libwebp/src/vp8.c

601 lines
17 KiB
C
Raw Normal View History

// Copyright 2010 Google Inc.
//
// This code is licensed under the same terms as WebM:
// Software License Agreement: http://www.webmproject.org/license/software/
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
// -----------------------------------------------------------------------------
//
// main entry for the decoder
//
// Author: Skal (pascal.massimino@gmail.com)
#include <stdlib.h>
#include "vp8i.h"
//-----------------------------------------------------------------------------
// VP8Decoder
static void SetOk(VP8Decoder* const dec) {
dec->status_ = 0;
dec->error_msg_ = "OK";
}
void VP8InitIo(VP8Io* const io) {
if (io) {
memset(io, 0, sizeof(*io));
}
}
VP8Decoder* VP8New() {
VP8Decoder* dec = (VP8Decoder*)calloc(1, sizeof(VP8Decoder));
if (dec) {
SetOk(dec);
dec->ready_ = 0;
}
return dec;
}
int VP8Status(VP8Decoder* const dec) {
if (!dec) return 2;
return dec->status_;
}
const char* VP8StatusMessage(VP8Decoder* const dec) {
if (!dec) return "no object";
if (!dec->error_msg_) return "OK";
return dec->error_msg_;
}
void VP8Delete(VP8Decoder* const dec) {
if (dec) {
VP8Clear(dec);
free(dec);
}
}
int VP8SetError(VP8Decoder* const dec, int error, const char *msg) {
dec->status_ = error;
dec->error_msg_ = msg;
dec->ready_ = 0;
return 0;
}
//-----------------------------------------------------------------------------
// Header parsing
static void ResetSegmentHeader(VP8SegmentHeader* const hdr) {
assert(hdr);
hdr->use_segment_ = 0;
hdr->update_map_ = 0;
hdr->absolute_delta_ = 1;
memset(hdr->quantizer_, 0, sizeof(hdr->quantizer_));
memset(hdr->filter_strength_, 0, sizeof(hdr->filter_strength_));
}
// Paragraph 9.3
static int ParseSegmentHeader(VP8BitReader* br,
VP8SegmentHeader* hdr, VP8Proba* proba) {
assert(br);
assert(hdr);
hdr->use_segment_ = VP8Get(br);
if (hdr->use_segment_) {
hdr->update_map_ = VP8Get(br);
const int update_data = VP8Get(br);
if (update_data) {
hdr->absolute_delta_ = VP8Get(br);
for (int s = 0; s < NUM_MB_SEGMENTS; ++s) {
hdr->quantizer_[s] = VP8Get(br) ? VP8GetSignedValue(br, 7) : 0;
}
for (int s = 0; s < NUM_MB_SEGMENTS; ++s) {
hdr->filter_strength_[s] = VP8Get(br) ? VP8GetSignedValue(br, 6) : 0;
}
}
if (hdr->update_map_) {
for (int s = 0; s < MB_FEATURE_TREE_PROBS; ++s) {
proba->segments_[s] = VP8Get(br) ? VP8GetValue(br, 8) : 255u;
}
}
} else {
hdr->update_map_ = 0;
}
return 1;
}
// Paragraph 9.5
static int ParsePartitions(VP8Decoder* const dec,
const uint8_t* buf, uint32_t size) {
VP8BitReader* const br = &dec->br_;
dec->num_parts_ = 1 << VP8GetValue(br, 2);
const uint8_t* sz = buf;
const int last_part = dec->num_parts_ - 1;
uint32_t offset = last_part * 3;
if (size <= offset) {
return 0;
}
for (int p = 0; p < last_part; ++p) {
const uint32_t psize = sz[0] | (sz[1] << 8) | (sz[2] << 16);
if (offset + psize > size) {
return 0;
}
VP8Init(dec->parts_ + p, buf + offset, psize);
offset += psize;
sz += 3;
}
size -= offset;
VP8Init(dec->parts_ + last_part, buf + offset, size);
return 1;
}
// Paragraph 9.4
static int ParseFilterHeader(VP8BitReader* br, VP8Decoder* const dec) {
VP8FilterHeader* const hdr = &dec->filter_hdr_;
hdr->simple_ = VP8Get(br);
hdr->level_ = VP8GetValue(br, 6);
hdr->sharpness_ = VP8GetValue(br, 3);
hdr->use_lf_delta_ = VP8Get(br);
if (hdr->use_lf_delta_) {
if (VP8Get(br)) { // update lf-delta?
