8LHistogramNumCodes(&histo),
&histo.literal_[0], &p->literal_[0]);
@ -355,8 +345,9 @@ static int CostModelBuild(CostModel* const p, int xsize, int ysize,
VP8LConvertPopulationCountTableToBitEstimates(
DISTANCE_CODES_MAX, &histo.distance_[0], &p->distance_[0]);
ok = 1;
Error:
free(stream);
VP8LClearBackwardRefs(&refs);
return ok;
}
@ -527,9 +518,10 @@ static void TraceBackwards(
static int BackwardReferencesHashChainFollowChosenPath(
int xsize, int ysize, int use_color_cache, const uint32_t* const argb,
int cache_bits, const uint32_t* const chosen_path, int chosen_path_size,
PixOrCopy* const stream, int* const stream_size) {
VP8LBackwardRefs* const refs) {
const int quality = 100;
const int pix_count = xsize * ysize;
int size = 0;
int i = 0;
int k;
int ix;
@ -541,8 +533,8 @@ static int BackwardReferencesHashChainFollowChosenPath(
!VP8LColorCacheInit(&hashers, cache_bits)) {
goto Error;
}
*stream_size = 0;
for (ix = 0; ix < chosen_path_size; ++ix) {
refs->size = 0;
for (ix = 0; ix < chosen_path_size; ++ix, ++size) {
int offset = 0;
int len = 0;
int maxlen = chosen_path[ix];
@ -550,8 +542,7 @@ static int BackwardReferencesHashChainFollowChosenPath(
VP8LHashChainFindCopy(hash_chain, quality,
i, xsize, argb, maxlen, &offset, &len);
assert(len == maxlen);
stream[*stream_size] = PixOrCopyCreateCopy(offset, len);
++(*stream_size);
refs->refs[size] = PixOrCopyCreateCopy(offset, len);
for (k = 0; k < len; ++k) {
VP8LColorCacheInsert(&hashers, argb[i + k]);
if (i + k + 1 < pix_count) {
@ -564,11 +555,10 @@ static int BackwardReferencesHashChainFollowChosenPath(
if (use_color_cache && VP8LColorCacheContains(&hashers, argb[i])) {
// push pixel as a color cache index
int ix = VP8LColorCacheGetIndex(&hashers, argb[i]);
stream[*stream_size] = PixOrCopyCreateCacheIdx(ix);
refs->refs[size] = PixOrCopyCreateCacheIdx(ix);
} else {
stream[*stream_size] = PixOrCopyCreateLiteral(argb[i]);
refs->refs[size] = PixOrCopyCreateLiteral(argb[i]);
}
++(*stream_size);
VP8LColorCacheInsert(&hashers, argb[i]);
if (i + 1 < pix_count) {
VP8LHashChainInsert(hash_chain, &argb[i], i);
@ -576,6 +566,8 @@ static int BackwardReferencesHashChainFollowChosenPath(
++i;
}
}
assert(size < refs->max_size);
refs->size = size;
ok = 1;
Error:
VP8LHashChainClear(hash_chain);
@ -589,8 +581,7 @@ Error:
// Returns 1 on success.
int VP8LBackwardReferencesTraceBackwards(
int xsize, int ysize, int recursive_cost_model, int use_color_cache,
const uint32_t* const argb, int cache_bits, PixOrCopy* const stream,
int* const stream_size) {
const uint32_t* const argb, int cache_bits, VP8LBackwardRefs* const refs) {
int ok = 0;
const int dist_array_size = xsize * ysize;
uint32_t* chosen_path = NULL;
@ -600,7 +591,6 @@ int VP8LBackwardReferencesTraceBackwards(
if (dist_array == NULL) {
goto Error;
}
*stream_size = 0;
if (!BackwardReferencesHashChainDistanceOnly(
xsize, ysize, recursive_cost_model, use_color_cache, argb, cache_bits,
dist_array)) {
@ -611,8 +601,7 @@ int VP8LBackwardReferencesTraceBackwards(
free(dist_array);
if (!BackwardReferencesHashChainFollowChosenPath(
xsize, ysize, use_color_cache, argb, cache_bits,
chosen_path, chosen_path_size,
stream, stream_size)) {
chosen_path, chosen_path_size, refs)) {
goto Error;
}
ok = 1;
@ -621,62 +610,50 @@ Error:
return ok;
}
void VP8LBackwardReferences2DLocality(int xsize, int data_size,
PixOrCopy* const data) {
void VP8LBackwardReferences2DLocality(int xsize, VP8LBackwardRefs* const refs) {
int i;
for (i = 0; i < data_size; ++i) {
if (PixOrCopyIsCopy(&data[i])) {
int dist = data[i].argb_or_distance;
int transformed_dist = VP8LDistanceToPlaneCode(xsize, dist);
data[i].argb_or_distance = transformed_dist;
for (i = 0; i < refs->size; ++i) {
if (PixOrCopyIsCopy(&refs->refs[i])) {
const int dist = refs->refs[i].argb_or_distance;
const int transformed_dist = VP8LDistanceToPlaneCode(xsize, dist);
refs->refs[i].argb_or_distance = transformed_dist;
}
}
}
int VP8LVerifyBackwardReferences(
const uint32_t* const argb, int xsize, int ysize, int cache_bits,
const PixOrCopy* const lit, int lit_size) {
const VP8LBackwardRefs* const refs) {
