mirror of
https://github.com/antos-rde/antosdk-apps.git
synced 2025-01-16 01:38:24 +01:00
83 lines
2.3 KiB
Lua
83 lines
2.3 KiB
Lua
local args = ...
|
|
|
|
local ret = {
|
|
error = false,
|
|
result = nil
|
|
}
|
|
local __dir__ = debug.getinfo(1).source:match("@?(.*/)")
|
|
LOG_DEBUG("CURRENT PATH:%s", __dir__)
|
|
local cluster = loadfile(__dir__.."/cluster.lua")()
|
|
local dbpath = require("vfs").ospath(args.dbpath)
|
|
LOG_DEBUG("DB PATH:%s", dbpath)
|
|
|
|
local gettext = {}
|
|
gettext.get = function(file)
|
|
local db = DBModel:new{db=file}
|
|
db:open()
|
|
if not db then return nil end
|
|
local data, sort = db:find("blogs", {
|
|
where = { publish = 1 },
|
|
fields = {"id", "content"}
|
|
})
|
|
db:close()
|
|
if not data or #data == 0 then return nil end
|
|
return data
|
|
end
|
|
|
|
gettext.stopwords = function(ospath)
|
|
local words = {}
|
|
for line in io.lines(ospath) do
|
|
words[line] = true
|
|
end
|
|
return words
|
|
end
|
|
|
|
local data = gettext.get(dbpath)
|
|
local documents = {}
|
|
if data then
|
|
local sw = gettext.stopwords(__dir__.."/stopwords.txt")
|
|
for k, v in pairs(data) do
|
|
local bag = cluster.bow(data[k].content, sw)
|
|
documents[data[k].id] = bag
|
|
end
|
|
|
|
cluster.tfidf(documents)
|
|
-- indexing all terms to cache file
|
|
local cache_file = dbpath..".index.json"
|
|
local f = io.open(cache_file, "w")
|
|
if f then
|
|
local indexes = {}
|
|
for id, doc in pairs(documents) do
|
|
for term,v in pairs(doc) do
|
|
if not indexes[term] then
|
|
indexes[term] = {}
|
|
end
|
|
indexes[term][tostring(id)] = doc[term].tfidf
|
|
end
|
|
end
|
|
f:write(JSON.encode(indexes))
|
|
f:close()
|
|
end
|
|
--
|
|
--local v = cluster.search("arm", documents)
|
|
--echo(JSON.encode(v))
|
|
local vectors, maxv, size = cluster.get_vectors(documents)
|
|
local analytical = DBModel:new{db=dbpath}
|
|
analytical:open()
|
|
-- purge the table
|
|
analytical:delete("st_similarity", nil)
|
|
-- get similarity and put to the table
|
|
for id, v in pairs(vectors) do
|
|
local top = cluster.top_similarity(id, vectors, args.top, 0.1)
|
|
for a, b in pairs(top) do
|
|
local record = {pid = id, sid = a, score = b}
|
|
analytical:insert("st_similarity", record)
|
|
end
|
|
end
|
|
analytical:close()
|
|
ret.result = "Analyse complete"
|
|
else
|
|
ret.error = "Unable to query database for post"
|
|
end
|
|
|
|
return ret |