for (int i = 0; i < NUM_REF_LF_DELTAS; ++i) {
if (VP8Get(br)) {
hdr->ref_lf_delta_[i] = VP8GetSignedValue(br, 6);
}
}
for (int i = 0; i < NUM_MODE_LF_DELTAS; ++i) {
if (VP8Get(br)) {
hdr->mode_lf_delta_[i] = VP8GetSignedValue(br, 6);
}
}
}
}
dec->filter_type_ = (hdr->level_ == 0) ? 0 : hdr->simple_ ? 1 : 2;
if (dec->filter_type_ > 0) { // precompute filter levels per segment
if (dec->segment_hdr_.use_segment_) {
for (int s = 0; s < NUM_MB_SEGMENTS; ++s) {
int strength = dec->segment_hdr_.filter_strength_[s];
if (!dec->segment_hdr_.absolute_delta_) {
strength += hdr->level_;
}
dec->filter_levels_[s] = strength;
}
} else {
dec->filter_levels_[0] = hdr->level_;
}
}
return 1;
}
static inline uint32_t get_le32(const uint8_t* const data) {
return data[0] | (data[1] << 8) | (data[2] << 16) | (data[3] << 24);
}
// Topmost call
int VP8GetHeaders(VP8Decoder* const dec, VP8Io* const io) {
if (dec == NULL) {
return 0;
}
SetOk(dec);
if (io == NULL || io->data == NULL || io->data_size <= 4) {
return VP8SetError(dec, 2, "null VP8Io passed to VP8GetHeaders()");
}
const uint8_t* buf = io->data;
uint32_t buf_size = io->data_size;
if (buf_size < 4) {
return VP8SetError(dec, 2, "Not enough data to parse frame header");
}
// Skip over valid RIFF headers
if (!memcmp(buf, "RIFF", 4)) {
if (buf_size < 20 + 4) {
return VP8SetError(dec, 2, "RIFF: Truncated header.");
}
if (memcmp(buf + 8, "WEBP", 4)) { // wrong image file signature
return VP8SetError(dec, 2, "RIFF: WEBP signature not found.");
}
const uint32_t riff_size = get_le32(buf + 4);
if (memcmp(buf + 12, "VP8 ", 4)) {
return VP8SetError(dec, 2, "RIFF: Invalid compression format.");
}
const uint32_t chunk_size = get_le32(buf + 16);
if ((chunk_size > riff_size + 8) || (chunk_size & 1)) {
return VP8SetError(dec, 2, "RIFF: Inconsistent size information.");
}
buf += 20;
buf_size -= 20;
}
// Paragraph 9.1
VP8FrameHeader* const frm_hdr = &dec->frm_hdr_;
const uint32_t bits = buf[0] | (buf[1] << 8) | (buf[2] << 16);
frm_hdr->key_frame_ = !(bits & 1);
frm_hdr->profile_ = (bits >> 1) & 7;
frm_hdr->show_ = (bits >> 4) & 1;
frm_hdr->partition_length_ = (bits >> 5);
buf += 3;
buf_size -= 3;
VP8PictureHeader* const pic_hdr = &dec->pic_hdr_;
if (frm_hdr->key_frame_) {
// Paragraph 9.2
if (buf_size < 7) {
return VP8SetError(dec, 2, "cannot parse picture header");
}
if (buf[0] != 0x9d || buf[1] != 0x01 || buf[2] != 0x2a) {
return VP8SetError(dec, 2, "Bad code word");
}
pic_hdr->width_ = ((buf[4] << 8) | buf[3]) & 0x3fff;
pic_hdr->xscale_ = buf[4] >> 6; // ratio: 1, 5/4 5/3 or 2
pic_hdr->height_ = ((buf[6] << 8) | buf[5]) & 0x3fff;
pic_hdr->yscale_ = buf[6] >> 6;
buf += 7;
buf_size -= 7;
dec->mb_w_ = (pic_hdr->width_ + 15) >> 4;
dec->mb_h_ = (pic_hdr->height_ + 15) >> 4;
