libwebp/src/enc/vp8l.c

1253 lines
40 KiB
C
Raw Normal View History

// Copyright 2012 Google Inc. All Rights Reserved.
//
// This code is licensed under the same terms as WebM:
// Software License Agreement: http://www.webmproject.org/license/software/
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
// -----------------------------------------------------------------------------
//
// main entry for the lossless encoder.
//
// Author: Vikas Arora (vikaas.arora@gmail.com)
//
#ifdef USE_LOSSLESS_ENCODER
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include "./backward_references.h"
#include "./vp8enci.h"
#include "./vp8li.h"
#include "../dsp/lossless.h"
#include "../utils/bit_writer.h"
#include "../utils/huffman_encode.h"
#if defined(__cplusplus) || defined(c_plusplus)
extern "C" {
#endif
static const uint32_t kImageSizeBits = 14;
static int CompareColors(const void* p1, const void* p2) {
const uint32_t a = *(const uint32_t*)p1;
const uint32_t b = *(const uint32_t*)p2;
if (a < b) {
return -1;
}
if (a == b) {
return 0;
}
return 1;
}
static int CreatePalette256(const uint32_t* const argb, int num_pix,
uint32_t palette[MAX_PALETTE_SIZE],
int* const palette_size) {
int i, key;
int num_colors = 0;
uint8_t in_use[MAX_PALETTE_SIZE * 4] = { 0 };
uint32_t colors[MAX_PALETTE_SIZE * 4];
static const uint32_t kHashMul = 0x1e35a7bd;
key = (kHashMul * argb[0]) >> PALETTE_KEY_RIGHT_SHIFT;
colors[key] = argb[0];
in_use[key] = 1;
++num_colors;
for (i = 1; i < num_pix; ++i) {
if (argb[i] == argb[i - 1]) {
continue;
}
key = (kHashMul * argb[i]) >> PALETTE_KEY_RIGHT_SHIFT;
while (1) {
if (!in_use[key]) {
colors[key] = argb[i];
in_use[key] = 1;
++num_colors;
if (num_colors > MAX_PALETTE_SIZE) {
return 0;
}
break;
} else if (colors[key] == argb[i]) {
// The color is already there.
break;
} else {
// Some other color sits there.
// Do linear conflict resolution.
++key;
key &= (MAX_PALETTE_SIZE * 4 - 1); // key mask for 1K buffer.
}
}
}
num_colors = 0;
for (i = 0; i < (int)(sizeof(in_use) / sizeof(in_use[0])); ++i) {
if (in_use[i]) {
palette[num_colors] = colors[i];
++num_colors;
}
}
qsort(palette, num_colors, sizeof(*palette), CompareColors);
*palette_size = num_colors;
return 1;
}
static int AnalyzeEntropy(const uint32_t const *argb, int xsize, int ysize,
int* nonpredicted_bits, int* predicted_bits) {
int i;
VP8LHistogram* nonpredicted = NULL;
VP8LHistogram* predicted = (VP8LHistogram*)malloc(2 * sizeof(*predicted));
if (predicted == NULL) return 0;
nonpredicted = predicted + 1;
VP8LHistogramInit(predicted, 0);
VP8LHistogramInit(nonpredicted, 0);
for (i = 1; i < xsize * ysize; ++i) {
uint32_t pix_diff;
if ((argb[i] == argb[i - 1]) ||
(i >= xsize && argb[i] == argb[i - xsize])) {
continue;
}
VP8LHistogramAddSinglePixOrCopy(nonpredicted,
PixOrCopyCreateLiteral(argb[i]));
pix_diff = VP8LSubPixels(argb[i], argb[i - 1]);
VP8LHistogramAddSinglePixOrCopy(predicted,
PixOrCopyCreateLiteral(pix_diff));
}
*nonpredicted_bits = (int)VP8LHistogramEstimateBitsBulk(nonpredicted);
*predicted_bits = (int)VP8LHistogramEstimateBitsBulk(predicted);
free(predicted);
return 1;
}
static int VP8LEncAnalyze(VP8LEncoder* const enc) {
const WebPPicture* const pic = enc->pic_;
int non_pred_entropy, pred_entropy;
assert(pic && pic->argb);
if (!AnalyzeEntropy(pic->argb, pic->width, pic->height,
&non_pred_entropy, &pred_entropy)) {
return 0;
}
if (8 * pred_entropy < 7 * non_pred_entropy) {
enc->use_predict_ = 1;
enc->use_cross_color_ = 1;
}
enc->use_palette_ = CreatePalette256(pic->argb, pic->width * pic->height,
enc->palette_, &enc->palette_size_);
return 1;
}
// Bundles multiple (2, 4 or 8) pixels into a single pixel.
// Returns the new xsize.
static void BundleColorMap(const uint32_t* const argb,
int width, int height, int xbits,
uint32_t* bundled_argb, int xs) {
int x, y;
const int bit_depth = 1 << (3 - xbits);
uint32_t code = 0;
for (y = 0; y < height; ++y) {
for (x = 0; x < width; ++x) {
const int mask = (1 << xbits) - 1;
const int xsub = x & mask;
if (xsub == 0) {
code = 0;
}
// TODO(vikasa): simplify the bundling logic.
code |= (argb[y * width + x] & 0xff00) << (bit_depth * xsub);
bundled_argb[y * xs + (x >> xbits)] = 0xff000000 | code;
}
}
}
static int GetBackwardReferences(int width, int height,
const uint32_t* argb,
int quality, int use_color_cache,
int cache_bits, int use_2d_locality,
PixOrCopy** backward_refs,
int* backward_refs_size) {
int ok = 0;
// Backward Reference using LZ77.