int num_pixels = 0;
int i;
VP8LColorCache hashers;
VP8LColorCacheInit(&hashers, cache_bits);
for (i = 0; i < lit_size; ++i) {
if (PixOrCopyIsLiteral(&lit[i])) {
if (argb[num_pixels] != PixOrCopyArgb(&lit[i])) {
printf("i %d, pixel %d, original: 0x%08x, literal: 0x%08x\n",
i, num_pixels, argb[num_pixels], PixOrCopyArgb(&lit[i]));
for (i = 0; i < refs->size; ++i) {
const PixOrCopy token = refs->refs[i];
if (PixOrCopyIsLiteral(&token)) {
if (argb[num_pixels] != PixOrCopyArgb(&token)) {
VP8LColorCacheClear(&hashers);
return 0;
}
VP8LColorCacheInsert(&hashers, argb[num_pixels]);
++num_pixels;
} else if (PixOrCopyIsCacheIdx(&lit[i])) {
uint32_t cache_entry =
VP8LColorCacheLookup(&hashers, PixOrCopyCacheIdx(&lit[i]));
} else if (PixOrCopyIsCacheIdx(&token)) {
const uint32_t cache_entry =
VP8LColorCacheLookup(&hashers, PixOrCopyCacheIdx(&token));
if (argb[num_pixels] != cache_entry) {
printf("i %d, pixel %d, original: 0x%08x, cache_idx: %d, "
"cache_entry: 0x%08x\n",
i, num_pixels, argb[num_pixels], PixOrCopyCacheIdx(&lit[i]),
cache_entry);
VP8LColorCacheClear(&hashers);
return 0;
}
VP8LColorCacheInsert(&hashers, argb[num_pixels]);
++num_pixels;
} else if (PixOrCopyIsCopy(&lit[i])) {
} else if (PixOrCopyIsCopy(&token)) {
int k;
if (PixOrCopyDistance(&lit[i]) == 0) {
printf("Bw reference with zero distance.\n");
if (PixOrCopyDistance(&token) == 0) {
VP8LColorCacheClear(&hashers);
return 0;
}
for (k = 0; k < lit[i].len; ++k) {
if (argb[num_pixels] !=
argb[num_pixels - PixOrCopyDistance(&lit[i])]) {
printf("i %d, pixel %d, original: 0x%08x, copied: 0x%08x, dist: %d\n",
i, num_pixels, argb[num_pixels],
argb[num_pixels - PixOrCopyDistance(&lit[i])],
PixOrCopyDistance(&lit[i]));
for (k = 0; k < token.len; ++k) {
if (argb[num_pixels] != argb[num_pixels - PixOrCopyDistance(&token)]) {
VP8LColorCacheClear(&hashers);
return 0;
}
@ -688,7 +665,6 @@ int VP8LVerifyBackwardReferences(
{
const int pix_count = xsize * ysize;
if (num_pixels != pix_count) {
printf("verify failure: %d != %d\n", num_pixels, pix_count);
VP8LColorCacheClear(&hashers);
return 0;
}
@ -700,7 +676,7 @@ int VP8LVerifyBackwardReferences(
// Returns 1 on success.
static int ComputeCacheHistogram(
const uint32_t* const argb, int xsize, int ysize,
const PixOrCopy* const stream, int stream_size, int cache_bits,
const VP8LBackwardRefs* const refs, int cache_bits,
VP8LHistogram* const histo) {
int pixel_index = 0;
int i;
@ -709,21 +685,22 @@ static int ComputeCacheHistogram(
if (!VP8LColorCacheInit(&hashers, cache_bits)) {
return 0;
}
for (i = 0; i < stream_size; ++i) {
const PixOrCopy v = stream[i];
if (PixOrCopyIsLiteral(&v)) {
for (i = 0; i < refs->size; ++i) {
const PixOrCopy* const v = &refs->refs[i];
if (PixOrCopyIsLiteral(v)) {
if (cache_bits != 0 &&
VP8LColorCacheContains(&hashers, argb[pixel_index])) {
// push pixel as a cache index
const int ix = VP8LColorCacheGetIndex(&hashers, argb[pixel_index]);
VP8LHistogramAddSinglePixOrCopy(histo, PixOrCopyCreateCacheIdx(ix));
const PixOrCopy token = PixOrCopyCreateCacheIdx(ix);
VP8LHistogramAddSinglePixOrCopy(histo, &token);
} else {
VP8LHistogramAddSinglePixOrCopy(histo, v);
}
} else {
VP8LHistogramAddSinglePixOrCopy(histo, v);
}
for (k = 0; k < PixOrCopyLength(&v); ++k) {
for (k = 0; k < PixOrCopyLength(v); ++k) {
VP8LColorCacheInsert(&hashers, argb[pixel_index]);
++pixel_index;
}
@ -742,21 +719,19 @@ int VP8LCalculateEstimateForCacheSize(
int ok = 0;
int cache_bits;
double lowest_entropy = 1e99;
PixOrCopy* stream = (PixOrCopy*)malloc(xsize * ysize * sizeof(*stream));
int stream_size;
VP8LBackwardRefs refs;
static const double kSmallPenaltyForLargeCache = 4.0;
static const int quality = 30;
if (stream == NULL ||
if (!VP8LBackwardRefsAlloc(&refs, xsize * ysize) ||
!VP8LBackwardReferencesHashChain(xsize, ysize, 0, argb, 0, quality,
stream, &stream_size)) {
&refs)) {
goto Error;
}
for (cache_bits = 0; cache_bits <= kColorCacheBitsMax; ++cache_bits) {
double cur_entropy;
VP8LHistogram histo;
VP8LHistogramInit(&histo, cache_bits);
ComputeCacheHistogram(argb, xsize, ysize, &stream[0], stream_size,
cache_bits, &histo);
