big code clean-up and refactoring and optimization

* de-inline some function
* make VP8LBackwardRefs be more like a vectorwith max capacity
* add bit_cost_ field to VP8LHistogram
* general code simplifications
* remove some memmov() from HistogramRefine
* simplify HistogramDistance()
...

Change-Id: I16904d9fa2380e1cf4a3fdddf56ed1fcadfa25dc
This commit is contained in:
Pascal Massimino
2012-04-30 12:18:50 +00:00
committed by James Zern
parent 41b5c8ff71
commit 1a210ef1a9
5 changed files with 322 additions and 328 deletions

View File

@ -17,6 +17,57 @@
#include "./histogram.h"
#include "../dsp/lossless.h"
void VP8LHistogramCreate(VP8LHistogram* const p,
const VP8LBackwardRefs* const refs,
int palette_code_bits) {
int i;
if (palette_code_bits >= 0) {
p->palette_code_bits_ = palette_code_bits;
}
VP8LHistogramClear(p);
for (i = 0; i < refs->size; ++i) {
VP8LHistogramAddSinglePixOrCopy(p, &refs->refs[i]);
}
}
void VP8LHistogramClear(VP8LHistogram* const p) {
memset(p->literal_, 0, sizeof(p->literal_));
memset(p->red_, 0, sizeof(p->red_));
memset(p->blue_, 0, sizeof(p->blue_));
memset(p->alpha_, 0, sizeof(p->alpha_));
memset(p->distance_, 0, sizeof(p->distance_));
p->bit_cost_ = 0;
}
void VP8LHistogramInit(VP8LHistogram* const p, int palette_code_bits) {
p->palette_code_bits_ = palette_code_bits;
VP8LHistogramClear(p);
}
VP8LHistogram** VP8LAllocateHistograms(int size, int cache_bits) {
int i;
VP8LHistogram** const histos =
(VP8LHistogram**)calloc(size, sizeof(*histos));
if (histos == NULL) return NULL;
for (i = 0; i < size; ++i) {
histos[i] = (VP8LHistogram*)malloc(sizeof(**histos));
if (histos[i] == NULL) {
VP8LDeleteHistograms(histos, i);
return NULL;
}
VP8LHistogramInit(histos[i], cache_bits);
}
return histos;
}
void VP8LDeleteHistograms(VP8LHistogram** const histograms, int size) {
if (histograms != NULL) {
int i;
for (i = 0; i < size; ++i) free(histograms[i]);
free(histograms);
}
}
void VP8LConvertPopulationCountTableToBitEstimates(
int num_symbols,
const int* const population_counts,
@ -47,34 +98,27 @@ void VP8LConvertPopulationCountTableToBitEstimates(
}
void VP8LHistogramAddSinglePixOrCopy(VP8LHistogram* const p,
const PixOrCopy v) {
if (PixOrCopyIsLiteral(&v)) {
++p->alpha_[PixOrCopyLiteral(&v, 3)];
++p->red_[PixOrCopyLiteral(&v, 2)];
++p->literal_[PixOrCopyLiteral(&v, 1)];
++p->blue_[PixOrCopyLiteral(&v, 0)];
} else if (PixOrCopyIsCacheIdx(&v)) {
int literal_ix = 256 + kLengthCodes + PixOrCopyCacheIdx(&v);
const PixOrCopy* const v) {
if (PixOrCopyIsLiteral(v)) {
++p->alpha_[PixOrCopyLiteral(v, 3)];
++p->red_[PixOrCopyLiteral(v, 2)];
++p->literal_[PixOrCopyLiteral(v, 1)];
++p->blue_[PixOrCopyLiteral(v, 0)];
} else if (PixOrCopyIsCacheIdx(v)) {
int literal_ix = 256 + kLengthCodes + PixOrCopyCacheIdx(v);
++p->literal_[literal_ix];
} else {
int code, extra_bits_count, extra_bits_value;
PrefixEncode(PixOrCopyLength(&v),
PrefixEncode(PixOrCopyLength(v),
&code, &extra_bits_count, &extra_bits_value);
++p->literal_[256 + code];
PrefixEncode(PixOrCopyDistance(&v),
PrefixEncode(PixOrCopyDistance(v),
&code, &extra_bits_count, &extra_bits_value);
++p->distance_[code];
}
}
void VP8LHistogramCreate(VP8LHistogram* const p,
const VP8LBackwardRefs* const refs) {
int i;
VP8LHistogramClear(p);
for (i = 0; i < refs->size; ++i) {
VP8LHistogramAddSinglePixOrCopy(p, refs->refs[i]);
}
}
static double BitsEntropy(const int* const array, int n) {
double retval = 0;
@ -133,7 +177,7 @@ double VP8LHistogramEstimateBitsBulk(const VP8LHistogram* const p) {
BitsEntropy(&p->alpha_[0], 256) +
BitsEntropy(&p->distance_[0], DISTANCE_CODES_MAX);
// Compute the extra bits cost.
