libwebp/src/enc/quant.c

994 lines
33 KiB
C
Raw Normal View History

// Copyright 2011 Google Inc. All Rights Reserved.
//
// This code is licensed under the same terms as WebM:
// Software License Agreement: http://www.webmproject.org/license/software/
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
// -----------------------------------------------------------------------------
//
// Quantization
//
// Author: Skal (pascal.massimino@gmail.com)
#include <assert.h>
#include <math.h>
#include "./vp8enci.h"
#include "./cost.h"
#define DO_TRELLIS_I4 1
#define DO_TRELLIS_I16 1 // not a huge gain, but ok at low bitrate.
#define DO_TRELLIS_UV 0 // disable trellis for UV. Risky. Not worth.
#define USE_TDISTO 1
#define MID_ALPHA 64 // neutral value for susceptibility
#define MIN_ALPHA 30 // lowest usable value for susceptibility
#define MAX_ALPHA 100 // higher meaninful value for susceptibility
#define SNS_TO_DQ 0.9 // Scaling constant between the sns value and the QP
// power-law modulation. Must be strictly less than 1.
#define MULT_8B(a, b) (((a) * (b) + 128) >> 8)
#if defined(__cplusplus) || defined(c_plusplus)
extern "C" {
#endif
//------------------------------------------------------------------------------
static WEBP_INLINE int clip(int v, int m, int M) {
return v < m ? m : v > M ? M : v;
}
static const uint8_t kZigzag[16] = {
0, 1, 4, 8, 5, 2, 3, 6, 9, 12, 13, 10, 7, 11, 14, 15
};
static const uint8_t kDcTable[128] = {
4, 5, 6, 7, 8, 9, 10, 10,
11, 12, 13, 14, 15, 16, 17, 17,
18, 19, 20, 20, 21, 21, 22, 22,
23, 23, 24, 25, 25, 26, 27, 28,
29, 30, 31, 32, 33, 34, 35, 36,
37, 37, 38, 39, 40, 41, 42, 43,
44, 45, 46, 46, 47, 48, 49, 50,
51, 52, 53, 54, 55, 56, 57, 58,
59, 60, 61, 62, 63, 64, 65, 66,
67, 68, 69, 70, 71, 72, 73, 74,
75, 76, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89,
91, 93, 95, 96, 98, 100, 101, 102,
104, 106, 108, 110, 112, 114, 116, 118,
122, 124, 126, 128, 130, 132, 134, 136,
138, 140, 143, 145, 148, 151, 154, 157
};
static const uint16_t kAcTable[128] = {
4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27,
28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43,
44, 45, 46, 47, 48, 49, 50, 51,
52, 53, 54, 55, 56, 57, 58, 60,
62, 64, 66, 68, 70, 72, 74, 76,
78, 80, 82, 84, 86, 88, 90, 92,
94, 96, 98, 100, 102, 104, 106, 108,
110, 112, 114, 116, 119, 122, 125, 128,
131, 134, 137, 140, 143, 146, 149, 152,
155, 158, 161, 164, 167, 170, 173, 177,
181, 185, 189, 193, 197, 201, 205, 209,
213, 217, 221, 225, 229, 234, 239, 245,
249, 254, 259, 264, 269, 274, 279, 284
};
static const uint16_t kAcTable2[128] = {
8, 8, 9, 10, 12, 13, 15, 17,
18, 20, 21, 23, 24, 26, 27, 29,
31, 32, 34, 35, 37, 38, 40, 41,
43, 44, 46, 48, 49, 51, 52, 54,
55, 57, 58, 60, 62, 63, 65, 66,
68, 69, 71, 72, 74, 75, 77, 79,
80, 82, 83, 85, 86, 88, 89, 93,
96, 99, 102, 105, 108, 111, 114, 117,
120, 124, 127, 130, 133, 136, 139, 142,
145, 148, 151, 155, 158, 161, 164, 167,
170, 173, 176, 179, 184, 189, 193, 198,
203, 207, 212, 217, 221, 226, 230, 235,
240, 244, 249, 254, 258, 263, 268, 274,
280, 286, 292, 299, 305, 311, 317, 323,
330, 336, 342, 348, 354, 362, 370, 379,
385, 393, 401, 409, 416, 424, 432, 440
};
static const uint16_t kCoeffThresh[16] = {
0, 10, 20, 30,
10, 20, 30, 30,
20, 30, 30, 30,
30, 30, 30, 30
};
// TODO(skal): tune more. Coeff thresholding?
static const uint8_t kBiasMatrices[3][16] = { // [3] = [luma-ac,luma-dc,chroma]
{ 96, 96, 96, 96,
96, 96, 96, 96,
96, 96, 96, 96,
96, 96, 96, 96 },
{ 96, 96, 96, 96,
96, 96, 96, 96,
96, 96, 96, 96,
96, 96, 96, 96 },
{ 96, 96, 96, 96,
96, 96, 96, 96,
96, 96, 96, 96,
96, 96, 96, 96 }
};
// Sharpening by (slightly) raising the hi-frequency coeffs (only for trellis).
