1
0
mirror of https://github.com/lxsang/antd-lua-plugin synced 2025-09-30 22:11:08 +02:00
Files
antd-lua-plugin/lib/ann/fann/src/fann_cascade.c
2018-09-19 15:08:49 +02:00

1048 lines
33 KiB
C

/*
Fast Artificial Neural Network Library (fann)
Copyright (C) 2003-2016 Steffen Nissen (steffen.fann@gmail.com)
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "config.h"
#include "fann.h"
#include "string.h"
#ifndef FIXEDFANN
/* #define CASCADE_DEBUG */
/* #define CASCADE_DEBUG_FULL */
void fann_print_connections_raw(struct fann *ann)
{
unsigned int i;
for(i = 0; i < ann->total_connections_allocated; i++)
{
if(i == ann->total_connections)
{
printf("* ");
}
printf("%f ", ann->weights[i]);
}
printf("\n\n");
}
/* Cascade training directly on the training data.
The connected_neurons pointers are not valid during training,
but they will be again after training.
*/
FANN_EXTERNAL void FANN_API fann_cascadetrain_on_data(struct fann *ann, struct fann_train_data *data,
unsigned int max_neurons,
unsigned int neurons_between_reports,
float desired_error)
{
float error;
unsigned int i;
unsigned int total_epochs = 0;
int desired_error_reached;
if(neurons_between_reports && ann->callback == NULL)
{
printf("Max neurons %3d. Desired error: %.6f\n", max_neurons, desired_error);
}
for(i = 1; i <= max_neurons; i++)
{
/* train output neurons */
total_epochs += fann_train_outputs(ann, data, desired_error);
error = fann_get_MSE(ann);
desired_error_reached = fann_desired_error_reached(ann, desired_error);
/* print current error */
if(neurons_between_reports &&
(i % neurons_between_reports == 0
|| i == max_neurons || i == 1 || desired_error_reached == 0))
{
if(ann->callback == NULL)
{
printf
("Neurons %3d. Current error: %.6f. Total error:%8.4f. Epochs %5d. Bit fail %3d",
i-1, error, ann->MSE_value, total_epochs, ann->num_bit_fail);
if((ann->last_layer-2) != ann->first_layer)
{
printf(". candidate steepness %.2f. function %s",
(ann->last_layer-2)->first_neuron->activation_steepness,
FANN_ACTIVATIONFUNC_NAMES[(ann->last_layer-2)->first_neuron->activation_function]);
}
printf("\n");
}
else if((*ann->callback) (ann, data, max_neurons,
neurons_between_reports, desired_error, total_epochs) == -1)
{
/* you can break the training by returning -1 */
break;
}
}
if(desired_error_reached == 0)
break;
if(fann_initialize_candidates(ann) == -1)
{
/* Unable to initialize room for candidates */
break;
}
/* train new candidates */
total_epochs += fann_train_candidates(ann, data);
/* this installs the best candidate */
fann_install_candidate(ann);
}
/* Train outputs one last time but without any desired error */
total_epochs += fann_train_outputs(ann, data, 0.0);
if(neurons_between_reports && ann->callback == NULL)
{
printf("Train outputs Current error: %.6f. Epochs %6d\n", fann_get_MSE(ann),
total_epochs);
}
/* Set pointers in connected_neurons
* This is ONLY done in the end of cascade training,
* since there is no need for them during training.