io->width = pic_hdr->width_;
io->height = pic_hdr->height_;
VP8ResetProba(&dec->proba_);
ResetSegmentHeader(&dec->segment_hdr_);
dec->segment_ = 0; // default for intra
}
VP8BitReader* const br = &dec->br_;
VP8Init(br, buf, buf_size);
buf += frm_hdr->partition_length_;
buf_size -= frm_hdr->partition_length_;
if (frm_hdr->key_frame_) {
pic_hdr->colorspace_ = VP8Get(br);
pic_hdr->clamp_type_ = VP8Get(br);
}
if (!ParseSegmentHeader(br, &dec->segment_hdr_, &dec->proba_)) {
return VP8SetError(dec, 2, "cannot parse segment header");
}
// Filter specs
if (!ParseFilterHeader(br, dec)) {
return VP8SetError(dec, 2, "cannot parse filter header");
}
if (!ParsePartitions(dec, buf, buf_size)) {
return VP8SetError(dec, 2, "cannot parse partitions");
}
// quantizer change
VP8ParseQuant(dec);
// Frame buffer marking
if (!frm_hdr->key_frame_) {
// Paragraph 9.7
#ifndef ONLY_KEYFRAME_CODE
dec->buffer_flags_ = VP8Get(br) << 0; // update golden
dec->buffer_flags_ |= VP8Get(br) << 1; // update alt ref
if (!(dec->buffer_flags_ & 1)) {
dec->buffer_flags_ |= VP8GetValue(br, 2) << 2;
}
if (!(dec->buffer_flags_ & 2)) {
dec->buffer_flags_ |= VP8GetValue(br, 2) << 4;
}
dec->buffer_flags_ |= VP8Get(br) << 6; // sign bias golden
dec->buffer_flags_ |= VP8Get(br) << 7; // sign bias alt ref
#else
return VP8SetError(dec, 2, "Not a key frame.");
#endif
} else {
dec->buffer_flags_ = 0x003 | 0x100;
}
// Paragraph 9.8
dec->update_proba_ = VP8Get(br);
if (!dec->update_proba_) { // save for later restore
dec->proba_saved_ = dec->proba_;
}
#ifndef ONLY_KEYFRAME_CODE
dec->buffer_flags_ &= 1 << 8;
dec->buffer_flags_ |=
(frm_hdr->key_frame_ || VP8Get(br)) << 8; // refresh last frame
#endif
VP8ParseProba(br, dec);
// sanitized state
dec->ready_ = 1;
return 1;
}
//-----------------------------------------------------------------------------
// Residual decoding (Paragraph 13.2 / 13.3)
static const uint8_t kBands[16 + 1] = {
0, 1, 2, 3, 6, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7,
0 // extra entry as sentinel
};
static const uint8_t kCat3[] = {173, 148, 140, 0};
static const uint8_t kCat4[] = {176, 155, 140, 135, 0};
static const uint8_t kCat5[] = {180, 157, 141, 134, 130, 0};
static const uint8_t kCat6[] =
{254, 254, 243, 230, 196, 177, 153, 140, 133, 130, 129, 0};
static const uint8_t * const kCat3456[] = { kCat3, kCat4, kCat5, kCat6 };
static const uint8_t kZigzag[16] = {
0, 1, 4, 8, 5, 2, 3, 6, 9, 12, 13, 10, 7, 11, 14, 15
};
typedef const uint8_t PROBA_ARRAY[NUM_CTX][NUM_PROBAS];
static int GetCoeffs(VP8BitReader* const br,
const uint8_t (*prob)[NUM_CTX][NUM_PROBAS],
int ctx, const uint16_t dq[2], int n, int16_t* out) {
const uint8_t* p = prob[kBands[n]][ctx];
if (!VP8GetBit(br, p[0])) { // first EOB is more a 'CBP' bit.