ComputeCacheHistogram(argb, xsize, ysize, &refs, cache_bits, &histo);
cur_entropy = VP8LHistogramEstimateBits(&histo) +
kSmallPenaltyForLargeCache * cache_bits;
if (cache_bits == 0 || cur_entropy < lowest_entropy) {
@ -766,7 +741,7 @@ int VP8LCalculateEstimateForCacheSize(
}
ok = 1;
Error:
free(stream);
VP8LClearBackwardRefs(&refs);
return ok;
}

View File

@ -103,10 +103,6 @@ typedef struct {
uint32_t argb_or_distance;
} PixOrCopy;
typedef struct {
PixOrCopy* refs;
int size;
} VP8LBackwardRefs;
static WEBP_INLINE PixOrCopy PixOrCopyCreateCopy(uint32_t distance,
uint16_t len) {
@ -136,15 +132,15 @@ static WEBP_INLINE PixOrCopy PixOrCopyCreateLiteral(uint32_t argb) {
}
static WEBP_INLINE int PixOrCopyIsLiteral(const PixOrCopy* const p) {
return p->mode == kLiteral;
return (p->mode == kLiteral);
}
static WEBP_INLINE int PixOrCopyIsCacheIdx(const PixOrCopy* const p) {
return p->mode == kCacheIdx;
return (p->mode == kCacheIdx);
}
static WEBP_INLINE int PixOrCopyIsCopy(const PixOrCopy* const p) {
return p->mode == kCopy;
return (p->mode == kCopy);
}
static WEBP_INLINE uint32_t PixOrCopyLiteral(const PixOrCopy* const p,
@ -173,10 +169,21 @@ static WEBP_INLINE uint32_t PixOrCopyDistance(const PixOrCopy* const p) {
return p->argb_or_distance;
}
// -----------------------------------------------------------------------------
// VP8LBackwardRefs
typedef struct {
PixOrCopy* refs;
int size; // currently used
int max_size; // maximum capacity
} VP8LBackwardRefs;
static WEBP_INLINE void VP8LInitBackwardRefs(VP8LBackwardRefs* const refs) {
if (refs != NULL) {
refs->refs = NULL;
refs->size = 0;
refs->max_size = 0;
}
}
@ -187,32 +194,41 @@ static WEBP_INLINE void VP8LClearBackwardRefs(VP8LBackwardRefs* const refs) {
}
}
// Allocate 'max_size' references. Returns false in case of memory error.
static WEBP_INLINE int VP8LBackwardRefsAlloc(VP8LBackwardRefs* const refs,
int max_size) {
assert(refs != NULL);
refs->size = 0;
refs->max_size = 0;
refs->refs = (PixOrCopy*)malloc(max_size * sizeof(*refs->refs));
if (refs->refs == NULL) return 0;
refs->max_size = max_size;
return 1;
}
// Ridiculously simple backward references for images where it is unlikely
// that there are large backward references (photos).
void VP8LBackwardReferencesRle(
int xsize, int ysize, const uint32_t* const argb, PixOrCopy* const stream,
int* const stream_size);
int xsize, int ysize, const uint32_t* const argb,
VP8LBackwardRefs* const refs);
// This is a simple fast function for obtaining backward references
// based on simple heuristics. Returns 1 on success.
int VP8LBackwardReferencesHashChain(
int xsize, int ysize, int use_color_cache, const uint32_t* const argb,
int cache_bits, int quality, PixOrCopy* const stream,
int* const stream_size);
int cache_bits, int quality, VP8LBackwardRefs* const refs);
// This method looks for a shortest path through the backward reference
// network based on a cost model generated by a first round of compression.
// Returns 1 on success.
int VP8LBackwardReferencesTraceBackwards(
int xsize, int ysize, int recursive_cost_model, int use_color_cache,
const uint32_t* const argb, int cache_bits, PixOrCopy* const stream,
int* const stream_size);
const uint32_t* const argb, int cache_bits, VP8LBackwardRefs* const refs);
// Convert backward references that are of linear distance along
// the image scan lines to have a 2d locality indexing where
// smaller values are used for backward references that are close by.
void VP8LBackwardReferences2DLocality(int xsize, int data_size,
PixOrCopy* const data);
void VP8LBackwardReferences2DLocality(int xsize, VP8LBackwardRefs* const refs);
// Internals of locality transform exposed for testing use.
int VP8LDistanceToPlaneCode(int xsize, int distance);
@ -221,7 +237,7 @@ int VP8LDistanceToPlaneCode(int xsize, int distance);
// the image given in tuple (argb, xsize, ysize).
int VP8LVerifyBackwardReferences(
const uint32_t* const argb, int xsize, int ysize, int cache_bits,
const PixOrCopy* const lit, int lit_size);
const VP8LBackwardRefs* const refs);
// Produce an estimate for a good color cache size for the image.