// Hack-ish but helpful for mid-bitrate range. Use with care.
static const uint8_t kFreqSharpening[16] = {
0, 30, 60, 90,
30, 60, 90, 90,
60, 90, 90, 90,
90, 90, 90, 90
};
//------------------------------------------------------------------------------
// Initialize quantization parameters in VP8Matrix
// Returns the average quantizer
static int ExpandMatrix(VP8Matrix* const m, int type) {
int i;
int sum = 0;
for (i = 2; i < 16; ++i) {
m->q_[i] = m->q_[1];
}
for (i = 0; i < 16; ++i) {
const int j = kZigzag[i];
const int bias = kBiasMatrices[type][j];
m->iq_[j] = (1 << QFIX) / m->q_[j];
m->bias_[j] = BIAS(bias);
// TODO(skal): tune kCoeffThresh[]
m->zthresh_[j] = ((256 /*+ kCoeffThresh[j]*/ - bias) * m->q_[j] + 127) >> 8;
m->sharpen_[j] = (kFreqSharpening[j] * m->q_[j]) >> 11;
sum += m->q_[j];
}
return (sum + 8) >> 4;
}
static void SetupMatrices(VP8Encoder* enc) {
int i;
const int tlambda_scale =
(enc->method_ >= 4) ? enc->config_->sns_strength
: 0;
const int num_segments = enc->segment_hdr_.num_segments_;
for (i = 0; i < num_segments; ++i) {
VP8SegmentInfo* const m = &enc->dqm_[i];
const int q = m->quant_;
int q4, q16, quv;
m->y1_.q_[0] = kDcTable[clip(q + enc->dq_y1_dc_, 0, 127)];
m->y1_.q_[1] = kAcTable[clip(q, 0, 127)];
m->y2_.q_[0] = kDcTable[ clip(q + enc->dq_y2_dc_, 0, 127)] * 2;
m->y2_.q_[1] = kAcTable2[clip(q + enc->dq_y2_ac_, 0, 127)];
m->uv_.q_[0] = kDcTable[clip(q + enc->dq_uv_dc_, 0, 117)];
m->uv_.q_[1] = kAcTable[clip(q + enc->dq_uv_ac_, 0, 127)];
q4 = ExpandMatrix(&m->y1_, 0);
q16 = ExpandMatrix(&m->y2_, 1);
quv = ExpandMatrix(&m->uv_, 2);
// TODO: Switch to kLambda*[] tables?
{
m->lambda_i4_ = (3 * q4 * q4) >> 7;
m->lambda_i16_ = (3 * q16 * q16);
m->lambda_uv_ = (3 * quv * quv) >> 6;
m->lambda_mode_ = (1 * q4 * q4) >> 7;
m->lambda_trellis_i4_ = (7 * q4 * q4) >> 3;
m->lambda_trellis_i16_ = (q16 * q16) >> 2;
m->lambda_trellis_uv_ = (quv *quv) << 1;
m->tlambda_ = (tlambda_scale * q4) >> 5;
}
}
}
//------------------------------------------------------------------------------
// Initialize filtering parameters
// Very small filter-strength values have close to no visual effect. So we can
// save a little decoding-CPU by turning filtering off for these.
#define FSTRENGTH_CUTOFF 3
static void SetupFilterStrength(VP8Encoder* const enc) {
int i;
const int level0 = enc->config_->filter_strength;
for (i = 0; i < NUM_MB_SEGMENTS; ++i) {
// Segments with lower quantizer will be less filtered. TODO: tune (wrt SNS)
const int level = level0 * 256 * enc->dqm_[i].quant_ / 128;
const int f = level / (256 + enc->dqm_[i].beta_);
enc->dqm_[i].fstrength_ = (f < FSTRENGTH_CUTOFF) ? 0 : (f > 63) ? 63 : f;
}
// We record the initial strength (mainly for the case of 1-segment only).
enc->filter_hdr_.level_ = enc->dqm_[0].fstrength_;
enc->filter_hdr_.simple_ = (enc->config_->filter_type == 0);
enc->filter_hdr_.sharpness_ = enc->config_->filter_sharpness;
}
//------------------------------------------------------------------------------
// Note: if you change the values below, remember that the max range
// allowed by the syntax for DQ_UV is [-16,16].
#define MAX_DQ_UV (6)
#define MIN_DQ_UV (-4)
// We want to emulate jpeg-like behaviour where the expected "good" quality
// is around q=75. Internally, our "good" middle is around c=50. So we
// map accordingly using linear piece-wise function
static double QualityToCompression(double c) {
const double linear_c = (c < 0.75) ? c * (2. / 3.) : 2. * c - 1.;
// The file size roughly scales as pow(quantizer, 3.). Actually, the
// exponent is somewhere between 2.8 and 3.2, but we're mostly interested
// in the mid-quant range. So we scale the compressibility inversely to
// this power-law: quant ~= compression ^ 1/3. This law holds well for
// low quant. Finer modelling for high-quant would make use of kAcTable[]
// more explicitly.
const double v = pow(linear_c, 1 / 3.);
return v;
}
static double QualityToJPEGCompression(double c, double alpha) {
// We map the complexity 'alpha' and quality setting 'c' to a compression
// exponent empirically matched to the compression curve of libjpeg6b.