size_t i;
int i;
for (i = 2; i < kLengthCodes - 2; ++i) {
retval +=
(i >> 1) * p->literal_[256 + i + 2];
@ -189,74 +233,61 @@ static double HuffmanCost(const int* const population, int length) {
double VP8LHistogramEstimateBitsHeader(const VP8LHistogram* const p) {
return HuffmanCost(&p->alpha_[0], 256) +
HuffmanCost(&p->red_[0], 256) +
HuffmanCost(&p->literal_[0], VP8LHistogramNumCodes(p)) +
HuffmanCost(&p->blue_[0], 256) +
HuffmanCost(&p->distance_[0], DISTANCE_CODES_MAX);
HuffmanCost(&p->red_[0], 256) +
HuffmanCost(&p->literal_[0], VP8LHistogramNumCodes(p)) +
HuffmanCost(&p->blue_[0], 256) +
HuffmanCost(&p->distance_[0], DISTANCE_CODES_MAX);
}
static int HistogramBuildImage(int xsize, int histo_bits, int cache_bits,
const VP8LBackwardRefs* const backward_refs,
VP8LHistogram** const image,
int image_size) {
static void HistogramBuildImage(int xsize, int histo_bits,
const VP8LBackwardRefs* const backward_refs,
VP8LHistogram** const image) {
int i;
int x = 0, y = 0;
const int histo_xsize =
histo_bits ? (xsize + (1 << histo_bits) - 1) >> histo_bits : 1;
int x = 0;
int y = 0;
for (i = 0; i < image_size; ++i) {
image[i] = (VP8LHistogram*)malloc(sizeof(*image[i]));
if (image[i] == NULL) {
int k;
for (k = 0; k < i; ++k) free(image[k]);
return 0;
}
VP8LHistogramInit(image[i], cache_bits);
}
// x and y trace the position in the image.
(histo_bits > 0) ? VP8LSubSampleSize(xsize, histo_bits) : 1;
for (i = 0; i < backward_refs->size; ++i) {
const PixOrCopy v = backward_refs->refs[i];
const PixOrCopy* const v = &backward_refs->refs[i];
const int ix =
histo_bits ? (y >> histo_bits) * histo_xsize + (x >> histo_bits) : 0;
(histo_bits > 0) ? (y >> histo_bits) * histo_xsize + (x >> histo_bits)
: 0;
VP8LHistogramAddSinglePixOrCopy(image[ix], v);
x += PixOrCopyLength(&v);
x += PixOrCopyLength(v);
while (x >= xsize) {
x -= xsize;
++y;
}
}
return 1;
}
static int HistogramCombine(VP8LHistogram** const in, int in_size,
static int HistogramCombine(VP8LHistogram* const * const in, int in_size,
int num_pairs, VP8LHistogram** const out,
int* const out_size_arg) {
int* const final_out_size) {
int ok = 0;
int i;
int i, iter;
unsigned int seed = 0;
int tries_with_no_success = 0;
const int outer_iters = in_size * 3;
double* const bit_costs = (double*)malloc(in_size * sizeof(*bit_costs));
// TODO(urvang): 'bit_cost' should be part of VP8LHistogram.
VP8LHistogram* const combo = (VP8LHistogram*)malloc(sizeof(*combo));
const int min_cluster_size = 2;
int out_size = in_size;
if (bit_costs == NULL || out == NULL || combo == NULL) goto End;
const int outer_iters = in_size * 3;
VP8LHistogram* const histos = (VP8LHistogram*)malloc(2 * sizeof(*histos));
VP8LHistogram* cur_combo = histos + 0; // trial merged histogram
VP8LHistogram* best_combo = histos + 1; // best merged histogram so far
if (histos == NULL) goto End;
// Copy histogram 'in' to 'out'.
