libwebp/src/dsp/lossless.c

454 lines
15 KiB
C
Raw Normal View History

// Copyright 2012 Google Inc. All Rights Reserved.
//
// This code is licensed under the same terms as WebM:
// Software License Agreement: http://www.webmproject.org/license/software/
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
// -----------------------------------------------------------------------------
//
// Image transforms and color space conversion methods for lossless decoder.
//
// Authors: Vikas Arora (vikaas.arora@gmail.com)
// jyrki@google.com (Jyrki Alakuijala)
// Urvang Joshi (urvang@google.com)
#if defined(__cplusplus) || defined(c_plusplus)
extern "C" {
#endif
#include <stdlib.h>
#include "./lossless.h"
#include "../dec/vp8li.h"
//------------------------------------------------------------------------------
// Inverse image transforms.
// In-place sum of each component with mod 256.
static WEBP_INLINE void AddPixelsEq(uint32_t* a, uint32_t b) {
const uint32_t alpha_and_green = (*a & 0xff00ff00u) + (b & 0xff00ff00u);
const uint32_t red_and_blue = (*a & 0x00ff00ffu) + (b & 0x00ff00ffu);
*a = (alpha_and_green & 0xff00ff00u) | (red_and_blue & 0x00ff00ffu);
}
static WEBP_INLINE uint32_t Average2(uint32_t a0, uint32_t a1) {
return (((a0 ^ a1) & 0xfefefefeL) >> 1) + (a0 & a1);
}
static WEBP_INLINE uint32_t Average3(uint32_t a0, uint32_t a1, uint32_t a2) {
return Average2(Average2(a0, a2), a1);
}
static WEBP_INLINE uint32_t Average4(uint32_t a0, uint32_t a1,
uint32_t a2, uint32_t a3) {
return Average2(Average2(a0, a1), Average2(a2, a3));
}
static WEBP_INLINE uint32_t Clip255(uint32_t a) {
if (a < NUM_LITERAL_CODES) {
return a;
}
// return 0, when a is a negative integer.
// return 255, when a is positive.
return ~a >> 24;
}
static WEBP_INLINE int AddSubtractComponentFull(int a, int b, int c) {
return Clip255(a + b - c);
}
static WEBP_INLINE uint32_t ClampedAddSubtractFull(uint32_t c0, uint32_t c1,
uint32_t c2) {
const int a = AddSubtractComponentFull(c0 >> 24, c1 >> 24, c2 >> 24);
const int r = AddSubtractComponentFull((c0 >> 16) & 0xff,
(c1 >> 16) & 0xff,
(c2 >> 16) & 0xff);
const int g = AddSubtractComponentFull((c0 >> 8) & 0xff,
(c1 >> 8) & 0xff,
(c2 >> 8) & 0xff);
const int b = AddSubtractComponentFull(c0 & 0xff, c1 & 0xff, c2 & 0xff);
return (a << 24) | (r << 16) | (g << 8) | b;
}
static WEBP_INLINE int AddSubtractComponentHalf(int a, int b) {
return Clip255(a + (a - b) / 2);
}
static WEBP_INLINE uint32_t ClampedAddSubtractHalf(uint32_t c0, uint32_t c1,
uint32_t c2) {
const uint32_t ave = Average2(c0, c1);
const int a = AddSubtractComponentHalf(ave >> 24, c2 >> 24);
const int r = AddSubtractComponentHalf((ave >> 16) & 0xff, (c2 >> 16) & 0xff);
const int g = AddSubtractComponentHalf((ave >> 8) & 0xff, (c2 >> 8) & 0xff);
const int b = AddSubtractComponentHalf((ave >> 0) & 0xff, (c2 >> 0) & 0xff);
return (a << 24) | (r << 16) | (g << 8) | b;
}
static WEBP_INLINE int Sub3(int a, int b, int c) {
const int pa = b - c;
const int pb = a - c;
return abs(pa) - abs(pb);
}
static WEBP_INLINE uint32_t Select(uint32_t a, uint32_t b, uint32_t c) {
const int pa_minus_pb =
Sub3((a >> 24) , (b >> 24) , (c >> 24) ) +