// On average, the WebP output size will be roughly similar to that of a
// JPEG file compressed with same quality factor.
const double amin = 0.30;
const double amax = 0.85;
const double exp_min = 0.4;
const double exp_max = 0.9;
const double slope = (exp_min - exp_max) / (amax - amin);
// Linearly interpolate 'expn' from exp_min to exp_max
// in the [amin, amax] range.
const double expn = (alpha > amax) ? exp_min
: (alpha < amin) ? exp_max
: exp_max + slope * (alpha - amin);
const double v = pow(c, expn);
return v;
}
static int SegmentsAreEquivalent(const VP8SegmentInfo* const S1,
const VP8SegmentInfo* const S2) {
return (S1->quant_ == S2->quant_) && (S1->fstrength_ == S2->fstrength_);
}
static void SimplifySegments(VP8Encoder* const enc) {
int map[NUM_MB_SEGMENTS] = { 0, 1, 2, 3 };
const int num_segments = enc->segment_hdr_.num_segments_;
int num_final_segments = 1;
int s1, s2;
for (s1 = 1; s1 < num_segments; ++s1) { // find similar segments
const VP8SegmentInfo* const S1 = &enc->dqm_[s1];
int found = 0;
// check if we already have similar segment
for (s2 = 0; s2 < num_final_segments; ++s2) {
const VP8SegmentInfo* const S2 = &enc->dqm_[s2];
if (SegmentsAreEquivalent(S1, S2)) {
found = 1;
break;
}
}
map[s1] = s2;
if (!found) {
if (num_final_segments != s1) {
enc->dqm_[num_final_segments] = enc->dqm_[s1];
}
++num_final_segments;
}
}
if (num_final_segments < num_segments) { // Remap
int i = enc->mb_w_ * enc->mb_h_;
while (i-- > 0) enc->mb_info_[i].segment_ = map[enc->mb_info_[i].segment_];
enc->segment_hdr_.num_segments_ = num_final_segments;
// Replicate the trailing segment infos (it's mostly cosmetics)
for (i = num_final_segments; i < num_segments; ++i) {
enc->dqm_[i] = enc->dqm_[num_final_segments - 1];
}
}
}
void VP8SetSegmentParams(VP8Encoder* const enc, float quality) {
int i;
int dq_uv_ac, dq_uv_dc;
const int num_segments = enc->segment_hdr_.num_segments_;
const double amp = SNS_TO_DQ * enc->config_->sns_strength / 100. / 128.;
const double Q = quality / 100.;
const double c_base = enc->config_->emulate_jpeg_size ?
QualityToJPEGCompression(Q, enc->alpha_ / 255.) :
QualityToCompression(Q);
for (i = 0; i < num_segments; ++i) {
// We modulate the base coefficient to accommodate for the quantization
// susceptibility and allow denser segments to be quantized more.
const double expn = 1. - amp * enc->dqm_[i].alpha_;
const double c = pow(c_base, expn);
const int q = (int)(127. * (1. - c));
assert(expn > 0.);
enc->dqm_[i].quant_ = clip(q, 0, 127);
}
// purely indicative in the bitstream (except for the 1-segment case)
enc->base_quant_ = enc->dqm_[0].quant_;
// fill-in values for the unused segments (required by the syntax)
for (i = num_segments; i < NUM_MB_SEGMENTS; ++i) {
enc->dqm_[i].quant_ = enc->base_quant_;
}
// uv_alpha_ is normally spread around ~60. The useful range is
// typically ~30 (quite bad) to ~100 (ok to decimate UV more).
// We map it to the safe maximal range of MAX/MIN_DQ_UV for dq_uv.
dq_uv_ac = (enc->uv_alpha_ - MID_ALPHA) * (MAX_DQ_UV - MIN_DQ_UV)
/ (MAX_ALPHA - MIN_ALPHA);
// we rescale by the user-defined strength of adaptation
dq_uv_ac = dq_uv_ac * enc->config_->sns_strength / 100;
// and make it safe.
dq_uv_ac = clip(dq_uv_ac, MIN_DQ_UV, MAX_DQ_UV);
// We also boost the dc-uv-quant a little, based on sns-strength, since
// U/V channels are quite more reactive to high quants (flat DC-blocks
// tend to appear, and are displeasant).
