1
0
mirror of https://github.com/lxsang/antd-lua-plugin synced 2025-01-16 01:38:26 +01:00
antd-lua-plugin/lib/ann/fann/examples/robot.c
2018-09-19 15:08:49 +02:00

70 lines
2.0 KiB
C

/*
Fast Artificial Neural Network Library (fann)
Copyright (C) 2003-2016 Steffen Nissen (steffen.fann@gmail.com)
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <stdio.h>
#include "fann.h"
int main()
{
const unsigned int num_layers = 3;
const unsigned int num_neurons_hidden = 96;
const float desired_error = (const float) 0.001;
struct fann *ann;
struct fann_train_data *train_data, *test_data;
unsigned int i = 0;
printf("Creating network.\n");
train_data = fann_read_train_from_file("../../datasets/robot.train");
ann = fann_create_standard(num_layers,
train_data->num_input, num_neurons_hidden, train_data->num_output);
printf("Training network.\n");
fann_set_training_algorithm(ann, FANN_TRAIN_INCREMENTAL);
fann_set_learning_momentum(ann, 0.4f);
fann_train_on_data(ann, train_data, 3000, 10, desired_error);
printf("Testing network.\n");
test_data = fann_read_train_from_file("../../datasets/robot.test");
fann_reset_MSE(ann);
for(i = 0; i < fann_length_train_data(test_data); i++)
{
fann_test(ann, test_data->input[i], test_data->output[i]);
}
printf("MSE error on test data: %f\n", fann_get_MSE(ann));
printf("Saving network.\n");
fann_save(ann, "robot_float.net");
printf("Cleaning up.\n");
fann_destroy_train(train_data);
fann_destroy_train(test_data);
fann_destroy(ann);
return 0;
}