int lz77_is_useful;
int backward_refs_rle_size;
int backward_refs_lz77_size;
const int num_pix = width * height;
VP8LHistogram* histo_rle;
PixOrCopy* backward_refs_lz77 = (PixOrCopy*)
malloc(num_pix * sizeof(*backward_refs_lz77));
PixOrCopy* backward_refs_rle = (PixOrCopy*)
malloc(num_pix * sizeof(*backward_refs_lz77));
VP8LHistogram* histo_lz77 = (VP8LHistogram*)malloc(2 * sizeof(*histo_lz77));
if (backward_refs_lz77 == NULL || backward_refs_rle == NULL ||
histo_lz77 == NULL) {
free(backward_refs_lz77);
free(backward_refs_rle);
goto End;
}
*backward_refs = NULL;
histo_rle = histo_lz77 + 1;
if (!VP8LBackwardReferencesHashChain(width, height, use_color_cache,
argb, cache_bits, quality,
backward_refs_lz77,
&backward_refs_lz77_size)) {
goto End;
}
VP8LHistogramInit(histo_lz77, cache_bits);
VP8LHistogramCreate(histo_lz77, backward_refs_lz77, backward_refs_lz77_size);
// Backward Reference using RLE only.
VP8LBackwardReferencesRle(width, height, argb, backward_refs_rle,
&backward_refs_rle_size);
VP8LHistogramInit(histo_rle, cache_bits);
VP8LHistogramCreate(histo_rle, backward_refs_rle, backward_refs_rle_size);
// Check if LZ77 is useful.
lz77_is_useful = (VP8LHistogramEstimateBits(histo_rle) >
VP8LHistogramEstimateBits(histo_lz77));
// Choose appropriate backward reference.
if (quality >= 50 && lz77_is_useful) {
const int recursion_level = (num_pix < 320 * 200) ? 1 : 0;
PixOrCopy* const backward_refs_trace =
(PixOrCopy*)malloc(num_pix * sizeof(*backward_refs_trace));
int backward_refs_trace_size;
free(backward_refs_rle);
free(backward_refs_lz77);
if (backward_refs_trace == NULL ||
!VP8LBackwardReferencesTraceBackwards(width, height,
recursion_level, use_color_cache,
argb, cache_bits,
backward_refs_trace,
&backward_refs_trace_size)) {
free(backward_refs_trace);
goto End;
}
*backward_refs = backward_refs_trace;
*backward_refs_size = backward_refs_trace_size;
} else {
if (lz77_is_useful) {
*backward_refs = backward_refs_lz77;
*backward_refs_size = backward_refs_lz77_size;
free(backward_refs_rle);
} else {
*backward_refs = backward_refs_rle;
*backward_refs_size = backward_refs_rle_size;
free(backward_refs_lz77);
}
}
if (use_2d_locality) {
// Use backward reference with 2D locality.
VP8LBackwardReferences2DLocality(width, *backward_refs_size,
*backward_refs);
}
ok = 1;
End:
free(histo_lz77);
if (!ok) {
free(*backward_refs);
*backward_refs = NULL;
}
return ok;
}
static void DeleteHistograms(int size, VP8LHistogram** histograms) {
if (histograms != NULL) {
int i;
for (i = 0; i < size; ++i) {
free(histograms[i]);
}
free(histograms);
}
}
static int GetHistImageSymbols(int xsize, int ysize,
PixOrCopy* backward_refs,
int backward_refs_size,
int quality, int histogram_bits,
int cache_bits,
VP8LHistogram*** histogram_image,
int* histogram_image_size,
uint32_t* histogram_symbols) {
// Build histogram image.
int ok = 0;
int i;
int histogram_image_raw_size;
VP8LHistogram** histogram_image_raw = NULL;
*histogram_image = 0;
if (!VP8LHistogramBuildImage(xsize, ysize, histogram_bits, cache_bits,
backward_refs, backward_refs_size,
&histogram_image_raw,
&histogram_image_raw_size)) {
goto Error;
}
// Collapse similar histograms.
if (!VP8LHistogramCombine(histogram_image_raw, histogram_image_raw_size,
quality, histogram_image, histogram_image_size)) {
goto Error;
}
// Refine histogram image.
for (i = 0; i < histogram_image_raw_size; ++i) {
histogram_symbols[i] = -1;
}
VP8LHistogramRefine(histogram_image_raw, histogram_image_raw_size,
histogram_symbols, *histogram_image_size,
*histogram_image);
ok = 1;
Error:
if (!ok) {
DeleteHistograms(*histogram_image_size, *histogram_image);
}
DeleteHistograms(histogram_image_raw_size, histogram_image_raw);
return ok;
}
// Heuristics for selecting the stride ranges to collapse.
static int ValuesShouldBeCollapsedToStrideAverage(int a, int b) {
return abs(a - b) < 4;
}
// Change the population counts in a way that the consequent
// Hufmann tree compression, especially its rle-part will be more
// likely to compress this data more efficiently.
//
// length contains the size of the histogram.
// data contains the population counts.
static int OptimizeHuffmanForRle(int length, int* counts) {
int stride;
int limit;
int sum;
uint8_t* good_for_rle;
// 1) Let's make the Huffman code more compatible with rle encoding.
int i;
for (; length >= 0; --length) {
if (length == 0) {
return 1; // All zeros.