// Copy histograms from in[] to out[].
for (i = 0; i < in_size; ++i) {
VP8LHistogram* const temp = (VP8LHistogram*)malloc(sizeof(*temp));
if (temp == NULL) goto End;
*temp = *(in[i]);
out[i] = temp;
bit_costs[i] = VP8LHistogramEstimateBits(out[i]);
out[i] = (VP8LHistogram*)malloc(sizeof(*(out[i])));
if (out[i] == NULL) goto End;
*(out[i]) = *(in[i]);
out[i]->bit_cost_ = in[i]->bit_cost_ = VP8LHistogramEstimateBits(out[i]);
}
// Collapse similar histograms in 'out'.
for (i = 0; i < outer_iters && out_size >= 2; ++i) {
for (iter = 0; iter < outer_iters && out_size >= min_cluster_size; ++iter) {
// We pick the best pair to be combined out of 'inner_iters' pairs.
double best_cost_diff = 0;
int best_idx1 = 0;
int best_idx2 = 0;
double best_cost_diff = 0.;
int best_idx1 = 0, best_idx2 = 1;
int j;
for (j = 0; j < num_pairs; ++j) {
double curr_cost_diff;
@ -268,12 +299,18 @@ static int HistogramCombine(VP8LHistogram** const in, int in_size,
if (idx1 == idx2) {
continue;
}
*combo = *out[idx1];
VP8LHistogramAdd(combo, out[idx2]);
*cur_combo = *out[idx1];
VP8LHistogramAdd(cur_combo, out[idx2]);
cur_combo->bit_cost_ = VP8LHistogramEstimateBits(cur_combo);
// Calculate cost reduction on combining.
curr_cost_diff =
VP8LHistogramEstimateBits(combo) - bit_costs[idx1] - bit_costs[idx2];
if (best_cost_diff > curr_cost_diff) {
curr_cost_diff = cur_combo->bit_cost_
- out[idx1]->bit_cost_ - out[idx2]->bit_cost_;
if (best_cost_diff > curr_cost_diff) { // found a better pair?
{ // swap cur/best combo histograms
VP8LHistogram* const tmp = cur_combo;
cur_combo = best_combo;
best_combo = tmp;
}
best_cost_diff = curr_cost_diff;
best_idx1 = idx1;
best_idx2 = idx2;
@ -281,89 +318,59 @@ static int HistogramCombine(VP8LHistogram** const in, int in_size,
}
if (best_cost_diff < 0.0) {
// Combine this pair and store the combined histogram at 'best_idx1'.
VP8LHistogramAdd(out[best_idx1], out[best_idx2]);
bit_costs[best_idx1] =
best_cost_diff + bit_costs[best_idx1] + bit_costs[best_idx2];
*out[best_idx1] = *best_combo;
// swap best_idx2 slot with last one (which is now unused)
free(out[best_idx2]);
memmove(&out[best_idx2], &out[best_idx2 + 1],
(out_size - best_idx2 - 1) * sizeof(*out));
memmove(&bit_costs[best_idx2], &bit_costs[best_idx2 + 1],
(out_size - best_idx2 - 1) * sizeof(*bit_costs));
--out_size;
if (best_idx2 != out_size) {
out[best_idx2] = out[out_size];
out[out_size] = NULL; // just for sanity check.
}
tries_with_no_success = 0;
}
if (++tries_with_no_success >= 50) {
break;
}
}
*final_out_size = out_size;
ok = 1;
End:
free(bit_costs);
free(combo);
if (!ok) {
if (out != NULL) {
for (i = 0; i < out_size; ++i) free(out[i]);
free(out);
}
*out_size_arg = 0;
} else {
*out_size_arg = out_size;
}
free(histos);
return ok;
}
// -----------------------------------------------------------------------------
// Histogram refinement
// What is the bit cost of moving square_histogram from
// cur_symbol to candidate_symbol.
// TODO(skal): we don't really need to copy the histogram and Add(). Instead
// we just need VP8LDualHistogramEstimateBits(A, B) estimation function.
static double HistogramDistance(const VP8LHistogram* const square_histogram,
int cur_symbol, int candidate_symbol,
const double* const symbol_bit_costs,
VP8LHistogram** const candidate_histograms) {
const VP8LHistogram* const candidate) {
const double previous_bit_cost = candidate->bit_cost_;
double new_bit_cost;
double previous_bit_cost;
VP8LHistogram modified_histo;
if (cur_symbol == candidate_symbol) {
return 0; // Going nowhere. No savings.
}
previous_bit_cost = symbol_bit_costs[candidate_symbol];
if (cur_symbol != -1) {
previous_bit_cost += symbol_bit_costs[cur_symbol];
}
// Compute the bit cost of the histogram where the data moves to.
modified_histo = *candidate_histograms[candidate_symbol];
modified_histo = *candidate;
VP8LHistogramAdd(&modified_histo, square_histogram);
new_bit_cost = VP8LHistogramEstimateBits(&modified_histo);
// Compute the bit cost of the histogram where the data moves away.
if (cur_symbol != -1) {
modified_histo = *candidate_histograms[cur_symbol];
VP8LHistogramRemove(&modified_histo, square_histogram);
new_bit_cost += VP8LHistogramEstimateBits(&modified_histo);
}
return new_bit_cost - previous_bit_cost;
}
static int HistogramRefine(VP8LHistogram** const raw, int raw_size,
uint32_t* const symbols,
VP8LHistogram** const out, int out_size) {
// Find the best 'out' histogram for each of the raw histograms.