int VP8LCalculateEstimateForCacheSize(

View File

@ -17,6 +17,57 @@
#include "./histogram.h"
#include "../dsp/lossless.h"
void VP8LHistogramCreate(VP8LHistogram* const p,
const VP8LBackwardRefs* const refs,
int palette_code_bits) {
int i;
if (palette_code_bits >= 0) {
p->palette_code_bits_ = palette_code_bits;
}
VP8LHistogramClear(p);
for (i = 0; i < refs->size; ++i) {
VP8LHistogramAddSinglePixOrCopy(p, &refs->refs[i]);
}
}
void VP8LHistogramClear(VP8LHistogram* const p) {
memset(p->literal_, 0, sizeof(p->literal_));
memset(p->red_, 0, sizeof(p->red_));
memset(p->blue_, 0, sizeof(p->blue_));
memset(p->alpha_, 0, sizeof(p->alpha_));
memset(p->distance_, 0, sizeof(p->distance_));
p->bit_cost_ = 0;
}
void VP8LHistogramInit(VP8LHistogram* const p, int palette_code_bits) {
p->palette_code_bits_ = palette_code_bits;
VP8LHistogramClear(p);
}
VP8LHistogram** VP8LAllocateHistograms(int size, int cache_bits) {
int i;
VP8LHistogram** const histos =
(VP8LHistogram**)calloc(size, sizeof(*histos));
if (histos == NULL) return NULL;
for (i = 0; i < size; ++i) {
histos[i] = (VP8LHistogram*)malloc(sizeof(**histos));
if (histos[i] == NULL) {
VP8LDeleteHistograms(histos, i);
return NULL;
}
VP8LHistogramInit(histos[i], cache_bits);
}
return histos;
}
void VP8LDeleteHistograms(VP8LHistogram** const histograms, int size) {
if (histograms != NULL) {
int i;
for (i = 0; i < size; ++i) free(histograms[i]);
free(histograms);
}
}
void VP8LConvertPopulationCountTableToBitEstimates(
int num_symbols,
const int* const population_counts,
@ -47,34 +98,27 @@ void VP8LConvertPopulationCountTableToBitEstimates(
}
void VP8LHistogramAddSinglePixOrCopy(VP8LHistogram* const p,
const PixOrCopy v) {
if (PixOrCopyIsLiteral(&v)) {
++p->alpha_[PixOrCopyLiteral(&v, 3)];
++p->red_[PixOrCopyLiteral(&v, 2)];
++p->literal_[PixOrCopyLiteral(&v, 1)];
++p->blue_[PixOrCopyLiteral(&v, 0)];
} else if (PixOrCopyIsCacheIdx(&v)) {
int literal_ix = 256 + kLengthCodes + PixOrCopyCacheIdx(&v);
const PixOrCopy* const v) {
if (PixOrCopyIsLiteral(v)) {
++p->alpha_[PixOrCopyLiteral(v, 3)];
++p->red_[PixOrCopyLiteral(v, 2)];
++p->literal_[PixOrCopyLiteral(v, 1)];
++p->blue_[PixOrCopyLiteral(v, 0)];
} else if (PixOrCopyIsCacheIdx(v)) {
int literal_ix = 256 + kLengthCodes + PixOrCopyCacheIdx(v);
++p->literal_[literal_ix];
} else {
int code, extra_bits_count, extra_bits_value;
PrefixEncode(PixOrCopyLength(&v),
PrefixEncode(PixOrCopyLength(v),
&code, &extra_bits_count, &extra_bits_value);
++p->literal_[256 + code];
PrefixEncode(PixOrCopyDistance(&v),
PrefixEncode(PixOrCopyDistance(v),
&code, &extra_bits_count, &extra_bits_value);
++p->distance_[code];
}
}
void VP8LHistogramCreate(VP8LHistogram* const p,
const VP8LBackwardRefs* const refs) {
int i;
VP8LHistogramClear(p);
for (i = 0; i < refs->size; ++i) {
VP8LHistogramAddSinglePixOrCopy(p, refs->refs[i]);
}
}
static double BitsEntropy(const int* const array, int n) {
double retval = 0;
@ -133,7 +177,7 @@ double VP8LHistogramEstimateBitsBulk(const VP8LHistogram* const p) {
BitsEntropy(&p->alpha_[0], 256) +
BitsEntropy(&p->distance_[0], DISTANCE_CODES_MAX);
// Compute the extra bits cost.
size_t i;
int i;
for (i = 2; i < kLengthCodes - 2; ++i) {
retval +=
(i >> 1) * p->literal_[256 + i + 2];
@ -195,68 +239,55 @@ double VP8LHistogramEstimateBitsHeader(const VP8LHistogram* const p) {
HuffmanCost(&p->distance_[0], DISTANCE_CODES_MAX);
}
static int HistogramBuildImage(int xsize, int histo_bits, int cache_bits,
static void HistogramBuildImage(int xsize, int histo_bits,
const VP8LBackwardRefs* const backward_refs,
VP8LHistogram** const image,
int image_size) {
VP8LHistogram** const image) {
int i;
int x = 0, y = 0;
const int histo_xsize =
histo_bits ? (xsize + (1 << histo_bits) - 1) >> histo_bits : 1;
int x = 0;
int y = 0;
for (i = 0; i < image_size; ++i) {
image[i] = (VP8LHistogram*)malloc(sizeof(*image[i]));
if (image[i] == NULL) {
int k;
for (k = 0; k < i; ++k) free(image[k]);
return 0;
}
VP8LHistogramInit(image[i], cache_bits);
}
// x and y trace the position in the image.