}
if (counts[length - 1] != 0) {
// Now counts[0..length - 1] does not have trailing zeros.
break;
}
}
// 2) Let's mark all population counts that already can be encoded
// with an rle code.
good_for_rle = (uint8_t*)calloc(length, 1);
if (good_for_rle == NULL) {
return 0;
}
{
// Let's not spoil any of the existing good rle codes.
// Mark any seq of 0's that is longer as 5 as a good_for_rle.
// Mark any seq of non-0's that is longer as 7 as a good_for_rle.
int symbol = counts[0];
int stride = 0;
for (i = 0; i < length + 1; ++i) {
if (i == length || counts[i] != symbol) {
if ((symbol == 0 && stride >= 5) ||
(symbol != 0 && stride >= 7)) {
int k;
for (k = 0; k < stride; ++k) {
good_for_rle[i - k - 1] = 1;
}
}
stride = 1;
if (i != length) {
symbol = counts[i];
}
} else {
++stride;
}
}
}
// 3) Let's replace those population counts that lead to more rle codes.
stride = 0;
limit = counts[0];
sum = 0;
for (i = 0; i < length + 1; ++i) {
if (i == length || good_for_rle[i] ||
(i != 0 && good_for_rle[i - 1]) ||
!ValuesShouldBeCollapsedToStrideAverage(counts[i], limit)) {
if (stride >= 4 || (stride >= 3 && sum == 0)) {
int k;
// The stride must end, collapse what we have, if we have enough (4).
int count = (sum + stride / 2) / stride;
if (count < 1) {
count = 1;
}
if (sum == 0) {
// Don't make an all zeros stride to be upgraded to ones.
count = 0;
}
for (k = 0; k < stride; ++k) {
// We don't want to change value at counts[i],
// that is already belonging to the next stride. Thus - 1.
counts[i - k - 1] = count;
}
}
stride = 0;
sum = 0;
if (i < length - 3) {
// All interesting strides have a count of at least 4,
// at least when non-zeros.
limit = (counts[i] + counts[i + 1] +
counts[i + 2] + counts[i + 3] + 2) / 4;
} else if (i < length) {
limit = counts[i];
} else {
limit = 0;
}
}
++stride;
if (i != length) {
sum += counts[i];
if (stride >= 4) {
limit = (sum + stride / 2) / stride;
}
}
}
free(good_for_rle);
return 1;
}
static int GetHuffBitLengthsAndCodes(
int histogram_image_size, VP8LHistogram** histogram_image,
int use_color_cache, int** bit_length_sizes,
uint16_t*** bit_codes, uint8_t*** bit_lengths) {
int i, k;
int ok = 1;
for (i = 0; i < histogram_image_size; ++i) {
const int num_literals = VP8LHistogramNumCodes(histogram_image[i]);
k = 0;
(*bit_length_sizes)[5 * i] = num_literals;
(*bit_lengths)[5 * i] = (uint8_t*)calloc(num_literals, 1);
(*bit_codes)[5 * i] = (uint16_t*)
malloc(num_literals * sizeof(*(*bit_codes)[5 * i]));
if ((*bit_lengths)[5 * i] == NULL || (*bit_codes)[5 * i] == NULL) {
ok = 0;
goto Error;
}
// For each component, optimize histogram for Huffman with RLE compression.
ok = ok && OptimizeHuffmanForRle(num_literals,
histogram_image[i]->literal_);
if (!use_color_cache) {
// Implies that palette_bits == 0,
// and so number of palette entries = (1 << 0) = 1.
// Optimization might have smeared population count in this single
// palette entry, so zero it out.
histogram_image[i]->literal_[256 + kLengthCodes] = 0;
}
ok = ok && OptimizeHuffmanForRle(256, histogram_image[i]->red_);
ok = ok && OptimizeHuffmanForRle(256, histogram_image[i]->blue_);
ok = ok && OptimizeHuffmanForRle(256, histogram_image[i]->alpha_);
ok = ok && OptimizeHuffmanForRle(DISTANCE_CODES_MAX,
histogram_image[i]->distance_);
// Create a Huffman tree (in the form of bit lengths) for each component.
ok = ok && VP8LCreateHuffmanTree(histogram_image[i]->literal_, num_literals,
15, (*bit_lengths)[5 * i]);
for (k = 1; k < 5; ++k) {
int val = 256;
if (k == 4) {
val = DISTANCE_CODES_MAX;
}
(*bit_length_sizes)[5 * i + k] = val;
(*bit_lengths)[5 * i + k] = (uint8_t*)calloc(val, 1);
(*bit_codes)[5 * i + k] = (uint16_t*)calloc(val, sizeof(bit_codes[0]));
if ((*bit_lengths)[5 * i + k] == NULL ||
(*bit_codes)[5 * i + k] == NULL) {
ok = 0;
goto Error;
}
}
ok = ok && VP8LCreateHuffmanTree(histogram_image[i]->red_, 256, 15,
(*bit_lengths)[5 * i + 1]) &&
VP8LCreateHuffmanTree(histogram_image[i]->blue_, 256, 15,
(*bit_lengths)[5 * i + 2]) &&
VP8LCreateHuffmanTree(histogram_image[i]->alpha_, 256, 15,
(*bit_lengths)[5 * i + 3]) &&
VP8LCreateHuffmanTree(histogram_image[i]->distance_,
DISTANCE_CODES_MAX, 15,
(*bit_lengths)[5 * i + 4]);
// Create the actual bit codes for the bit lengths.
