#include "app_config.h" #include "fifo.h" #include "keyboard.h" #include "reg.h" #include #define LIST_SIZE 10 // size of the list keeping track of all the pressed keys enum mod { MOD_NONE = 0, MOD_SYM, MOD_ALT, MOD_SHL, MOD_SHR, MOD_LAST, }; struct entry { char chr; char symb; enum mod mod; }; struct list_item { const struct entry *p_entry; uint32_t hold_start_time; enum key_state state; bool mods[MOD_LAST]; }; static const uint8_t row_pins[NUM_OF_ROWS] = { PINS_ROWS }; static const uint8_t col_pins[NUM_OF_COLS] = { PINS_COLS }; #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wmissing-field-initializers" static const struct entry kbd_entries[][NUM_OF_COLS] = { { { KEY_JOY_CENTER }, { 'W', '1' }, { 'G', '/' }, { 'S', '4' }, { 'L', '"' }, { 'H' , ':' } }, { { }, { 'Q', '#' }, { 'R', '3' }, { 'E', '2' }, { 'O', '+' }, { 'U', '_' } }, { { KEY_BTN_LEFT1 }, { '~', '0' }, { 'F', '6' }, { .mod = MOD_SHL }, { 'K', '\'' }, { 'J', ';' } }, { { }, { ' ', '\t' }, { 'C', '9' }, { 'Z', '7' }, { 'M', '.' }, { 'N', ',' } }, { { KEY_BTN_LEFT2 }, { .mod = MOD_SYM }, { 'T', '(' }, { 'D', '5' }, { 'I', '-' }, { 'Y', ')' } }, { { KEY_BTN_RIGHT1 }, { .mod = MOD_ALT }, { 'V', '?' }, { 'X', '8' }, { '$', '`' }, { 'B', '!' } }, { { }, { 'A', '*' }, { .mod = MOD_SHR }, { 'P', '@' }, { '\b' }, { '\n', '|' } }, }; #if NUM_OF_BTNS > 0 static const struct entry btn_entries[NUM_OF_BTNS] = { BTN_KEYS }; static const uint8_t btn_pins[NUM_OF_BTNS] = { PINS_BTNS }; #endif #pragma GCC diagnostic pop static struct { struct key_lock_callback *lock_callbacks; struct key_callback *key_callbacks; struct list_item list[LIST_SIZE]; uint32_t last_process_time; bool mods[MOD_LAST]; bool capslock_changed; bool capslock; bool numlock_changed; bool numlock; } self; static void transition_to(struct list_item * const p_item, const enum key_state next_state) { const struct entry * const p_entry = p_item->p_entry; p_item->state = next_state; if (!self.key_callbacks || !p_entry) return; char chr = p_entry->chr; switch (p_entry->mod) { case MOD_ALT: if (reg_is_bit_set(REG_ID_CFG, CFG_REPORT_MODS)) chr = KEY_MOD_ALT; break; case MOD_SHL: if (reg_is_bit_set(REG_ID_CFG, CFG_REPORT_MODS)) chr = KEY_MOD_SHL; break; case MOD_SHR: if (reg_is_bit_set(REG_ID_CFG, CFG_REPORT_MODS)) chr = KEY_MOD_SHR; break; case MOD_SYM: if (reg_is_bit_set(REG_ID_CFG, CFG_REPORT_MODS)) chr = KEY_MOD_SYM; break; default: { if (reg_is_bit_set(REG_ID_CFG, CFG_USE_MODS)) { const bool shift = (self.mods[MOD_SHL] || self.mods[MOD_SHR]) | self.capslock; const bool alt = self.mods[MOD_ALT] | self.numlock; if (alt) { chr = p_entry->symb; } else if (!shift && (chr >= 'A' && chr <= 'Z')) { chr = (chr + ' '); } } break; } } if (chr != 0) { const struct fifo_item item = { chr, next_state }; if (!fifo_enqueue(item)) { if (reg_is_bit_set(REG_ID_CFG, CFG_OVERFLOW_INT)) { reg_set_bit(REG_ID_INT, INT_OVERFLOW); } if (reg_is_bit_set(REG_ID_CFG, CFG_OVERFLOW_ON)) fifo_enqueue_force(item); } struct key_callback *cb = self.key_callbacks; while (cb) { cb->func(chr, next_state); cb = cb->next; } } } static void next_item_state(struct list_item * const p_item, const bool pressed) { switch (p_item->state) { case KEY_STATE_IDLE: if (pressed) { if (p_item->p_entry->mod != MOD_NONE) self.mods[p_item->p_entry->mod] = true; if (!self.capslock_changed && self.mods[MOD_SHR] && self.mods[MOD_ALT]) { self.capslock = true; self.capslock_changed = true; } if (!self.numlock_changed && self.mods[MOD_SHL] && self.mods[MOD_ALT]) { self.numlock = true; self.numlock_changed = true; } if (!self.capslock_changed && (self.mods[MOD_SHL] || self.mods[MOD_SHR])) { self.capslock = false; self.capslock_changed = true; } if (!self.numlock_changed && (self.mods[MOD_SHL] || self.mods[MOD_SHR])) { self.numlock = false; self.numlock_changed = true; } if (!self.mods[MOD_ALT]) { self.capslock_changed = false; self.numlock_changed = false; } if (self.lock_callbacks && (self.capslock_changed || self.numlock_changed)) { struct key_lock_callback *cb = self.lock_callbacks; while (cb) { cb->func(self.capslock_changed, self.numlock_changed); cb = cb->next; } } transition_to(p_item, KEY_STATE_PRESSED); p_item->hold_start_time = to_ms_since_boot(get_absolute_time()); } break; case KEY_STATE_PRESSED: if ((to_ms_since_boot(get_absolute_time()) - p_item->hold_start_time) > (reg_get_value(REG_ID_HLD) * 10)) { transition_to(p_item, KEY_STATE_HOLD); } else if(!pressed) { transition_to(p_item, KEY_STATE_RELEASED); } break; case KEY_STATE_HOLD: if (!pressed) transition_to(p_item, KEY_STATE_RELEASED); break; case KEY_STATE_RELEASED: { if (p_item->p_entry->mod != MOD_NONE) self.mods[p_item->p_entry->mod] = false; p_item->p_entry = NULL; transition_to(p_item, KEY_STATE_IDLE); break; } } } void keyboard_task(void) { if ((to_ms_since_boot(get_absolute_time()) - self.last_process_time) <= reg_get_value(REG_ID_FRQ)) return; for (uint32_t c = 0; c < NUM_OF_COLS; ++c) { gpio_pull_up(col_pins[c]); gpio_put(col_pins[c], 0); gpio_set_dir(col_pins[c], GPIO_OUT); for (uint32_t r = 0; r < NUM_OF_ROWS; ++r) { const bool pressed = (gpio_get(row_pins[r]) == 0); const int32_t key_idx = (int32_t)((r * NUM_OF_COLS) + c); int32_t list_idx = -1; for (int32_t i = 0; i < LIST_SIZE; ++i) { if (self.list[i].p_entry != &((const struct entry*)kbd_entries)[key_idx]) continue; list_idx = i; break; } if (list_idx > -1) { next_item_state(&self.list[list_idx], pressed); continue; } if (!pressed) continue; for (uint32_t i = 0 ; i < LIST_SIZE; ++i) { if (self.list[i].p_entry != NULL) continue; self.list[i].p_entry = &((const struct entry*)kbd_entries)[key_idx]; self.list[i].state = KEY_STATE_IDLE; next_item_state(&self.list[i], pressed); break; } } gpio_put(col_pins[c], 1); gpio_disable_pulls(col_pins[c]); gpio_set_dir(col_pins[c], GPIO_IN); } #if NUM_OF_BTNS > 0 for (uint32_t b = 0; b < NUM_OF_BTNS; ++b) { const bool pressed = (gpio_get(btn_pins[b]) == 0); int32_t list_idx = -1; for (int32_t i = 0; i < LIST_SIZE; ++i) { if (self.list[i].p_entry != &((const struct entry*)btn_entries)[b]) continue; list_idx = i; break; } if (list_idx > -1) { next_item_state(&self.list[list_idx], pressed); continue; } if (!pressed) continue; for (uint32_t i = 0 ; i < LIST_SIZE; ++i) { if (self.list[i].p_entry != NULL) continue; self.list[i].p_entry = &((const struct entry*)btn_entries)[b]; self.list[i].state = KEY_STATE_IDLE; next_item_state(&self.list[i], pressed); break; } } #endif self.last_process_time = to_ms_since_boot(get_absolute_time()); } void keyboard_add_key_callback(struct key_callback *callback) { // first callback if (!self.key_callbacks) { self.key_callbacks = callback; return; } // find last and insert after struct key_callback *cb = self.key_callbacks; while (cb->next) cb = cb->next; cb->next = callback; } void keyboard_add_lock_callback(struct key_lock_callback *callback) { // first callback if (!self.lock_callbacks) { self.lock_callbacks = callback; return; } // find last and insert after struct key_lock_callback *cb = self.lock_callbacks; while (cb->next) cb = cb->next; cb->next = callback; } bool keyboard_get_capslock(void) { return self.capslock; } bool keyboard_get_numlock(void) { return self.numlock; } void keyboard_init(void) { for (int i = 0; i < MOD_LAST; ++i) self.mods[i] = false; // Rows for (uint32_t i = 0; i < NUM_OF_ROWS; ++i) { gpio_init(row_pins[i]); gpio_pull_up(row_pins[i]); gpio_set_dir(row_pins[i], GPIO_IN); } // Cols for(uint32_t i = 0; i < NUM_OF_COLS; ++i) { gpio_init(col_pins[i]); gpio_set_dir(col_pins[i], GPIO_IN); } // Btns #if NUM_OF_BTNS > 0 for(uint32_t i = 0; i < NUM_OF_BTNS; ++i) { gpio_init(btn_pins[i]); gpio_set_dir(btn_pins[i], GPIO_IN); gpio_pull_up(btn_pins[i]); } #endif }