(histo_bits > 0) ? VP8LSubSampleSize(xsize, histo_bits) : 1;
for (i = 0; i < backward_refs->size; ++i) {
const PixOrCopy v = backward_refs->refs[i];
const PixOrCopy* const v = &backward_refs->refs[i];
const int ix =
histo_bits ? (y >> histo_bits) * histo_xsize + (x >> histo_bits) : 0;
(histo_bits > 0) ? (y >> histo_bits) * histo_xsize + (x >> histo_bits)
: 0;
VP8LHistogramAddSinglePixOrCopy(image[ix], v);
x += PixOrCopyLength(&v);
x += PixOrCopyLength(v);
while (x >= xsize) {
x -= xsize;
++y;
}
}
return 1;
}
static int HistogramCombine(VP8LHistogram** const in, int in_size,
static int HistogramCombine(VP8LHistogram* const * const in, int in_size,
int num_pairs, VP8LHistogram** const out,
int* const out_size_arg) {
int* const final_out_size) {
int ok = 0;
int i;
int i, iter;
unsigned int seed = 0;
int tries_with_no_success = 0;
const int outer_iters = in_size * 3;
double* const bit_costs = (double*)malloc(in_size * sizeof(*bit_costs));
// TODO(urvang): 'bit_cost' should be part of VP8LHistogram.
VP8LHistogram* const combo = (VP8LHistogram*)malloc(sizeof(*combo));
const int min_cluster_size = 2;
int out_size = in_size;
if (bit_costs == NULL || out == NULL || combo == NULL) goto End;
const int outer_iters = in_size * 3;
VP8LHistogram* const histos = (VP8LHistogram*)malloc(2 * sizeof(*histos));
VP8LHistogram* cur_combo = histos + 0; // trial merged histogram
VP8LHistogram* best_combo = histos + 1; // best merged histogram so far
if (histos == NULL) goto End;
// Copy histogram 'in' to 'out'.
// Copy histograms from in[] to out[].
for (i = 0; i < in_size; ++i) {
VP8LHistogram* const temp = (VP8LHistogram*)malloc(sizeof(*temp));
if (temp == NULL) goto End;
*temp = *(in[i]);
out[i] = temp;
bit_costs[i] = VP8LHistogramEstimateBits(out[i]);
out[i] = (VP8LHistogram*)malloc(sizeof(*(out[i])));
if (out[i] == NULL) goto End;
*(out[i]) = *(in[i]);
out[i]->bit_cost_ = in[i]->bit_cost_ = VP8LHistogramEstimateBits(out[i]);
}
// Collapse similar histograms in 'out'.
for (i = 0; i < outer_iters && out_size >= 2; ++i) {
for (iter = 0; iter < outer_iters && out_size >= min_cluster_size; ++iter) {
// We pick the best pair to be combined out of 'inner_iters' pairs.
double best_cost_diff = 0;
int best_idx1 = 0;
int best_idx2 = 0;
double best_cost_diff = 0.;
int best_idx1 = 0, best_idx2 = 1;
int j;
for (j = 0; j < num_pairs; ++j) {
double curr_cost_diff;
@ -268,12 +299,18 @@ static int HistogramCombine(VP8LHistogram** const in, int in_size,
if (idx1 == idx2) {
continue;
}
*combo = *out[idx1];
VP8LHistogramAdd(combo, out[idx2]);
*cur_combo = *out[idx1];
VP8LHistogramAdd(cur_combo, out[idx2]);
cur_combo->bit_cost_ = VP8LHistogramEstimateBits(cur_combo);
// Calculate cost reduction on combining.
curr_cost_diff =
VP8LHistogramEstimateBits(combo) - bit_costs[idx1] - bit_costs[idx2];
if (best_cost_diff > curr_cost_diff) {
curr_cost_diff = cur_combo->bit_cost_
- out[idx1]->bit_cost_ - out[idx2]->bit_cost_;
if (best_cost_diff > curr_cost_diff) { // found a better pair?
{ // swap cur/best combo histograms
VP8LHistogram* const tmp = cur_combo;
cur_combo = best_combo;
best_combo = tmp;
}
best_cost_diff = curr_cost_diff;
best_idx1 = idx1;
best_idx2 = idx2;
@ -281,89 +318,59 @@ static int HistogramCombine(VP8LHistogram** const in, int in_size,
}
if (best_cost_diff < 0.0) {
// Combine this pair and store the combined histogram at 'best_idx1'.
VP8LHistogramAdd(out[best_idx1], out[best_idx2]);
bit_costs[best_idx1] =
best_cost_diff + bit_costs[best_idx1] + bit_costs[best_idx2];
*out[best_idx1] = *best_combo;
// swap best_idx2 slot with last one (which is now unused)
free(out[best_idx2]);
memmove(&out[best_idx2], &out[best_idx2 + 1],
(out_size - best_idx2 - 1) * sizeof(*out));
memmove(&bit_costs[best_idx2], &bit_costs[best_idx2 + 1],
(out_size - best_idx2 - 1) * sizeof(*bit_costs));
--out_size;
if (best_idx2 != out_size) {
out[best_idx2] = out[out_size];
out[out_size] = NULL; // just for sanity check.
}
tries_with_no_success = 0;
}
if (++tries_with_no_success >= 50) {
break;
}
}
*final_out_size = out_size;
ok = 1;
End:
free(bit_costs);
free(combo);
if (!ok) {
if (out != NULL) {
for (i = 0; i < out_size; ++i) free(out[i]);
free(out);
}
*out_size_arg = 0;
} else {
*out_size_arg = out_size;
}
free(histos);
return ok;
}
// -----------------------------------------------------------------------------
// Histogram refinement
// What is the bit cost of moving square_histogram from
// cur_symbol to candidate_symbol.
// TODO(skal): we don't really need to copy the histogram and Add(). Instead
// we just need VP8LDualHistogramEstimateBits(A, B) estimation function.
static double HistogramDistance(const VP8LHistogram* const square_histogram,
int cur_symbol, int candidate_symbol,
const double* const symbol_bit_costs,
VP8LHistogram** const candidate_histograms) {
const VP8LHistogram* const candidate) {
const double previous_bit_cost = candidate->bit_cost_;
double new_bit_cost;
double previous_bit_cost;
VP8LHistogram modified_histo;
if (cur_symbol == candidate_symbol) {
return 0; // Going nowhere. No savings.