for (k = 0; k < 5; ++k) {
int ix = 5 * i + k;
VP8LConvertBitDepthsToSymbols((*bit_lengths)[ix], (*bit_length_sizes)[ix],
(*bit_codes)[ix]);
}
}
return ok;
Error:
{
int idx;
for (idx = 0; idx <= 5 * i + k; ++idx) {
free((*bit_lengths)[idx]);
free((*bit_codes)[idx]);
}
}
return 0;
}
static void ShiftHistogramImage(uint32_t* image , int image_size) {
int i;
for (i = 0; i < image_size; ++i) {
image[i] <<= 8;
image[i] |= 0xff000000;
}
}
static int PackLiteralBitLengths(const uint8_t* bit_lengths,
int cache_bits, int use_color_cache,
int* new_length_size,
uint8_t** new_lengths) {
int i;
int num_codes = 256;
const int cache_size = 1 << cache_bits;
*new_length_size = 256 + kLengthCodes;
if (use_color_cache) {
*new_length_size += cache_size;
}
*new_lengths = (uint8_t*)malloc(*new_length_size);
if (*new_lengths == NULL) {
return 0;
}
num_codes += kLengthCodes;
if (use_color_cache) {
num_codes += cache_size;
}
for (i = 0; i < num_codes; ++i) {
(*new_lengths)[i] = bit_lengths[i];
}
return 1;
}
static void ClearHuffmanTreeIfOnlyOneSymbol(const int num_symbols,
uint8_t* lengths,
uint16_t* symbols) {
int k;
int count = 0;
for (k = 0; k < num_symbols; ++k) {
if (lengths[k] != 0) ++count;
if (count > 1) return;
}
for (k = 0; k < num_symbols; ++k) {
lengths[k] = 0;
symbols[k] = 0;
}
}
static void StoreHuffmanTreeOfHuffmanTreeToBitMask(
VP8LBitWriter* const bw, const uint8_t* code_length_bitdepth) {
// RFC 1951 will calm you down if you are worried about this funny sequence.
// This sequence is tuned from that, but more weighted for lower symbol count,
// and more spiking histograms.
int i;
static const uint8_t kStorageOrder[CODE_LENGTH_CODES] = {
17, 18, 0, 1, 2, 3, 4, 5, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
};
// Throw away trailing zeros:
int codes_to_store = sizeof(kStorageOrder);
for (; codes_to_store > 4; --codes_to_store) {
if (code_length_bitdepth[kStorageOrder[codes_to_store - 1]] != 0) {
break;
}
}
// How many code length codes we write above the first four (see RFC 1951).
VP8LWriteBits(bw, 4, codes_to_store - 4);
for (i = 0; i < codes_to_store; ++i) {
VP8LWriteBits(bw, 3, code_length_bitdepth[kStorageOrder[i]]);
}
}
static void StoreHuffmanTreeToBitMask(
VP8LBitWriter* const bw,
const uint8_t* huffman_tree,
const uint8_t* huffman_tree_extra_bits,
const int num_symbols,
const uint8_t* code_length_bitdepth,
const uint16_t* code_length_bitdepth_symbols) {
int i;
for (i = 0; i < num_symbols; ++i) {
const int ix = huffman_tree[i];
VP8LWriteBits(bw, code_length_bitdepth[ix],
code_length_bitdepth_symbols[ix]);
switch (ix) {
case 16:
VP8LWriteBits(bw, 2, huffman_tree_extra_bits[i]);
break;
case 17:
VP8LWriteBits(bw, 3, huffman_tree_extra_bits[i]);
break;
case 18:
VP8LWriteBits(bw, 7, huffman_tree_extra_bits[i]);
break;
}
}
}
static int StoreHuffmanCode(VP8LBitWriter* const bw,
uint8_t* bit_lengths, int bit_lengths_size) {
int i;
int ok = 0;
int count = 0;
int symbols[2] = { 0, 0 };
int huffman_tree_size = 0;
uint8_t code_length_bitdepth[CODE_LENGTH_CODES];
uint16_t code_length_bitdepth_symbols[CODE_LENGTH_CODES];
int huffman_tree_histogram[CODE_LENGTH_CODES];
uint8_t* huffman_tree_extra_bits;
uint8_t* huffman_tree = (uint8_t*)malloc(bit_lengths_size *
(sizeof(*huffman_tree) +
sizeof(*huffman_tree_extra_bits)));
if (huffman_tree == NULL) goto End;
huffman_tree_extra_bits =
huffman_tree + (bit_lengths_size * sizeof(*huffman_tree));
for (i = 0; i < bit_lengths_size; ++i) {
if (bit_lengths[i] != 0) {
if (count < 2) symbols[count] = i;
++count;
}
}
if (count <= 2) {
int num_bits = 4;
// 0, 1 or 2 symbols to encode.