Sub3((a >> 16) & 0xff, (b >> 16) & 0xff, (c >> 16) & 0xff) +
Sub3((a >> 8) & 0xff, (b >> 8) & 0xff, (c >> 8) & 0xff) +
Sub3((a ) & 0xff, (b ) & 0xff, (c ) & 0xff);
return (pa_minus_pb <= 0) ? a : b;
}
//------------------------------------------------------------------------------
// Predictors
static void Predictor0(uint32_t* src, const uint32_t* top) {
(void)top;
AddPixelsEq(src, ARGB_BLACK);
}
static void Predictor1(uint32_t* src, const uint32_t* top) {
(void)top;
AddPixelsEq(src, src[-1]); // left
}
static void Predictor2(uint32_t* src, const uint32_t* top) {
AddPixelsEq(src, top[0]);
}
static void Predictor3(uint32_t* src, const uint32_t* top) {
AddPixelsEq(src, top[1]);
}
static void Predictor4(uint32_t* src, const uint32_t* top) {
AddPixelsEq(src, top[-1]);
}
static void Predictor5(uint32_t* src, const uint32_t* top) {
const uint32_t pred = Average3(src[-1], top[0], top[1]);
AddPixelsEq(src, pred);
}
static void Predictor6(uint32_t* src, const uint32_t* top) {
const uint32_t pred = Average2(src[-1], top[-1]);
AddPixelsEq(src, pred);
}
static void Predictor7(uint32_t* src, const uint32_t* top) {
const uint32_t pred = Average2(src[-1], top[0]);
AddPixelsEq(src, pred);
}
static void Predictor8(uint32_t* src, const uint32_t* top) {
const uint32_t pred = Average2(top[-1], top[0]);
AddPixelsEq(src, pred);
}
static void Predictor9(uint32_t* src, const uint32_t* top) {
const uint32_t pred = Average2(top[0], top[1]);
AddPixelsEq(src, pred);
}
static void Predictor10(uint32_t* src, const uint32_t* top) {
const uint32_t pred = Average4(src[-1], top[-1], top[0], top[1]);
AddPixelsEq(src, pred);
}
static void Predictor11(uint32_t* src, const uint32_t* top) {
const uint32_t pred = Select(top[0], src[-1], top[-1]);
AddPixelsEq(src, pred);
}
static void Predictor12(uint32_t* src, const uint32_t* top) {
const uint32_t pred = ClampedAddSubtractFull(src[-1], top[0], top[-1]);
AddPixelsEq(src, pred);
}
static void Predictor13(uint32_t* src, const uint32_t* top) {
const uint32_t pred = ClampedAddSubtractHalf(src[-1], top[0], top[-1]);
AddPixelsEq(src, pred);
}
typedef void (*PredictorFunc)(uint32_t* src, const uint32_t* top);
static const PredictorFunc kPredictors[16] = {
Predictor0, Predictor1, Predictor2, Predictor3,
Predictor4, Predictor5, Predictor6, Predictor7,
Predictor8, Predictor9, Predictor10, Predictor11,
Predictor12, Predictor13,
Predictor0, Predictor0 // <- padding security sentinels
};
// Inverse prediction.
static void PredictorInverseTransform(const VP8LTransform* const transform,
int y_start, int y_end, uint32_t* data) {
const int width = transform->xsize_;
if (y_start == 0) { // First Row follows the L (mode=1) mode.
int x;
Predictor0(data, NULL);
for (x = 1; x < width; ++x) {
Predictor1(data + x, NULL);
}
data += width;
++y_start;
}
{
int y = y_start;
const int mask = (1 << transform->bits_) - 1;
const int tiles_per_row = VP8LSubSampleSize(width, transform->bits_);
const uint32_t* pred_mode_base =
transform->data_ + (y >> transform->bits_) * tiles_per_row;
while (y < y_end) {
const uint32_t* pred_mode_src = pred_mode_base;
PredictorFunc pred_func;
int x;
// First pixel follows the T (mode=2) mode.