dq_uv_dc = -4 * enc->config_->sns_strength / 100;
dq_uv_dc = clip(dq_uv_dc, -15, 15); // 4bit-signed max allowed
enc->dq_y1_dc_ = 0; // TODO(skal): dq-lum
enc->dq_y2_dc_ = 0;
enc->dq_y2_ac_ = 0;
enc->dq_uv_dc_ = dq_uv_dc;
enc->dq_uv_ac_ = dq_uv_ac;
SetupFilterStrength(enc); // initialize segments' filtering, eventually
if (num_segments > 1) SimplifySegments(enc);
SetupMatrices(enc); // finalize quantization matrices
}
//------------------------------------------------------------------------------
// Form the predictions in cache
// Must be ordered using {DC_PRED, TM_PRED, V_PRED, H_PRED} as index
const int VP8I16ModeOffsets[4] = { I16DC16, I16TM16, I16VE16, I16HE16 };
const int VP8UVModeOffsets[4] = { C8DC8, C8TM8, C8VE8, C8HE8 };
// Must be indexed using {B_DC_PRED -> B_HU_PRED} as index
const int VP8I4ModeOffsets[NUM_BMODES] = {
I4DC4, I4TM4, I4VE4, I4HE4, I4RD4, I4VR4, I4LD4, I4VL4, I4HD4, I4HU4
};
void VP8MakeLuma16Preds(const VP8EncIterator* const it) {
const VP8Encoder* const enc = it->enc_;
const uint8_t* const left = it->x_ ? enc->y_left_ : NULL;
const uint8_t* const top = it->y_ ? enc->y_top_ + it->x_ * 16 : NULL;
VP8EncPredLuma16(it->yuv_p_, left, top);
}
void VP8MakeChroma8Preds(const VP8EncIterator* const it) {
const VP8Encoder* const enc = it->enc_;
const uint8_t* const left = it->x_ ? enc->u_left_ : NULL;
const uint8_t* const top = it->y_ ? enc->uv_top_ + it->x_ * 16 : NULL;
VP8EncPredChroma8(it->yuv_p_, left, top);
}
void VP8MakeIntra4Preds(const VP8EncIterator* const it) {
VP8EncPredLuma4(it->yuv_p_, it->i4_top_);
}
//------------------------------------------------------------------------------
// Quantize
// Layout:
// +----+
// |YYYY| 0
// |YYYY| 4
// |YYYY| 8
// |YYYY| 12
// +----+
// |UUVV| 16
// |UUVV| 20
// +----+
const int VP8Scan[16 + 4 + 4] = {
// Luma
0 + 0 * BPS, 4 + 0 * BPS, 8 + 0 * BPS, 12 + 0 * BPS,
0 + 4 * BPS, 4 + 4 * BPS, 8 + 4 * BPS, 12 + 4 * BPS,
0 + 8 * BPS, 4 + 8 * BPS, 8 + 8 * BPS, 12 + 8 * BPS,
0 + 12 * BPS, 4 + 12 * BPS, 8 + 12 * BPS, 12 + 12 * BPS,
0 + 0 * BPS, 4 + 0 * BPS, 0 + 4 * BPS, 4 + 4 * BPS, // U
8 + 0 * BPS, 12 + 0 * BPS, 8 + 4 * BPS, 12 + 4 * BPS // V
};
//------------------------------------------------------------------------------
// Distortion measurement
static const uint16_t kWeightY[16] = {
38, 32, 20, 9, 32, 28, 17, 7, 20, 17, 10, 4, 9, 7, 4, 2
};
static const uint16_t kWeightTrellis[16] = {
#if USE_TDISTO == 0
16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16
#else
30, 27, 19, 11,
27, 24, 17, 10,
19, 17, 12, 8,
11, 10, 8, 6
#endif
};
// Init/Copy the common fields in score.
static void InitScore(VP8ModeScore* const rd) {
rd->D = 0;
rd->SD = 0;
rd->R = 0;
rd->nz = 0;
rd->score = MAX_COST;
}
static void CopyScore(VP8ModeScore* const dst, const VP8ModeScore* const src) {
dst->D = src->D;
dst->SD = src->SD;
dst->R = src->R;
dst->nz = src->nz; // note that nz is not accumulated, but just copied.
dst->score = src->score;
}
static void AddScore(VP8ModeScore* const dst, const VP8ModeScore* const src) {
dst->D += src->D;
dst->SD += src->SD;
dst->R += src->R;
dst->nz |= src->nz; // here, new nz bits are accumulated.
dst->score += src->score;
}
//------------------------------------------------------------------------------
// Performs trellis-optimized quantization.
// Trellis
typedef struct {
int prev; // best previous
int level; // level
int sign; // sign of coeff_i
score_t cost; // bit cost
score_t error; // distortion = sum of (|coeff_i| - level_i * Q_i)^2
int ctx; // context (only depends on 'level'. Could be spared.)
} Node;
// If a coefficient was quantized to a value Q (using a neutral bias),
// we test all alternate possibilities between [Q-MIN_DELTA, Q+MAX_DELTA]
// We don't test negative values though.