VP8LWriteBits(bw, 1, 1);
if (count == 0) {
VP8LWriteBits(bw, 3, 0);
ok = 1;
goto End;
}
while (symbols[count - 1] >= (1 << num_bits)) num_bits += 2;
VP8LWriteBits(bw, 3, (num_bits - 4) / 2 + 1);
VP8LWriteBits(bw, 1, count - 1);
for (i = 0; i < count; ++i) {
VP8LWriteBits(bw, num_bits, symbols[i]);
}
ok = 1;
goto End;
}
VP8LWriteBits(bw, 1, 0);
VP8LCreateCompressedHuffmanTree(bit_lengths, bit_lengths_size,
&huffman_tree_size, huffman_tree,
huffman_tree_extra_bits);
memset(huffman_tree_histogram, 0, sizeof(huffman_tree_histogram));
for (i = 0; i < huffman_tree_size; ++i) {
++huffman_tree_histogram[huffman_tree[i]];
}
memset(code_length_bitdepth, 0, sizeof(code_length_bitdepth));
memset(code_length_bitdepth_symbols, 0, sizeof(code_length_bitdepth_symbols));
if (!VP8LCreateHuffmanTree(huffman_tree_histogram, CODE_LENGTH_CODES,
7, code_length_bitdepth)) {
goto End;
}
VP8LConvertBitDepthsToSymbols(code_length_bitdepth, CODE_LENGTH_CODES,
code_length_bitdepth_symbols);
StoreHuffmanTreeOfHuffmanTreeToBitMask(bw, code_length_bitdepth);
ClearHuffmanTreeIfOnlyOneSymbol(CODE_LENGTH_CODES,
code_length_bitdepth,
code_length_bitdepth_symbols);
{
int num_trailing_zeros = 0;
int trailing_zero_bits = 0;
int trimmed_length;
int write_length;
int length;
for (i = huffman_tree_size; i > 0; --i) {
int ix = huffman_tree[i - 1];
if (ix == 0 || ix == 17 || ix == 18) {
++num_trailing_zeros;
trailing_zero_bits += code_length_bitdepth[ix];
if (ix == 17) trailing_zero_bits += 3;
if (ix == 18) trailing_zero_bits += 7;
} else {
break;
}
}
trimmed_length = huffman_tree_size - num_trailing_zeros;
write_length = (trimmed_length > 1 && trailing_zero_bits > 12);
length = write_length ? trimmed_length : huffman_tree_size;
VP8LWriteBits(bw, 1, write_length);
if (write_length) {
const int nbits = VP8LBitsLog2Ceiling(trimmed_length - 1);
const int nbitpairs = nbits == 0 ? 1 : (nbits + 1) / 2;
VP8LWriteBits(bw, 3, nbitpairs - 1);
VP8LWriteBits(bw, nbitpairs * 2, trimmed_length - 2);
}
StoreHuffmanTreeToBitMask(bw, huffman_tree, huffman_tree_extra_bits,
length, code_length_bitdepth,
code_length_bitdepth_symbols);
}
ok = 1;
End:
free(huffman_tree);
return ok;
}
static void StoreImageToBitMask(
VP8LBitWriter* const bw, int width, int histo_bits,
const PixOrCopy* literals, int literals_size,
const uint32_t* histogram_symbols,
uint8_t** const bitdepths, uint16_t** const bit_symbols) {
// x and y trace the position in the image.
int x = 0;
int y = 0;
const int histo_xsize = histo_bits ? VP8LSubSampleSize(width, histo_bits) : 1;
int i;
for (i = 0; i < literals_size; ++i) {
const PixOrCopy v = literals[i];
const int histogram_ix = histogram_symbols[histo_bits ?
(y >> histo_bits) * histo_xsize +
(x >> histo_bits) : 0];
if (PixOrCopyIsPaletteIx(&v)) {
const int code = PixOrCopyPaletteIx(&v);
int literal_ix = 256 + kLengthCodes + code;
VP8LWriteBits(bw, bitdepths[5 * histogram_ix][literal_ix],
bit_symbols[5 * histogram_ix][literal_ix]);
} else if (PixOrCopyIsLiteral(&v)) {
static const int order[] = {1, 2, 0, 3};
int k;
for (k = 0; k < 4; ++k) {
const int code = PixOrCopyLiteral(&v, order[k]);
VP8LWriteBits(bw, bitdepths[5 * histogram_ix + k][code],
bit_symbols[5 * histogram_ix + k][code]);
}
} else {
int bits, n_bits;
int code, distance;
int len_ix;
PixOrCopyLengthCodeAndBits(&v, &code, &n_bits, &bits);
len_ix = 256 + code;
VP8LWriteBits(bw, bitdepths[5 * histogram_ix][len_ix],
bit_symbols[5 * histogram_ix][len_ix]);
VP8LWriteBits(bw, n_bits, bits);
distance = PixOrCopyDistance(&v);
PrefixEncode(distance, &code, &n_bits, &bits);
VP8LWriteBits(bw, bitdepths[5 * histogram_ix + 4][code],
bit_symbols[5 * histogram_ix + 4][code]);
VP8LWriteBits(bw, n_bits, bits);
}
x += PixOrCopyLength(&v);
while (x >= width) {
x -= width;
++y;
}
}
}
static int EncodeImageInternal(VP8LBitWriter* const bw,
const uint32_t* const argb,
int width, int height, int quality,
int cache_bits, int histogram_bits) {
int i;
int ok = 0;
int histogram_image_size;
int write_histogram_image;
int* bit_lengths_sizes = NULL;
uint8_t** bit_lengths = NULL;
uint16_t** bit_codes = NULL;
const int use_2d_locality = 1;
int backward_refs_size;
const int use_color_cache = cache_bits ? 1 : 0;
const int histogram_image_xysize = VP8LSubSampleSize(width, histogram_bits) *
VP8LSubSampleSize(height, histogram_bits);
VP8LHistogram** histogram_image;
PixOrCopy* backward_refs;
uint32_t* histogram_symbols = (uint32_t*)
calloc(histogram_image_xysize, sizeof(*histogram_symbols));
if (histogram_symbols == NULL) goto Error;
// Calculate backward references from ARGB image.
if (!GetBackwardReferences(width, height, argb, quality,
use_color_cache, cache_bits, use_2d_locality,
&backward_refs, &backward_refs_size)) {
goto Error;
}
// Build histogram image & symbols from backward references.
if (!GetHistImageSymbols(width, height, backward_refs, backward_refs_size,
quality, histogram_bits, cache_bits,
&histogram_image, &histogram_image_size,
histogram_symbols)) {
goto Error;
}
// Create Huffman bit lengths & codes for each histogram image.