// Note: we assume that out[]->bit_cost_ is already up-to-date.
static void HistogramRefine(VP8LHistogram* const * const raw, int raw_size,
uint16_t* const symbols,
VP8LHistogram** const out, int out_size) {
int i;
double* const symbol_bit_costs =
(double*)malloc(out_size * sizeof(*symbol_bit_costs));
if (symbol_bit_costs == NULL) return 0;
for (i = 0; i < out_size; ++i) {
symbol_bit_costs[i] = VP8LHistogramEstimateBits(out[i]);
}
// Find the best 'out' histogram for each of the raw histograms
for (i = 0; i < raw_size; ++i) {
int best_out = 0;
double best_bits = HistogramDistance(raw[i], symbols[i], 0,
symbol_bit_costs, out);
double best_bits = HistogramDistance(raw[i], out[0]);
int k;
for (k = 1; k < out_size; ++k) {
double cur_bits = HistogramDistance(raw[i], symbols[i], k,
symbol_bit_costs, out);
const double cur_bits = HistogramDistance(raw[i], out[k]);
if (cur_bits < best_bits) {
best_bits = cur_bits;
best_out = k;
@ -371,7 +378,6 @@ static int HistogramRefine(VP8LHistogram** const raw, int raw_size,
}
symbols[i] = best_out;
}
free(symbol_bit_costs);
// Recompute each out based on raw and symbols.
for (i = 0; i < out_size; ++i) {
@ -380,50 +386,39 @@ static int HistogramRefine(VP8LHistogram** const raw, int raw_size,
for (i = 0; i < raw_size; ++i) {
VP8LHistogramAdd(out[symbols[i]], raw[i]);
}
return 1;
}
int VP8LGetHistImageSymbols(int xsize, int ysize,
const VP8LBackwardRefs* const refs,
int quality, int histo_bits,
int cache_bits,
VP8LHistogram** const histogram_image,
int* const histogram_image_size,
uint32_t* const histogram_symbols) {
int VP8LGetHistoImageSymbols(int xsize, int ysize,
const VP8LBackwardRefs* const refs,
int quality, int histo_bits, int cache_bits,
VP8LHistogram** const histogram_image,
int* const histo_image_raw_size_ptr,
uint16_t* const histogram_symbols) {
int ok = 0;
int i;
const int histo_xsize = histo_bits ? VP8LSubSampleSize(xsize, histo_bits) : 1;
const int histo_ysize = histo_bits ? VP8LSubSampleSize(ysize, histo_bits) : 1;
const int num_histo_pairs = 10 + quality / 2; // For HistogramCombine().
const int histo_image_raw_size = histo_xsize * histo_ysize;
VP8LHistogram** const histo_image_raw =
(VP8LHistogram**)calloc(histo_image_raw_size, sizeof(*histo_image_raw));
VP8LHistogram** const histo_image_raw =
VP8LAllocateHistograms(histo_image_raw_size, cache_bits);
if (histo_image_raw == NULL) return 0;
*histo_image_raw_size_ptr = histo_image_raw_size; // initial guess.
// Build histogram image.
if (!HistogramBuildImage(xsize, histo_bits, cache_bits, refs,
histo_image_raw, histo_image_raw_size)) {
goto Error;
}
HistogramBuildImage(xsize, histo_bits, refs, histo_image_raw);
// Collapse similar histograms.
if (!HistogramCombine(histo_image_raw, histo_image_raw_size, num_histo_pairs,
histogram_image, histogram_image_size)) {
histogram_image, histo_image_raw_size_ptr)) {
goto Error;
}
// Refine histogram image.
for (i = 0; i < histo_image_raw_size; ++i) {
histogram_symbols[i] = -1;
}
if (!HistogramRefine(histo_image_raw, histo_image_raw_size, histogram_symbols,
histogram_image, *histogram_image_size)) {
goto Error;
}
HistogramRefine(histo_image_raw, histo_image_raw_size, histogram_symbols,
histogram_image, *histo_image_raw_size_ptr);
ok = 1;
Error:
if (!ok) {
VP8LDeleteHistograms(histogram_image, *histogram_image_size);
VP8LDeleteHistograms(histogram_image, *histo_image_raw_size_ptr);
}
VP8LDeleteHistograms(histo_image_raw, histo_image_raw_size);
return ok;