#define MIN_DELTA 0 // how much lower level to try
#define MAX_DELTA 1 // how much higher
#define NUM_NODES (MIN_DELTA + 1 + MAX_DELTA)
#define NODE(n, l) (nodes[(n) + 1][(l) + MIN_DELTA])
static WEBP_INLINE void SetRDScore(int lambda, VP8ModeScore* const rd) {
// TODO: incorporate the "* 256" in the tables?
rd->score = rd->R * lambda + 256 * (rd->D + rd->SD);
}
static WEBP_INLINE score_t RDScoreTrellis(int lambda, score_t rate,
score_t distortion) {
return rate * lambda + 256 * distortion;
}
static int TrellisQuantizeBlock(const VP8EncIterator* const it,
int16_t in[16], int16_t out[16],
int ctx0, int coeff_type,
const VP8Matrix* const mtx,
int lambda) {
ProbaArray* const last_costs = it->enc_->proba_.coeffs_[coeff_type];
CostArray* const costs = it->enc_->proba_.level_cost_[coeff_type];
const int first = (coeff_type == 0) ? 1 : 0;
Node nodes[17][NUM_NODES];
int best_path[3] = {-1, -1, -1}; // store best-last/best-level/best-previous
score_t best_score;
int best_node;
int last = first - 1;
int n, m, p, nz;
{
score_t cost;
score_t max_error;
const int thresh = mtx->q_[1] * mtx->q_[1] / 4;
const int last_proba = last_costs[VP8EncBands[first]][ctx0][0];
// compute maximal distortion.
max_error = 0;
for (n = first; n < 16; ++n) {
const int j = kZigzag[n];
const int err = in[j] * in[j];
max_error += kWeightTrellis[j] * err;
if (err > thresh) last = n;
}
// we don't need to go inspect up to n = 16 coeffs. We can just go up
// to last + 1 (inclusive) without losing much.
if (last < 15) ++last;
// compute 'skip' score. This is the max score one can do.
cost = VP8BitCost(0, last_proba);
best_score = RDScoreTrellis(lambda, cost, max_error);
// initialize source node.
n = first - 1;
for (m = -MIN_DELTA; m <= MAX_DELTA; ++m) {
NODE(n, m).cost = 0;
NODE(n, m).error = max_error;
NODE(n, m).ctx = ctx0;
}
}
// traverse trellis.
for (n = first; n <= last; ++n) {
const int j = kZigzag[n];
const int Q = mtx->q_[j];
const int iQ = mtx->iq_[j];
const int B = BIAS(0x00); // neutral bias
// note: it's important to take sign of the _original_ coeff,
// so we don't have to consider level < 0 afterward.
const int sign = (in[j] < 0);
int coeff0 = (sign ? -in[j] : in[j]) + mtx->sharpen_[j];
int level0;
if (coeff0 > 2047) coeff0 = 2047;
level0 = QUANTDIV(coeff0, iQ, B);
// test all alternate level values around level0.
for (m = -MIN_DELTA; m <= MAX_DELTA; ++m) {
Node* const cur = &NODE(n, m);
int delta_error, new_error;
score_t cur_score = MAX_COST;
int level = level0 + m;
int last_proba;
cur->sign = sign;
cur->level = level;
cur->ctx = (level == 0) ? 0 : (level == 1) ? 1 : 2;
if (level >= 2048 || level < 0) { // node is dead?
cur->cost = MAX_COST;
continue;
}
last_proba = last_costs[VP8EncBands[n + 1]][cur->ctx][0];
// Compute delta_error = how much coding this level will
// subtract as distortion to max_error
new_error = coeff0 - level * Q;
delta_error =
kWeightTrellis[j] * (coeff0 * coeff0 - new_error * new_error);
// Inspect all possible non-dead predecessors. Retain only the best one.
for (p = -MIN_DELTA; p <= MAX_DELTA; ++p) {
const Node* const prev = &NODE(n - 1, p);
const int prev_ctx = prev->ctx;
const uint16_t* const tcost = costs[VP8EncBands[n]][prev_ctx];
const score_t total_error = prev->error - delta_error;
score_t cost, base_cost, score;
if (prev->cost >= MAX_COST) { // dead node?
continue;
}
// Base cost of both terminal/non-terminal
base_cost = prev->cost + VP8LevelCost(tcost, level);
// Examine node assuming it's a non-terminal one.
cost = base_cost;
if (level && n < 15) {
cost += VP8BitCost(1, last_proba);
}
score = RDScoreTrellis(lambda, cost, total_error);
if (score < cur_score) {
cur_score = score;
cur->cost = cost;
cur->error = total_error;
cur->prev = p;
}
// Now, record best terminal node (and thus best entry in the graph).
if (level) {
cost = base_cost;
if (n < 15) cost += VP8BitCost(0, last_proba);
score = RDScoreTrellis(lambda, cost, total_error);
if (score < best_score) {
best_score = score;
best_path[0] = n; // best eob position
best_path[1] = m; // best level
best_path[2] = p; // best predecessor
}
}
}
}
}
// Fresh start
memset(in + first, 0, (16 - first) * sizeof(*in));
memset(out + first, 0, (16 - first) * sizeof(*out));
if (best_path[0] == -1) {
return 0; // skip!
}
// Unwind the best path.