bit_lengths_sizes = (int*)calloc(5 * histogram_image_size,
sizeof(*bit_lengths_sizes));
bit_lengths = (uint8_t**)calloc(5 * histogram_image_size,
sizeof(*bit_lengths));
bit_codes = (uint16_t**)calloc(5 * histogram_image_size,
sizeof(*bit_codes));
if (bit_lengths_sizes == NULL || bit_lengths == NULL || bit_codes == NULL ||
!GetHuffBitLengthsAndCodes(histogram_image_size, histogram_image,
use_color_cache, &bit_lengths_sizes,
&bit_codes, &bit_lengths)) {
goto Error;
}
// Huffman image + meta huffman.
write_histogram_image = (histogram_image_size > 1);
VP8LWriteBits(bw, 1, write_histogram_image);
if (write_histogram_image) {
int nbits;
int image_size_bits;
int num_histograms;
uint32_t* histogram_argb = (uint32_t*)
malloc(histogram_image_xysize * sizeof(*histogram_argb));
if (histogram_argb == NULL) goto Error;
memcpy(histogram_argb, histogram_symbols,
histogram_image_xysize * sizeof(*histogram_argb));
ShiftHistogramImage(histogram_argb, histogram_image_xysize);
VP8LWriteBits(bw, 4, histogram_bits);
if (!EncodeImageInternal(bw, histogram_argb,
VP8LSubSampleSize(width, histogram_bits),
VP8LSubSampleSize(height, histogram_bits),
quality, 0, 0)) {
free(histogram_argb);
goto Error;
}
image_size_bits = VP8LBitsLog2Ceiling(histogram_image_size - 1);
VP8LWriteBits(bw, 4, image_size_bits);
VP8LWriteBits(bw, image_size_bits, histogram_image_size - 2);
num_histograms = 5 * histogram_image_size;
nbits = VP8LBitsLog2Ceiling(num_histograms);
VP8LWriteBits(bw, 4, nbits);
for (i = 0; i < num_histograms; ++i) {
VP8LWriteBits(bw, nbits, i);
}
free(histogram_argb);
}
// Color Cache parameters.
VP8LWriteBits(bw, 1, use_color_cache);
if (use_color_cache) {
VP8LWriteBits(bw, 4, cache_bits);
}
// Store Huffman codes.
for (i = 0; i < histogram_image_size; ++i) {
int k;
int literal_lengths_size;
uint8_t* literal_lengths;
// TODO(vikasa): Evaluate and remove the call to PackLiteralBitLengths.
if (!PackLiteralBitLengths(bit_lengths[5 * i], cache_bits, use_color_cache,
&literal_lengths_size, &literal_lengths)) {
goto Error;
}
if (!StoreHuffmanCode(bw, literal_lengths, literal_lengths_size)) {
goto Error;
}
free(literal_lengths);
for (k = 1; k < 5; ++k) {
if (!StoreHuffmanCode(bw, bit_lengths[5 * i + k],
bit_lengths_sizes[5 * i + k])) {
goto Error;
}
}
}
// Free combined histograms.
DeleteHistograms(histogram_image_size, histogram_image);
// Emit no bits if there is only one symbol in the histogram.
// This gives better compression for some images.
for (i = 0; i < 5 * histogram_image_size; ++i) {
ClearHuffmanTreeIfOnlyOneSymbol(bit_lengths_sizes[i], bit_lengths[i],
bit_codes[i]);
}
// Store actual literals.
StoreImageToBitMask(bw, width, histogram_bits, backward_refs,
backward_refs_size, histogram_symbols,
bit_lengths, bit_codes);
ok = 1;
Error:
for (i = 0; i < 5 * histogram_image_size; ++i) {
free(bit_lengths[i]);
free(bit_codes[i]);
}
free(bit_lengths_sizes);
free(bit_lengths);
free(bit_codes);
free(histogram_symbols);
return ok;
}
static int EvalAndApplySubtractGreen(VP8LBitWriter* const bw,
VP8LEncoder* const enc,
int width, int height) {
int i;
VP8LHistogram* before = NULL;
// Check if it would be a good idea to subtract green from red and blue.
VP8LHistogram* after = (VP8LHistogram*)malloc(2 * sizeof(*after));
if (after == NULL) return 0;
before = after + 1;
VP8LHistogramInit(before, 1);
VP8LHistogramInit(after, 1);
for (i = 0; i < width * height; ++i) {
// We only impact entropy in red and blue components, don't bother
// to look at others.
const uint32_t c = enc->argb_[i];
const int green = (c >> 8) & 0xff;
++(before->red_[(c >> 16) & 0xff]);
++(before->blue_[c & 0xff]);
++(after->red_[((c >> 16) - green) & 0xff]);
++(after->blue_[(c - green) & 0xff]);
}
// Check if subtracting green yields low entropy.