return -1;
}
while (1) {
++n;
if (!VP8GetBit(br, p[1])) {
p = prob[kBands[n]][0];
} else { // non zero coeff
int v;
if (!VP8GetBit(br, p[2])) {
p = prob[kBands[n]][1];
v = 1;
} else {
if (!VP8GetBit(br, p[3])) {
if (!VP8GetBit(br, p[4])) {
v = 2;
} else {
v = 3 + VP8GetBit(br, p[5]);
}
} else {
if (!VP8GetBit(br, p[6])) {
if (!VP8GetBit(br, p[7])) {
v = 5 + VP8GetBit(br, 159);
} else {
v = 7 + 2 * VP8GetBit(br, 165) + VP8GetBit(br, 145);
}
} else {
const int bit1 = VP8GetBit(br, p[8]);
const int bit0 = VP8GetBit(br, p[9 + bit1]);
const int cat = 2 * bit1 + bit0;
v = 0;
for (const uint8_t* tab = kCat3456[cat]; *tab; ++tab) {
v += v + VP8GetBit(br, *tab);
}
v += 3 + (8 << cat);
}
}
p = prob[kBands[n]][2];
}
const int j = kZigzag[n - 1];
out[j] = VP8GetSigned(br, v) * dq[j > 0];
if (n == 16) break;
if (!VP8GetBit(br, p[0])) { // EOB
return n;
}
}
}
return 15;
}
// Table to unpack four bits into four bytes
static const uint8_t kUnpackTab[16][4] = {
{0, 0, 0, 0}, {1, 0, 0, 0}, {0, 1, 0, 0}, {1, 1, 0, 0},
{0, 0, 1, 0}, {1, 0, 1, 0}, {0, 1, 1, 0}, {1, 1, 1, 0},
{0, 0, 0, 1}, {1, 0, 0, 1}, {0, 1, 0, 1}, {1, 1, 0, 1},
{0, 0, 1, 1}, {1, 0, 1, 1}, {0, 1, 1, 1}, {1, 1, 1, 1} };
// Macro to pack four LSB of four bytes into four bits.
#define PACK(X, S) \
((((*(uint32_t*)(X)) * 0x01020408U) & 0xff000000) >> (S))
typedef const uint8_t (*Proba_t)[NUM_CTX][NUM_PROBAS]; // for const-casting
static int ParseResiduals(VP8Decoder* const dec,
VP8MB* const mb, VP8BitReader* const token_br) {
int out_t_nz, out_l_nz, first;
Proba_t ac_prob;
const VP8QuantMatrix* q = &dec->dqm_[dec->segment_];
int16_t* dst = dec->coeffs_;
VP8MB* const left_mb = dec->mb_info_ - 1;
memset(dst, 0, 384 * sizeof(*dst));
if (!dec->is_i4x4_) { // parse DC
int16_t dc[16] = { 0 };
const int ctx = mb->dc_nz_ + left_mb->dc_nz_;
const int last = GetCoeffs(token_br, (Proba_t)dec->proba_.coeffs_[1],
ctx, q->y2_mat_, 0, dc);
mb->dc_nz_ = left_mb->dc_nz_ = (last >= 0);
first = 1;
ac_prob = (Proba_t)dec->proba_.coeffs_[0];
VP8TransformWHT(dc, dst);
} else {
first = 0;
ac_prob = (Proba_t)dec->proba_.coeffs_[3];
}
uint8_t nz_ac[4], nz_dc[4];
uint32_t non_zero_ac = 0;
uint32_t non_zero_dc = 0;
uint8_t tnz[4], lnz[4];
memcpy(tnz, kUnpackTab[mb->nz_ & 0xf], sizeof(tnz));
memcpy(lnz, kUnpackTab[left_mb->nz_ & 0xf], sizeof(lnz));
for (int y = 0; y < 4; ++y) {
int l = lnz[y];
for (int x = 0; x < 4; ++x) {
const int ctx = l + tnz[x];
const int last = GetCoeffs(token_br, ac_prob, ctx,
q->y1_mat_, first, dst);
nz_dc[x] = (dst[0] != 0);
nz_ac[x] = (last > 0);
tnz[x] = l = (last >= 0);
dst += 16;
}
lnz[y] = l;
non_zero_dc |= PACK(nz_dc, 24 - y * 4);
non_zero_ac |= PACK(nz_ac, 24 - y * 4);
}
out_t_nz = PACK(tnz, 24);
out_l_nz = PACK(lnz, 24);
memcpy(tnz, kUnpackTab[mb->nz_ >> 4], sizeof(tnz));
memcpy(lnz, kUnpackTab[left_mb->nz_ >> 4], sizeof(lnz));
for (int ch = 0; ch < 4; ch += 2) {
for (int y = 0; y < 2; ++y) {
int l = lnz[ch + y];
for (int x = 0; x < 2; ++x) {
const int ctx = l + tnz[ch + x];
const int last =
GetCoeffs(token_br, (Proba_t)dec->proba_.coeffs_[2],
ctx, q->uv_mat_, 0, dst);
nz_dc[y * 2 + x] = (dst[0] != 0);
nz_ac[y * 2 + x] = (last > 0);