// Note: best-prev on terminal node is not necessarily equal to the
// best_prev for non-terminal. So we patch best_path[2] in.
n = best_path[0];
best_node = best_path[1];
NODE(n, best_node).prev = best_path[2]; // force best-prev for terminal
nz = 0;
for (; n >= first; --n) {
const Node* const node = &NODE(n, best_node);
const int j = kZigzag[n];
out[n] = node->sign ? -node->level : node->level;
nz |= (node->level != 0);
in[j] = out[n] * mtx->q_[j];
best_node = node->prev;
}
return nz;
}
#undef NODE
//------------------------------------------------------------------------------
// Performs: difference, transform, quantize, back-transform, add
// all at once. Output is the reconstructed block in *yuv_out, and the
// quantized levels in *levels.
static int ReconstructIntra16(VP8EncIterator* const it,
VP8ModeScore* const rd,
uint8_t* const yuv_out,
int mode) {
const VP8Encoder* const enc = it->enc_;
const uint8_t* const ref = it->yuv_p_ + VP8I16ModeOffsets[mode];
const uint8_t* const src = it->yuv_in_ + Y_OFF;
const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_];
int nz = 0;
int n;
int16_t tmp[16][16], dc_tmp[16];
for (n = 0; n < 16; ++n) {
VP8FTransform(src + VP8Scan[n], ref + VP8Scan[n], tmp[n]);
}
VP8FTransformWHT(tmp[0], dc_tmp);
nz |= VP8EncQuantizeBlock(dc_tmp, rd->y_dc_levels, 0, &dqm->y2_) << 24;
if (DO_TRELLIS_I16 && it->do_trellis_) {
int x, y;
VP8IteratorNzToBytes(it);
for (y = 0, n = 0; y < 4; ++y) {
for (x = 0; x < 4; ++x, ++n) {
const int ctx = it->top_nz_[x] + it->left_nz_[y];
const int non_zero =
TrellisQuantizeBlock(it, tmp[n], rd->y_ac_levels[n], ctx, 0,
&dqm->y1_, dqm->lambda_trellis_i16_);
it->top_nz_[x] = it->left_nz_[y] = non_zero;
nz |= non_zero << n;
}
}
} else {
for (n = 0; n < 16; ++n) {
nz |= VP8EncQuantizeBlock(tmp[n], rd->y_ac_levels[n], 1, &dqm->y1_) << n;
}
}
// Transform back
VP8ITransformWHT(dc_tmp, tmp[0]);
for (n = 0; n < 16; n += 2) {
VP8ITransform(ref + VP8Scan[n], tmp[n], yuv_out + VP8Scan[n], 1);
}
return nz;
}
static int ReconstructIntra4(VP8EncIterator* const it,
int16_t levels[16],
const uint8_t* const src,
uint8_t* const yuv_out,
int mode) {
const VP8Encoder* const enc = it->enc_;
const uint8_t* const ref = it->yuv_p_ + VP8I4ModeOffsets[mode];
const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_];
int nz = 0;
int16_t tmp[16];
VP8FTransform(src, ref, tmp);
if (DO_TRELLIS_I4 && it->do_trellis_) {
const int x = it->i4_ & 3, y = it->i4_ >> 2;
const int ctx = it->top_nz_[x] + it->left_nz_[y];
nz = TrellisQuantizeBlock(it, tmp, levels, ctx, 3, &dqm->y1_,
dqm->lambda_trellis_i4_);
} else {
nz = VP8EncQuantizeBlock(tmp, levels, 0, &dqm->y1_);
}
VP8ITransform(ref, tmp, yuv_out, 0);
return nz;
}
static int ReconstructUV(VP8EncIterator* const it, VP8ModeScore* const rd,
uint8_t* const yuv_out, int mode) {
const VP8Encoder* const enc = it->enc_;
const uint8_t* const ref = it->yuv_p_ + VP8UVModeOffsets[mode];
const uint8_t* const src = it->yuv_in_ + U_OFF;
const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_];
int nz = 0;
int n;
int16_t tmp[8][16];
for (n = 0; n < 8; ++n) {
VP8FTransform(src + VP8Scan[16 + n], ref + VP8Scan[16 + n], tmp[n]);
}
if (DO_TRELLIS_UV && it->do_trellis_) {
int ch, x, y;
for (ch = 0, n = 0; ch <= 2; ch += 2) {
for (y = 0; y < 2; ++y) {
for (x = 0; x < 2; ++x, ++n) {
const int ctx = it->top_nz_[4 + ch + x] + it->left_nz_[4 + ch + y];
const int non_zero =
TrellisQuantizeBlock(it, tmp[n], rd->uv_levels[n], ctx, 2,
&dqm->uv_, dqm->lambda_trellis_uv_);
it->top_nz_[4 + ch + x] = it->left_nz_[4 + ch + y] = non_zero;
nz |= non_zero << n;
}
}
}
} else {
for (n = 0; n < 8; ++n) {
nz |= VP8EncQuantizeBlock(tmp[n], rd->uv_levels[n], 0, &dqm->uv_) << n;
}
}
for (n = 0; n < 8; n += 2) {
VP8ITransform(ref + VP8Scan[16 + n], tmp[n], yuv_out + VP8Scan[16 + n], 1);
}
return (nz << 16);
}
//------------------------------------------------------------------------------
// RD-opt decision. Reconstruct each modes, evalue distortion and bit-cost.