if (VP8LHistogramEstimateBits(after) < VP8LHistogramEstimateBits(before)) {
VP8LWriteBits(bw, 1, 1);
VP8LWriteBits(bw, 2, 2);
VP8LSubtractGreenFromBlueAndRed(enc->argb_, width * height);
}
free(after);
return 1;
}
static int ApplyPredictFilter(VP8LBitWriter* const bw,
VP8LEncoder* const enc,
int width, int height, int quality) {
const int pred_bits = enc->transform_bits_;
const int transform_width = VP8LSubSampleSize(width, pred_bits);
const int transform_height = VP8LSubSampleSize(height, pred_bits);
VP8LResidualImage(width, height, pred_bits, enc->argb_, enc->transform_data_);
VP8LWriteBits(bw, 1, 1);
VP8LWriteBits(bw, 2, 0);
VP8LWriteBits(bw, 4, pred_bits);
if (!EncodeImageInternal(bw, enc->transform_data_,
transform_width, transform_height, quality, 0, 0)) {
return 0;
}
return 1;
}
static int ApplyCrossColorFilter(VP8LBitWriter* const bw,
VP8LEncoder* const enc,
int width, int height, int quality) {
const int ccolor_transform_bits = enc->transform_bits_;
const int transform_width = VP8LSubSampleSize(width, ccolor_transform_bits);
const int transform_height = VP8LSubSampleSize(height, ccolor_transform_bits);
const int step = (quality == 0) ? 32 : 8;
VP8LColorSpaceTransform(width, height, ccolor_transform_bits, step,
enc->argb_, enc->transform_data_);
VP8LWriteBits(bw, 1, 1);
VP8LWriteBits(bw, 2, 1);
VP8LWriteBits(bw, 4, ccolor_transform_bits);
if (!EncodeImageInternal(bw, enc->transform_data_,
transform_width, transform_height, quality, 0, 0)) {
return 0;
}
return 1;
}
static void PutLE32(uint8_t* const data, uint32_t val) {
data[0] = (val >> 0) & 0xff;
data[1] = (val >> 8) & 0xff;
data[2] = (val >> 16) & 0xff;
data[3] = (val >> 24) & 0xff;
}
static WebPEncodingError WriteRiffHeader(VP8LEncoder* const enc,
size_t riff_size, size_t vp8l_size) {
const WebPPicture* const pic = enc->pic_;
uint8_t riff[HEADER_SIZE + SIGNATURE_SIZE] = {
'R', 'I', 'F', 'F', 0, 0, 0, 0, 'W', 'E', 'B', 'P',
'V', 'P', '8', 'L', 0, 0, 0, 0, LOSSLESS_MAGIC_BYTE,
};
if (riff_size < (vp8l_size + TAG_SIZE + CHUNK_HEADER_SIZE)) {
return VP8_ENC_ERROR_INVALID_CONFIGURATION;
}
PutLE32(riff + TAG_SIZE, (uint32_t)riff_size);
PutLE32(riff + RIFF_HEADER_SIZE + TAG_SIZE, (uint32_t)vp8l_size);
if (!pic->writer(riff, sizeof(riff), pic)) {
return VP8_ENC_ERROR_BAD_WRITE;
}
return VP8_ENC_OK;
}
static WebPEncodingError WriteImage(VP8LEncoder* const enc,
VP8LBitWriter* const bw) {
size_t riff_size, vp8l_size, webpll_size, pad;
const WebPPicture* const pic = enc->pic_;
WebPEncodingError err = VP8_ENC_OK;
const uint8_t* const webpll_data = VP8LBitWriterFinish(bw);
webpll_size = VP8LBitWriterNumBytes(bw);
vp8l_size = SIGNATURE_SIZE + webpll_size;
pad = vp8l_size & 1;
vp8l_size += pad;
riff_size = TAG_SIZE + CHUNK_HEADER_SIZE + vp8l_size;
err = WriteRiffHeader(enc, riff_size, vp8l_size);
if (err != VP8_ENC_OK) goto Error;
if (!pic->writer(webpll_data, webpll_size, pic)) {
err = VP8_ENC_ERROR_BAD_WRITE;
goto Error;
}
if (pad) {
const uint8_t pad_byte[1] = { 0 };
if (!pic->writer(pad_byte, 1, pic)) {
err = VP8_ENC_ERROR_BAD_WRITE;
goto Error;
}
}
return VP8_ENC_OK;
Error:
return err;
}
static VP8LEncoder* InitVP8LEncoder(const WebPConfig* const config,
WebPPicture* const picture) {
VP8LEncoder* enc;
enc = (VP8LEncoder*)malloc(sizeof(*enc));
if (enc == NULL) {
WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY);
return NULL;
}
memset(enc, 0, sizeof(*enc));
enc->config_ = config;
enc->pic_ = picture;
enc->use_lz77_ = 1;
enc->palette_bits_ = 7;
enc->argb_ = NULL;
// TODO: Use config.quality to initialize histo_bits_ and transform_bits_.
enc->histo_bits_ = 4;
enc->transform_bits_ = 4;
return enc;
}
static void WriteImageSize(VP8LEncoder* const enc, VP8LBitWriter* const bw) {
WebPPicture* const pic = enc->pic_;
const int width = pic->width - 1;
const int height = pic->height -1;
assert(width < WEBP_MAX_DIMENSION && height < WEBP_MAX_DIMENSION);
VP8LWriteBits(bw, kImageSizeBits, width);
VP8LWriteBits(bw, kImageSizeBits, height);
}
static void DeleteVP8LEncoder(VP8LEncoder* enc) {
free(enc->argb_);
free(enc);
}
// Allocates the memory for argb (W x H) buffer and transform data.
// Former buffer (argb_) will hold the argb data from successive image
// transformtions and later corresponds to prediction data (uint32) used
// for every image tile corresponding to the transformed argb_.