Predictor2(data, data - width);
// .. the rest:
pred_func = kPredictors[((*pred_mode_src++) >> 8) & 0xf];
for (x = 1; x < width; ++x) {
if ((x & mask) == 0) { // start of tile. Read predictor function.
pred_func = kPredictors[((*pred_mode_src++) >> 8) & 0xf];
}
pred_func(data + x, data + x - width);
}
data += width;
++y;
if ((y & mask) == 0) { // Use the same mask, since tiles are squares.
pred_mode_base += tiles_per_row;
}
}
}
}
// Add Green to Blue and Red channels (i.e. perform the inverse transform of
// 'Subtract Green').
static void AddGreenToBlueAndRed(const VP8LTransform* const transform,
int y_start, int y_end, uint32_t* data) {
const int width = transform->xsize_;
const uint32_t* const data_end = data + (y_end - y_start) * width;
while (data < data_end) {
const uint32_t argb = *data;
// "* 0001001u" is equivalent to "(green << 16) + green)"
const uint32_t green = ((argb >> 8) & 0xff);
uint32_t red_blue = (argb & 0x00ff00ffu);
red_blue += (green << 16) | green;
red_blue &= 0x00ff00ffu;
*data++ = (argb & 0xff00ff00u) | red_blue;
}
}
typedef struct {
int green_to_red_;
int green_to_blue_;
int red_to_blue_;
} Multipliers;
static WEBP_INLINE uint32_t ColorTransformDelta(int8_t color_pred,
int8_t color) {
return (uint32_t)((int)(color_pred) * color) >> 5;
}
static WEBP_INLINE void ColorCodeToMultipliers(uint32_t color_code,
Multipliers* const m) {
m->green_to_red_ = (color_code >> 0) & 0xff;
m->green_to_blue_ = (color_code >> 8) & 0xff;
m->red_to_blue_ = (color_code >> 16) & 0xff;
}
static WEBP_INLINE void TransformColor(const Multipliers* const m,
uint32_t* const argb) {
const uint32_t green = *argb >> 8;
const uint32_t red = *argb >> 16;
uint32_t new_red = red;
uint32_t new_blue = *argb;
new_red += ColorTransformDelta(m->green_to_red_, green);
new_red &= 0xff;
new_blue += ColorTransformDelta(m->green_to_blue_, green);
new_blue += ColorTransformDelta(m->red_to_blue_, new_red);
new_blue &= 0xff;
*argb = (*argb & 0xff00ff00u) | (new_red << 16) | (new_blue);
}
// Color space inverse transform.
static void ColorSpaceInverseTransform(const VP8LTransform* const transform,
int y_start, int y_end, uint32_t* data) {
const int width = transform->xsize_;
const int mask = (1 << transform->bits_) - 1;
const int tiles_per_row = VP8LSubSampleSize(width, transform->bits_);
int y = y_start;
const uint32_t* pred_row =
transform->data_ + (y >> transform->bits_) * tiles_per_row;
while (y < y_end) {
const uint32_t* pred = pred_row;
Multipliers m = { 0, 0, 0 };
int x;
for (x = 0; x < width; ++x) {
if ((x & mask) == 0) ColorCodeToMultipliers(*pred++, &m);
TransformColor(&m, data + x);
}
data += width;
++y;
if ((y & mask) == 0) pred_row += tiles_per_row;;
}
}
// Separate out pixels packed together using pixel-bundling.
static void ColorIndexInverseTransform(
const VP8LTransform* const transform,
int y_start, int y_end,
uint32_t* const data_in, uint32_t* const data_out) {
int y;
const int bits_per_pixel = 8 >> transform->bits_;
const int width = transform->xsize_;
const uint32_t* const color_map = transform->data_;
uint32_t* dst = data_out;
const uint32_t* src = data_in;
if (bits_per_pixel < 8) {
const int pixels_per_byte = 1 << transform->bits_;
const int count_mask = pixels_per_byte - 1;
const uint32_t bit_mask = (1 << bits_per_pixel) - 1;
for (y = y_start; y < y_end; ++y) {
uint32_t packed_pixels = 0;
int x;
for (x = 0; x < width; ++x) {
// We need to load fresh 'packed_pixels' once every 'bytes_per_pixels'
// increments of x. Fortunately, pixels_per_byte is a power of 2, so
// can just use a mask for that, instead of decrementing a counter.
if ((x & count_mask) == 0) packed_pixels = ((*src++) >> 8) & 0xff;
*dst++ = color_map[packed_pixels & bit_mask];
packed_pixels >>= bits_per_pixel;
}
}
} else {
for (y = y_start; y < y_end; ++y) {
int x;
for (x = 0; x < width; ++x) {
*dst++ = color_map[((*src++) >> 8) & 0xff];
}
}
}
}
void VP8LInverseTransform(const VP8LTransform* const transform,
size_t row_start, size_t row_end,
uint32_t* const data_in, uint32_t* const data_out) {
assert(row_start < row_end);
assert(row_end <= transform->ysize_);
switch (transform->type_) {
case SUBTRACT_GREEN:
AddGreenToBlueAndRed(transform, row_start, row_end, data_out);
break;
case PREDICTOR_TRANSFORM:
PredictorInverseTransform(transform, row_start, row_end, data_out);
if (row_end != transform->ysize_) {
// The last predicted row in this iteration will be the top-pred row
// for the first row in next iteration.