// Pick the mode is lower RD-cost = Rate + lamba * Distortion.
static void SwapPtr(uint8_t** a, uint8_t** b) {
uint8_t* const tmp = *a;
*a = *b;
*b = tmp;
}
static void SwapOut(VP8EncIterator* const it) {
SwapPtr(&it->yuv_out_, &it->yuv_out2_);
}
static void PickBestIntra16(VP8EncIterator* const it, VP8ModeScore* const rd) {
const VP8Encoder* const enc = it->enc_;
const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_];
const int lambda = dqm->lambda_i16_;
const int tlambda = dqm->tlambda_;
const uint8_t* const src = it->yuv_in_ + Y_OFF;
VP8ModeScore rd16;
int mode;
rd->mode_i16 = -1;
for (mode = 0; mode < 4; ++mode) {
uint8_t* const tmp_dst = it->yuv_out2_ + Y_OFF; // scratch buffer
int nz;
// Reconstruct
nz = ReconstructIntra16(it, &rd16, tmp_dst, mode);
// Measure RD-score
rd16.D = VP8SSE16x16(src, tmp_dst);
rd16.SD = tlambda ? MULT_8B(tlambda, VP8TDisto16x16(src, tmp_dst, kWeightY))
: 0;
rd16.R = VP8GetCostLuma16(it, &rd16);
rd16.R += VP8FixedCostsI16[mode];
// Since we always examine Intra16 first, we can overwrite *rd directly.
SetRDScore(lambda, &rd16);
if (mode == 0 || rd16.score < rd->score) {
CopyScore(rd, &rd16);
rd->mode_i16 = mode;
rd->nz = nz;
memcpy(rd->y_ac_levels, rd16.y_ac_levels, sizeof(rd16.y_ac_levels));
memcpy(rd->y_dc_levels, rd16.y_dc_levels, sizeof(rd16.y_dc_levels));
SwapOut(it);
}
}
SetRDScore(dqm->lambda_mode_, rd); // finalize score for mode decision.
VP8SetIntra16Mode(it, rd->mode_i16);
}
//------------------------------------------------------------------------------
// return the cost array corresponding to the surrounding prediction modes.
static const uint16_t* GetCostModeI4(VP8EncIterator* const it,
const uint8_t modes[16]) {
const int preds_w = it->enc_->preds_w_;
const int x = (it->i4_ & 3), y = it->i4_ >> 2;
const int left = (x == 0) ? it->preds_[y * preds_w - 1] : modes[it->i4_ - 1];
const int top = (y == 0) ? it->preds_[-preds_w + x] : modes[it->i4_ - 4];
return VP8FixedCostsI4[top][left];
}
static int PickBestIntra4(VP8EncIterator* const it, VP8ModeScore* const rd) {
const VP8Encoder* const enc = it->enc_;
const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_];
const int lambda = dqm->lambda_i4_;
const int tlambda = dqm->tlambda_;
const uint8_t* const src0 = it->yuv_in_ + Y_OFF;
uint8_t* const best_blocks = it->yuv_out2_ + Y_OFF;
int total_header_bits = 0;
VP8ModeScore rd_best;
if (enc->max_i4_header_bits_ == 0) {
return 0;
}
InitScore(&rd_best);
rd_best.score = 211; // '211' is the value of VP8BitCost(0, 145)
VP8IteratorStartI4(it);
do {
VP8ModeScore rd_i4;
int mode;
int best_mode = -1;
const uint8_t* const src = src0 + VP8Scan[it->i4_];
const uint16_t* const mode_costs = GetCostModeI4(it, rd->modes_i4);
uint8_t* best_block = best_blocks + VP8Scan[it->i4_];
uint8_t* tmp_dst = it->yuv_p_ + I4TMP; // scratch buffer.
InitScore(&rd_i4);
VP8MakeIntra4Preds(it);
for (mode = 0; mode < NUM_BMODES; ++mode) {
VP8ModeScore rd_tmp;
int16_t tmp_levels[16];
// Reconstruct
rd_tmp.nz =
ReconstructIntra4(it, tmp_levels, src, tmp_dst, mode) << it->i4_;
// Compute RD-score
rd_tmp.D = VP8SSE4x4(src, tmp_dst);
rd_tmp.SD =
tlambda ? MULT_8B(tlambda, VP8TDisto4x4(src, tmp_dst, kWeightY))
: 0;
rd_tmp.R = VP8GetCostLuma4(it, tmp_levels);
rd_tmp.R += mode_costs[mode];
SetRDScore(lambda, &rd_tmp);
if (best_mode < 0 || rd_tmp.score < rd_i4.score) {
CopyScore(&rd_i4, &rd_tmp);
best_mode = mode;
SwapPtr(&tmp_dst, &best_block);
memcpy(rd_best.y_ac_levels[it->i4_], tmp_levels, sizeof(tmp_levels));
}
}
SetRDScore(dqm->lambda_mode_, &rd_i4);
AddScore(&rd_best, &rd_i4);
total_header_bits += mode_costs[best_mode];
if (rd_best.score >= rd->score ||
total_header_bits > enc->max_i4_header_bits_) {
return 0;
}
// Copy selected samples if not in the right place already.