}
previous_bit_cost = symbol_bit_costs[candidate_symbol];
if (cur_symbol != -1) {
previous_bit_cost += symbol_bit_costs[cur_symbol];
}
// Compute the bit cost of the histogram where the data moves to.
modified_histo = *candidate_histograms[candidate_symbol];
modified_histo = *candidate;
VP8LHistogramAdd(&modified_histo, square_histogram);
new_bit_cost = VP8LHistogramEstimateBits(&modified_histo);
// Compute the bit cost of the histogram where the data moves away.
if (cur_symbol != -1) {
modified_histo = *candidate_histograms[cur_symbol];
VP8LHistogramRemove(&modified_histo, square_histogram);
new_bit_cost += VP8LHistogramEstimateBits(&modified_histo);
}
return new_bit_cost - previous_bit_cost;
}
static int HistogramRefine(VP8LHistogram** const raw, int raw_size,
uint32_t* const symbols,
// Find the best 'out' histogram for each of the raw histograms.
// Note: we assume that out[]->bit_cost_ is already up-to-date.
static void HistogramRefine(VP8LHistogram* const * const raw, int raw_size,
uint16_t* const symbols,
VP8LHistogram** const out, int out_size) {
int i;
double* const symbol_bit_costs =
(double*)malloc(out_size * sizeof(*symbol_bit_costs));
if (symbol_bit_costs == NULL) return 0;
for (i = 0; i < out_size; ++i) {
symbol_bit_costs[i] = VP8LHistogramEstimateBits(out[i]);
}
// Find the best 'out' histogram for each of the raw histograms
for (i = 0; i < raw_size; ++i) {
int best_out = 0;
double best_bits = HistogramDistance(raw[i], symbols[i], 0,
symbol_bit_costs, out);
double best_bits = HistogramDistance(raw[i], out[0]);
int k;
for (k = 1; k < out_size; ++k) {
double cur_bits = HistogramDistance(raw[i], symbols[i], k,
symbol_bit_costs, out);
const double cur_bits = HistogramDistance(raw[i], out[k]);
if (cur_bits < best_bits) {
best_bits = cur_bits;
best_out = k;
@ -371,7 +378,6 @@ static int HistogramRefine(VP8LHistogram** const raw, int raw_size,
}
symbols[i] = best_out;
}
free(symbol_bit_costs);
// Recompute each out based on raw and symbols.
for (i = 0; i < out_size; ++i) {
@ -380,50 +386,39 @@ static int HistogramRefine(VP8LHistogram** const raw, int raw_size,
for (i = 0; i < raw_size; ++i) {
VP8LHistogramAdd(out[symbols[i]], raw[i]);
}
return 1;
}
int VP8LGetHistImageSymbols(int xsize, int ysize,
int VP8LGetHistoImageSymbols(int xsize, int ysize,
const VP8LBackwardRefs* const refs,
int quality, int histo_bits,
int cache_bits,
int quality, int histo_bits, int cache_bits,
VP8LHistogram** const histogram_image,
int* const histogram_image_size,
uint32_t* const histogram_symbols) {
int* const histo_image_raw_size_ptr,
uint16_t* const histogram_symbols) {
int ok = 0;
int i;
const int histo_xsize = histo_bits ? VP8LSubSampleSize(xsize, histo_bits) : 1;
const int histo_ysize = histo_bits ? VP8LSubSampleSize(ysize, histo_bits) : 1;
const int num_histo_pairs = 10 + quality / 2; // For HistogramCombine().
const int histo_image_raw_size = histo_xsize * histo_ysize;
VP8LHistogram** const histo_image_raw =
(VP8LHistogram**)calloc(histo_image_raw_size, sizeof(*histo_image_raw));
VP8LAllocateHistograms(histo_image_raw_size, cache_bits);
if (histo_image_raw == NULL) return 0;
*histo_image_raw_size_ptr = histo_image_raw_size; // initial guess.
// Build histogram image.
if (!HistogramBuildImage(xsize, histo_bits, cache_bits, refs,
histo_image_raw, histo_image_raw_size)) {
goto Error;
}
HistogramBuildImage(xsize, histo_bits, refs, histo_image_raw);
// Collapse similar histograms.
if (!HistogramCombine(histo_image_raw, histo_image_raw_size, num_histo_pairs,
histogram_image, histogram_image_size)) {
histogram_image, histo_image_raw_size_ptr)) {
goto Error;
}
// Refine histogram image.
for (i = 0; i < histo_image_raw_size; ++i) {
histogram_symbols[i] = -1;
}
if (!HistogramRefine(histo_image_raw, histo_image_raw_size, histogram_symbols,
histogram_image, *histogram_image_size)) {
goto Error;
}
HistogramRefine(histo_image_raw, histo_image_raw_size, histogram_symbols,
histogram_image, *histo_image_raw_size_ptr);
ok = 1;
Error:
if (!ok) {
VP8LDeleteHistograms(histogram_image, *histogram_image_size);
VP8LDeleteHistograms(histogram_image, *histo_image_raw_size_ptr);
}
VP8LDeleteHistograms(histo_image_raw, histo_image_raw_size);
return ok;

View File

@ -38,30 +38,33 @@ typedef struct {
// Backward reference prefix-code histogram.
int distance_[DISTANCE_CODES_MAX];
int palette_code_bits_;
double bit_cost_; // cached value of VP8LHistogramEstimateBits(this)
} VP8LHistogram;
static WEBP_INLINE void VP8LHistogramClear(VP8LHistogram* const p) {
memset(&p->literal_[0], 0, sizeof(p->literal_));
memset(&p->red_[0], 0, sizeof(p->red_));
memset(&p->blue_[0], 0, sizeof(p->blue_));
memset(&p->alpha_[0], 0, sizeof(p->alpha_));
memset(&p->distance_[0], 0, sizeof(p->distance_));
}
static WEBP_INLINE void VP8LHistogramInit(VP8LHistogram* const p,
int palette_code_bits) {
p->palette_code_bits_ = palette_code_bits;
VP8LHistogramClear(p);
}
// Create the histogram.