// The dimension of this square tile is 2^transform_bits_.
static WebPEncodingError AllocateTransformBuffer(VP8LEncoder* const enc,
int height, int width) {
WebPEncodingError err = VP8_ENC_OK;
const size_t image_size = height * width;
const size_t transform_data_size =
VP8LSubSampleSize(height, enc->transform_bits_) *
VP8LSubSampleSize(width, enc->transform_bits_);
const size_t total_size = image_size + transform_data_size;
enc->argb_ = (uint32_t*)malloc(total_size * sizeof(*enc->argb_));
if (enc->argb_ == NULL) {
err = VP8_ENC_ERROR_OUT_OF_MEMORY;
goto Error;
}
enc->transform_data_ = enc->argb_ + image_size;
enc->current_width_ = width;
Error:
return err;
}
static WebPEncodingError ApplyPalette(VP8LBitWriter* const bw,
VP8LEncoder* const enc,
int width, int height, int quality) {
WebPEncodingError err = VP8_ENC_OK;
int i;
uint32_t* argb = enc->pic_->argb;
const uint32_t* const palette = enc->palette_;
const int palette_size = enc->palette_size_;
uint32_t argb_palette[MAX_PALETTE_SIZE];
for (i = 0; i < width * height; ++i) {
int k;
for (k = 0; k < palette_size; ++k) {
const uint32_t pix = argb[i];
if (pix == palette[k]) {
argb[i] = 0xff000000u | (k << 8);
break;
}
}
}
VP8LWriteBits(bw, 1, 1);
VP8LWriteBits(bw, 2, 3);
VP8LWriteBits(bw, 8, palette_size - 1);
for (i = palette_size - 1; i >= 1; --i) {
argb_palette[i] = VP8LSubPixels(palette[i], palette[i - 1]);
}
if (!EncodeImageInternal(bw, argb_palette, palette_size, 1, quality,
0, 0)) {
err = VP8_ENC_ERROR_INVALID_CONFIGURATION;
goto Error;
}
if (palette_size <= 16) {
int xbits = 1;
if (palette_size <= 2) {
xbits = 3;
} else if (palette_size <= 4) {
xbits = 2;
}
// Image can be packed (multiple pixels per uint32).
err = AllocateTransformBuffer(enc, height, VP8LSubSampleSize(width, xbits));
if (err != VP8_ENC_OK) goto Error;
BundleColorMap(argb, width, height, xbits, enc->argb_, enc->current_width_);
}
Error:
return err;
}
int VP8LEncodeImage(const WebPConfig* const config,
WebPPicture* const picture) {
int ok = 0;
int use_color_cache = 1;
int cache_bits = 7;
int width, height, quality;
VP8LEncoder* enc = NULL;
WebPEncodingError err = VP8_ENC_OK;
VP8LBitWriter bw;
if (config == NULL || picture == NULL) return 0;
if (picture->argb == NULL) {
err = VP8_ENC_ERROR_NULL_PARAMETER;
goto Error;
}
enc = InitVP8LEncoder(config, picture);
if (enc == NULL) {
err = VP8_ENC_ERROR_NULL_PARAMETER;
goto Error;
}
width = picture->width;
height = picture->height;
quality = config->quality;
VP8LBitWriterInit(&bw, (width * height) >> 1);
// ---------------------------------------------------------------------------
// Analyze image (entropy, num_palettes etc)
if (!VP8LEncAnalyze(enc)) {
err = VP8_ENC_ERROR_OUT_OF_MEMORY;
goto Error;
}
// Write image size.
WriteImageSize(enc, &bw);
if (enc->use_palette_) {
err = ApplyPalette(&bw, enc, width, height, quality);
if (err != VP8_ENC_OK) goto Error;
use_color_cache = 0;
}
// In case image is not packed.
if (enc->argb_ == NULL) {
const size_t image_size = height * width;
err = AllocateTransformBuffer(enc, height, width);
if (err != VP8_ENC_OK) goto Error;
memcpy(enc->argb_, picture->argb, image_size * sizeof(*enc->argb_));
enc->current_width_ = width;
}
// ---------------------------------------------------------------------------
// Apply transforms and write transform data.
if (!EvalAndApplySubtractGreen(&bw, enc, enc->current_width_, height)) {
err = VP8_ENC_ERROR_OUT_OF_MEMORY;
goto Error;
}
if (enc->use_predict_) {
if (!ApplyPredictFilter(&bw, enc, enc->current_width_, height, quality)) {
err = VP8_ENC_ERROR_INVALID_CONFIGURATION;
goto Error;
}
}
if (enc->use_cross_color_) {
if (!ApplyCrossColorFilter(&bw, enc, enc->current_width_, height,
quality)) {
err = VP8_ENC_ERROR_INVALID_CONFIGURATION;
goto Error;
}
}
if (use_color_cache) {
if (quality > 25) {
if (!VP8LCalculateEstimateForPaletteSize(enc->argb_, enc->current_width_,
height, &cache_bits)) {
err = VP8_ENC_ERROR_INVALID_CONFIGURATION;
goto Error;
}
}
}
// ---------------------------------------------------------------------------
// Encode and write the transformed image.
ok = EncodeImageInternal(&bw, enc->argb_, enc->current_width_, height,
quality, cache_bits, enc->histo_bits_);
if (!ok) goto Error;
err = WriteImage(enc, &bw);
if (err != VP8_ENC_OK) {
ok = 0;
goto Error;
}
Error:
VP8LBitWriterDestroy(&bw);
DeleteVP8LEncoder(enc);
if (!ok) {
// TODO(vikasa): err is not set for all error paths. Set default err.
if (err == VP8_ENC_OK) err = VP8_ENC_ERROR_BAD_WRITE;
WebPEncodingSetError(picture, err);
}
return ok;
}
//------------------------------------------------------------------------------
#if defined(__cplusplus) || defined(c_plusplus)
} // extern "C"
#endif
#endif