const int width = transform->xsize_;
memcpy(data_out - width, data_out + (row_end - row_start - 1) * width,
width * sizeof(*data_out));
}
break;
case CROSS_COLOR_TRANSFORM:
ColorSpaceInverseTransform(transform, row_start, row_end, data_out);
break;
case COLOR_INDEXING_TRANSFORM:
ColorIndexInverseTransform(transform, row_start, row_end,
data_in, data_out);
break;
}
}
//------------------------------------------------------------------------------
// Color space conversion.
static int is_big_endian(void) {
static const union {
uint16_t w;
uint8_t b[2];
} tmp = { 1 };
return (tmp.b[0] != 1);
}
static void ConvertBGRAToRGB(const uint32_t* src,
int num_pixels, uint8_t* dst) {
const uint32_t* src_end = src + num_pixels;
while (src < src_end) {
const uint32_t argb = *src++;
*dst++ = (argb >> 16) & 0xff;
*dst++ = (argb >> 8) & 0xff;
*dst++ = (argb >> 0) & 0xff;
}
}
static void ConvertBGRAToRGBA(const uint32_t* src,
int num_pixels, uint8_t* dst) {
const uint32_t* src_end = src + num_pixels;
while (src < src_end) {
const uint32_t argb = *src++;
*dst++ = (argb >> 16) & 0xff;
*dst++ = (argb >> 8) & 0xff;
*dst++ = (argb >> 0) & 0xff;
*dst++ = (argb >> 24) & 0xff;
}
}
static void ConvertBGRAToBGR(const uint32_t* src,
int num_pixels, uint8_t* dst) {
const uint32_t* src_end = src + num_pixels;
while (src < src_end) {
const uint32_t argb = *src++;
*dst++ = (argb >> 0) & 0xff;
*dst++ = (argb >> 8) & 0xff;
*dst++ = (argb >> 16) & 0xff;
}
}
static void CopyOrSwap(const uint32_t* src, int num_pixels, uint8_t* dst,
int swap_on_big_endian) {
if (is_big_endian() == swap_on_big_endian) {
const uint32_t* src_end = src + num_pixels;
while (src < src_end) {
uint32_t argb = *src++;
#if !defined(__BIG_ENDIAN__) && (defined(__i386__) || defined(__x86_64__))
__asm__ volatile("bswap %0" : "=r"(argb) : "0"(argb));
*(uint32_t*)dst = argb;
dst += sizeof(argb);
#elif !defined(__BIG_ENDIAN__) && defined(_MSC_VER)
argb = _byteswap_ulong(argb);
*(uint32_t*)dst = argb;
dst += sizeof(argb);
#else
*dst++ = (argb >> 24) & 0xff;
*dst++ = (argb >> 16) & 0xff;
*dst++ = (argb >> 8) & 0xff;
*dst++ = (argb >> 0) & 0xff;
#endif
}
} else {
memcpy(dst, src, num_pixels * sizeof(*src));
}
}
void VP8LConvertFromBGRA(const uint32_t* const in_data, int num_pixels,
WEBP_CSP_MODE out_colorspace,
uint8_t* const rgba) {
switch (out_colorspace) {
case MODE_RGB:
ConvertBGRAToRGB(in_data, num_pixels, rgba);
break;
case MODE_RGBA:
ConvertBGRAToRGBA(in_data, num_pixels, rgba);
break;
case MODE_BGR:
ConvertBGRAToBGR(in_data, num_pixels, rgba);
break;
case MODE_BGRA:
CopyOrSwap(in_data, num_pixels, rgba, 1);
break;
case MODE_ARGB:
CopyOrSwap(in_data, num_pixels, rgba, 0);
break;
default:
assert(0); // Code flow should not reach here.
}
}
//------------------------------------------------------------------------------
#if defined(__cplusplus) || defined(c_plusplus)
} // extern "C"
#endif