//
// The input data is the PixOrCopy data, which models the
// literals, stop codes and backward references (both distances and lengths)
// The input data is the PixOrCopy data, which models the literals, stop
// codes and backward references (both distances and lengths). Also: if
// palette_code_bits is >= 0, initialize the histogram with this value.
void VP8LHistogramCreate(VP8LHistogram* const p,
const VP8LBackwardRefs* const refs);
const VP8LBackwardRefs* const refs,
int palette_code_bits);
void VP8LHistogramAddSinglePixOrCopy(VP8LHistogram* const p, const PixOrCopy v);
// Reset the histogram's stats.
void VP8LHistogramClear(VP8LHistogram* const p);
// Set the palette_code_bits and reset the stats.
void VP8LHistogramInit(VP8LHistogram* const p, int palette_code_bits);
// Allocate an array of pointer to histograms, allocated and initialized
// using 'cache_bits'. Return NULL in case of memory error.
VP8LHistogram** VP8LAllocateHistograms(int size, int cache_bits);
// Destroy an array of histograms (and the array itself).
void VP8LDeleteHistograms(VP8LHistogram** const histograms, int size);
void VP8LHistogramAddSinglePixOrCopy(VP8LHistogram* const p,
const PixOrCopy* const v);
// Estimate how many bits the combined entropy of literals and distance
// approximately maps to.
@ -116,28 +119,17 @@ static WEBP_INLINE int VP8LHistogramNumCodes(const VP8LHistogram* const p) {
return 256 + kLengthCodes + (1 << p->palette_code_bits_);
}
static WEBP_INLINE void VP8LDeleteHistograms(VP8LHistogram** histograms,
int size) {
if (histograms != NULL) {
int i;
for (i = 0; i < size; ++i) {
free(histograms[i]);
}
free(histograms);
}
}
void VP8LConvertPopulationCountTableToBitEstimates(
int n, const int* const population_counts, double* const output);
// Builds the histogram image.
int VP8LGetHistImageSymbols(int xsize, int ysize,
int VP8LGetHistoImageSymbols(int xsize, int ysize,
const VP8LBackwardRefs* const refs,
int quality, int histogram_bits,
int cache_bits,
VP8LHistogram** const histogram_image,
int* const histogram_image_size,
uint32_t* const histogram_symbols);
uint16_t* const histogram_symbols);
#if defined(__cplusplus) || defined(c_plusplus)
}

View File

@ -119,10 +119,12 @@ static int AnalyzeEntropy(const uint32_t const *argb, int xsize, int ysize,
if (i >= xsize && pix == argb[i - xsize]) {
continue;
}
VP8LHistogramAddSinglePixOrCopy(nonpredicted,
PixOrCopyCreateLiteral(pix));
VP8LHistogramAddSinglePixOrCopy(predicted,
PixOrCopyCreateLiteral(pix_diff));
{
const PixOrCopy pix_token = PixOrCopyCreateLiteral(pix);
const PixOrCopy pix_diff_token = PixOrCopyCreateLiteral(pix_diff);
VP8LHistogramAddSinglePixOrCopy(nonpredicted, &pix_token);
VP8LHistogramAddSinglePixOrCopy(predicted, &pix_diff_token);
}
}
*nonpredicted_bits = (int)VP8LHistogramEstimateBitsBulk(nonpredicted);
*predicted_bits = (int)VP8LHistogramEstimateBitsBulk(predicted);
@ -163,9 +165,9 @@ static int GetBackwardReferences(int width, int height,
int lz77_is_useful;
VP8LBackwardRefs refs_rle, refs_lz77;
const int num_pix = width * height;
refs_rle.refs = (PixOrCopy*)malloc(num_pix * sizeof(*refs_rle.refs));
refs_lz77.refs = (PixOrCopy*)malloc(num_pix * sizeof(*refs_lz77.refs));
VP8LBackwardRefsAlloc(&refs_rle, num_pix);
VP8LBackwardRefsAlloc(&refs_lz77, num_pix);
VP8LInitBackwardRefs(best);
if (refs_rle.refs == NULL || refs_lz77.refs == NULL) {
Error1:
@ -176,24 +178,22 @@ static int GetBackwardReferences(int width, int height,
if (!VP8LBackwardReferencesHashChain(width, height, use_color_cache,
argb, cache_bits, quality,
refs_lz77.refs, &refs_lz77.size)) {
&refs_lz77)) {
goto End;
}
// Backward Reference using RLE only.