tnz[ch + x] = l = (last >= 0);
dst += 16;
}
lnz[ch + y] = l;
}
non_zero_dc |= PACK(nz_dc, 8 - ch * 2);
non_zero_ac |= PACK(nz_ac, 8 - ch * 2);
}
out_t_nz |= PACK(tnz, 20);
out_l_nz |= PACK(lnz, 20);
mb->nz_ = out_t_nz;
left_mb->nz_ = out_l_nz;
dec->non_zero_ac_ = non_zero_ac;
dec->non_zero_ = non_zero_ac | non_zero_dc;
mb->skip_ = !dec->non_zero_;
return 1;
}
#undef PACK
//-----------------------------------------------------------------------------
// Main loop
static void SendBlock(VP8Decoder* const dec, VP8Io* io) {
if (io->put) {
io->mb_x = dec->mb_x_ * 16;
io->mb_y = dec->mb_y_ * 16;
io->mb_w = io->width - io->mb_x;
io->mb_h = io->height - io->mb_y;
if (io->mb_w > 16) io->mb_w = 16;
if (io->mb_h > 16) io->mb_h = 16;
io->put(io);
}
}
static int ParseFrame(VP8Decoder* const dec, VP8Io* io) {
int ok = 1;
VP8BitReader* const br = &dec->br_;
for (dec->mb_y_ = 0; dec->mb_y_ < dec->mb_h_; ++dec->mb_y_) {
memset(dec->intra_l_, B_DC_PRED, sizeof(dec->intra_l_));
VP8MB* const left = dec->mb_info_ - 1;
left->nz_ = 0;
left->dc_nz_ = 0;
VP8BitReader* token_br = &dec->parts_[dec->mb_y_ & (dec->num_parts_ - 1)];
for (dec->mb_x_ = 0; dec->mb_x_ < dec->mb_w_; dec->mb_x_++) {
VP8MB* const info = dec->mb_info_ + dec->mb_x_;
// Note: we don't save segment map (yet), as we don't expect
// to decode more than 1 keyframe.
if (dec->segment_hdr_.update_map_) {
// Hardcoded tree parsing
dec->segment_ = !VP8GetBit(br, dec->proba_.segments_[0]) ?
VP8GetBit(br, dec->proba_.segments_[1]) :
2 + VP8GetBit(br, dec->proba_.segments_[2]);
}
info->skip_ = dec->use_skip_proba_ ? VP8GetBit(br, dec->skip_p_) : 0;
VP8ParseIntraMode(br, dec);
if (!info->skip_) {
if (!ParseResiduals(dec, info, token_br)) {
ok = 0;
break;
}
} else {
left->nz_ = info->nz_ = 0;
if (!dec->is_i4x4_) {
left->dc_nz_ = info->dc_nz_ = 0;
}
dec->non_zero_ = 0;
dec->non_zero_ac_ = 0;
}
VP8ReconstructBlock(dec);
// Store filter params
if (dec->filter_type_ > 0) {
VP8StoreBlock(dec);
} else { // We're done. Send block to user at once.
SendBlock(dec, io);
}
}
if (!ok) {
break;
}
if (dec->filter_type_ > 0) { // filter a row
VP8FilterRow(dec, io);
}
if (dec->br_.eof_ || token_br->eof_) {
ok = 0;
break;
}
}
// Finish
if (!dec->update_proba_) {
dec->proba_ = dec->proba_saved_;
}
return ok;
}
// Main entry point
int VP8Decode(VP8Decoder* const dec, VP8Io* const io) {
if (dec == NULL) {
return 0;
}
if (io == NULL) {
return VP8SetError(dec, 2, "NULL VP8Io parameter in VP8Decode().");
}
if (!dec->ready_) {
if (!VP8GetHeaders(dec, io)) {
return 0;
}
}
assert(dec->ready_);
// will allocate memory and prepare everything.
if (!VP8InitFrame(dec, io)) {
VP8Clear(dec);
return VP8SetError(dec, 3, "Allocation failed");
}
// set-up
if (io->setup) io->setup(io);
// Main decoding loop
if (!ParseFrame(dec, io)) {
VP8Clear(dec);
return VP8SetError(dec, 3, "Frame decoding failed");
}
// tear-down
if (io->teardown) io->teardown(io);
dec->ready_ = 0;
return 1;
}
void VP8Clear(VP8Decoder* const dec) {
if (dec == NULL) {
return;
}
if (dec->mem_) {
free(dec->mem_);
}
dec->mem_ = NULL;
dec->mem_size_ = 0;
memset(&dec->br_, 0, sizeof(dec->br_));
dec->ready_ = 0;
}