if (best_block != best_blocks + VP8Scan[it->i4_])
VP8Copy4x4(best_block, best_blocks + VP8Scan[it->i4_]);
rd->modes_i4[it->i4_] = best_mode;
it->top_nz_[it->i4_ & 3] = it->left_nz_[it->i4_ >> 2] = (rd_i4.nz ? 1 : 0);
} while (VP8IteratorRotateI4(it, best_blocks));
// finalize state
CopyScore(rd, &rd_best);
VP8SetIntra4Mode(it, rd->modes_i4);
SwapOut(it);
memcpy(rd->y_ac_levels, rd_best.y_ac_levels, sizeof(rd->y_ac_levels));
return 1; // select intra4x4 over intra16x16
}
//------------------------------------------------------------------------------
static void PickBestUV(VP8EncIterator* const it, VP8ModeScore* const rd) {
const VP8Encoder* const enc = it->enc_;
const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_];
const int lambda = dqm->lambda_uv_;
const uint8_t* const src = it->yuv_in_ + U_OFF;
uint8_t* const tmp_dst = it->yuv_out2_ + U_OFF; // scratch buffer
uint8_t* const dst0 = it->yuv_out_ + U_OFF;
VP8ModeScore rd_best;
int mode;
rd->mode_uv = -1;
InitScore(&rd_best);
for (mode = 0; mode < 4; ++mode) {
VP8ModeScore rd_uv;
// Reconstruct
rd_uv.nz = ReconstructUV(it, &rd_uv, tmp_dst, mode);
// Compute RD-score
rd_uv.D = VP8SSE16x8(src, tmp_dst);
rd_uv.SD = 0; // TODO: should we call TDisto? it tends to flatten areas.
rd_uv.R = VP8GetCostUV(it, &rd_uv);
rd_uv.R += VP8FixedCostsUV[mode];
SetRDScore(lambda, &rd_uv);
if (mode == 0 || rd_uv.score < rd_best.score) {
CopyScore(&rd_best, &rd_uv);
rd->mode_uv = mode;
memcpy(rd->uv_levels, rd_uv.uv_levels, sizeof(rd->uv_levels));
memcpy(dst0, tmp_dst, UV_SIZE); // TODO: SwapUVOut() ?
}
}
VP8SetIntraUVMode(it, rd->mode_uv);
AddScore(rd, &rd_best);
}
//------------------------------------------------------------------------------
// Final reconstruction and quantization.
static void SimpleQuantize(VP8EncIterator* const it, VP8ModeScore* const rd) {
const VP8Encoder* const enc = it->enc_;
const int i16 = (it->mb_->type_ == 1);
int nz = 0;
if (i16) {
nz = ReconstructIntra16(it, rd, it->yuv_out_ + Y_OFF, it->preds_[0]);
} else {
VP8IteratorStartI4(it);
do {
const int mode =
it->preds_[(it->i4_ & 3) + (it->i4_ >> 2) * enc->preds_w_];
const uint8_t* const src = it->yuv_in_ + Y_OFF + VP8Scan[it->i4_];
uint8_t* const dst = it->yuv_out_ + Y_OFF + VP8Scan[it->i4_];
VP8MakeIntra4Preds(it);
nz |= ReconstructIntra4(it, rd->y_ac_levels[it->i4_],
src, dst, mode) << it->i4_;
} while (VP8IteratorRotateI4(it, it->yuv_out_ + Y_OFF));
}
nz |= ReconstructUV(it, rd, it->yuv_out_ + U_OFF, it->mb_->uv_mode_);
rd->nz = nz;
}
//------------------------------------------------------------------------------
// Entry point
int VP8Decimate(VP8EncIterator* const it, VP8ModeScore* const rd,
VP8RDLevel rd_opt) {
int is_skipped;
InitScore(rd);
// We can perform predictions for Luma16x16 and Chroma8x8 already.
// Luma4x4 predictions needs to be done as-we-go.
VP8MakeLuma16Preds(it);
VP8MakeChroma8Preds(it);
if (rd_opt > RD_OPT_NONE) {
it->do_trellis_ = (rd_opt >= RD_OPT_TRELLIS_ALL);
PickBestIntra16(it, rd);
if (it->enc_->method_ >= 2) {
PickBestIntra4(it, rd);
}
PickBestUV(it, rd);
if (rd_opt == RD_OPT_TRELLIS) { // finish off with trellis-optim now
it->do_trellis_ = 1;
SimpleQuantize(it, rd);
}
} else {
// TODO: for method_ == 2, pick the best intra4/intra16 based on SSE
it->do_trellis_ = (it->enc_->method_ == 2);
SimpleQuantize(it, rd);
}
is_skipped = (rd->nz == 0);
VP8SetSkip(it, is_skipped);
return is_skipped;
}
#if defined(__cplusplus) || defined(c_plusplus)
} // extern "C"
#endif