VP8LBackwardReferencesRle(width, height, argb, refs_rle.refs, &refs_rle.size);
VP8LBackwardReferencesRle(width, height, argb, &refs_rle);
{
int bit_cost_lz77, bit_cost_rle;
double bit_cost_lz77, bit_cost_rle;
VP8LHistogram* const histo = (VP8LHistogram*)malloc(sizeof(*histo));
if (histo == NULL) goto Error1;
// Evaluate lz77 coding
VP8LHistogramInit(histo, cache_bits);
VP8LHistogramCreate(histo, &refs_lz77);
bit_cost_lz77 = (int)VP8LHistogramEstimateBits(histo);
VP8LHistogramCreate(histo, &refs_lz77, cache_bits);
bit_cost_lz77 = VP8LHistogramEstimateBits(histo);
// Evaluate RLE coding
VP8LHistogramInit(histo, cache_bits);
VP8LHistogramCreate(histo, &refs_rle);
bit_cost_rle = (int)VP8LHistogramEstimateBits(histo);
VP8LHistogramCreate(histo, &refs_rle, cache_bits);
bit_cost_rle = VP8LHistogramEstimateBits(histo);
// Decide if LZ77 is useful.
lz77_is_useful = (bit_cost_lz77 < bit_cost_rle);
free(histo);
@ -208,15 +208,13 @@ static int GetBackwardReferences(int width, int height,
if (try_lz77_trace_backwards) {
const int recursion_level = (num_pix < 320 * 200) ? 1 : 0;
VP8LBackwardRefs refs_trace;
refs_trace.refs = (PixOrCopy*)malloc(num_pix * sizeof(*refs_trace.refs));
if (refs_trace.refs == NULL) {
if (!VP8LBackwardRefsAlloc(&refs_trace, num_pix)) {
goto End;
}
if (VP8LBackwardReferencesTraceBackwards(width, height, recursion_level,
use_color_cache,
argb, cache_bits,
refs_trace.refs,
&refs_trace.size)) {
&refs_trace)) {
VP8LClearBackwardRefs(&refs_lz77);
*best = refs_trace;
}
@ -227,7 +225,7 @@ static int GetBackwardReferences(int width, int height,
}
if (use_2d_locality) { // Use backward reference with 2D locality.
VP8LBackwardReferences2DLocality(width, best->size, best->refs);
VP8LBackwardReferences2DLocality(width, best);
}
ok = 1;
@ -597,7 +595,7 @@ static int StoreHuffmanCode(VP8LBitWriter* const bw,
static void StoreImageToBitMask(
VP8LBitWriter* const bw, int width, int histo_bits,
const VP8LBackwardRefs* const refs,
const uint32_t* histogram_symbols,
const uint16_t* histogram_symbols,
uint8_t** const bitdepths, uint16_t** const bit_symbols) {
// x and y trace the position in the image.
int x = 0;
@ -665,8 +663,8 @@ static int EncodeImageInternal(VP8LBitWriter* const bw,
(VP8LHistogram**)calloc(histogram_image_xysize, sizeof(*histogram_image));
int histogram_image_size;
VP8LBackwardRefs refs;
const size_t histo_size = histogram_image_xysize * sizeof(uint32_t);
uint32_t* const histogram_symbols = (uint32_t*)calloc(1, histo_size);
uint16_t* const histogram_symbols =
(uint16_t*)malloc(histogram_image_xysize * sizeof(*histogram_symbols));
if (histogram_image == NULL || histogram_symbols == NULL) goto Error;
@ -677,7 +675,7 @@ static int EncodeImageInternal(VP8LBitWriter* const bw,
goto Error;
}
// Build histogram image & symbols from backward references.
if (!VP8LGetHistImageSymbols(width, height, &refs,
if (!VP8LGetHistoImageSymbols(width, height, &refs,
quality, histogram_bits, cache_bits,
histogram_image, &histogram_image_size,
histogram_symbols)) {
@ -707,7 +705,8 @@ static int EncodeImageInternal(VP8LBitWriter* const bw,
write_histogram_image = (histogram_image_size > 1);
VP8LWriteBits(bw, 1, write_histogram_image);
if (write_histogram_image) {
uint32_t* const histogram_argb = (uint32_t*)malloc(histo_size);
uint32_t* const histogram_argb =
(uint32_t*)malloc(histogram_image_xysize * sizeof(*histogram_argb));
int max_index = 0;
if (histogram_argb == NULL) goto Error;
for (i = 0; i < histogram_image_xysize; ++i) {
@ -784,7 +783,7 @@ static int EvalAndApplySubtractGreen(const VP8LEncoder* const enc,
if (!enc->use_palette_) {
int i;
const uint32_t* const argb = enc->argb_;
int bit_cost_before, bit_cost_after;
double bit_cost_before, bit_cost_after;
VP8LHistogram* const histo = (VP8LHistogram*)malloc(sizeof(*histo));
if (histo == NULL) return 0;
@ -1186,6 +1185,23 @@ int VP8LEncodeImage(const WebPConfig* const config,
goto Error;
}
if (picture->stats != NULL) {
WebPAuxStats* const stats = picture->stats;
memset(stats, 0, sizeof(*stats));
stats->PSNR[0] = 99.;
stats->PSNR[1] = 99.;
stats->PSNR[2] = 99.;
stats->PSNR[3] = 99.;
// note: padding byte may be missing. Not a big deal.
stats->coded_size = VP8LBitWriterNumBytes(&bw) + HEADER_SIZE;
}
if (picture->extra_info != NULL) {
const int mb_w = (width + 15) >> 4;
const int mb_h = (height + 15) >> 4;
memset(picture->extra_info, 0, mb_w * mb_h * sizeof(*picture->extra_info));
}
Error:
VP8LBitWriterDestroy(&bw);
DeleteVP8LEncoder(enc);