*/
fann_set_shortcut_connections(ann);
}
FANN_EXTERNAL void FANN_API fann_cascadetrain_on_file(struct fann *ann, const char *filename,
unsigned int max_neurons,
unsigned int neurons_between_reports,
float desired_error)
{
struct fann_train_data *data = fann_read_train_from_file(filename);
if(data == NULL)
{
return;
}
fann_cascadetrain_on_data(ann, data, max_neurons, neurons_between_reports, desired_error);
fann_destroy_train(data);
}
int fann_train_outputs(struct fann *ann, struct fann_train_data *data, float desired_error)
{
float error, initial_error, error_improvement;
float target_improvement = 0.0;
float backslide_improvement = -1.0e20f;
unsigned int i;
unsigned int max_epochs = ann->cascade_max_out_epochs;
unsigned int min_epochs = ann->cascade_min_out_epochs;
unsigned int stagnation = max_epochs;
/* TODO should perhaps not clear all arrays */
fann_clear_train_arrays(ann);
/* run an initial epoch to set the initital error */
initial_error = fann_train_outputs_epoch(ann, data);
if(fann_desired_error_reached(ann, desired_error) == 0)
return 1;
for(i = 1; i < max_epochs; i++)
{
error = fann_train_outputs_epoch(ann, data);
/*printf("Epoch %6d. Current error: %.6f. Bit fail %d.\n", i, error, ann->num_bit_fail); */
if(fann_desired_error_reached(ann, desired_error) == 0)
{
#ifdef CASCADE_DEBUG
printf("Error %f < %f\n", error, desired_error);
#endif
return i + 1;
}
/* Improvement since start of train */
error_improvement = initial_error - error;
/* After any significant change, set a new goal and
* allow a new quota of epochs to reach it */
if((target_improvement >= 0 &&
(error_improvement > target_improvement || error_improvement < backslide_improvement)) ||
(target_improvement < 0 &&
(error_improvement < target_improvement || error_improvement > backslide_improvement)))
{
/*printf("error_improvement=%f, target_improvement=%f, backslide_improvement=%f, stagnation=%d\n", error_improvement, target_improvement, backslide_improvement, stagnation); */
target_improvement = error_improvement * (1.0f + ann->cascade_output_change_fraction);
backslide_improvement = error_improvement * (1.0f - ann->cascade_output_change_fraction);
stagnation = i + ann->cascade_output_stagnation_epochs;
}
/* No improvement in allotted period, so quit */
if(i >= stagnation && i >= min_epochs)
{
return i + 1;
}
}
return max_epochs;
}
float fann_train_outputs_epoch(struct fann *ann, struct fann_train_data *data)
{
unsigned int i;
fann_reset_MSE(ann);
for(i = 0; i < data->num_data; i++)
{
fann_run(ann, data->input[i]);
fann_compute_MSE(ann, data->output[i]);
fann_update_slopes_batch(ann, ann->last_layer - 1, ann->last_layer - 1);
}
switch (ann->training_algorithm)
{
case FANN_TRAIN_RPROP:
fann_update_weights_irpropm(ann, (ann->last_layer - 1)->first_neuron->first_con,
ann->total_connections);
break;
case FANN_TRAIN_SARPROP:
fann_update_weights_sarprop(ann, ann->sarprop_epoch, (ann->last_layer - 1)->first_neuron->first_con,
ann->total_connections);
++(ann->sarprop_epoch);
break;
case FANN_TRAIN_QUICKPROP:
fann_update_weights_quickprop(ann, data->num_data,
(ann->last_layer - 1)->first_neuron->first_con,
ann->total_connections);
break;
case FANN_TRAIN_BATCH:
case FANN_TRAIN_INCREMENTAL:
fann_error((struct fann_error *) ann, FANN_E_CANT_USE_TRAIN_ALG);
}
return fann_get_MSE(ann);
}
int fann_reallocate_connections(struct fann *ann, unsigned int total_connections)
{
/* The connections are allocated, but the pointers inside are
* first moved in the end of the cascade training session.
*/
#ifdef CASCADE_DEBUG
printf("realloc from %d to %d\n", ann->total_connections_allocated, total_connections);
#endif
ann->connections =
(struct fann_neuron **) realloc(ann->connections,
total_connections * sizeof(struct fann_neuron *));
if(ann->connections == NULL)
{
fann_error((struct fann_error *) ann, FANN_E_CANT_ALLOCATE_MEM);
return -1;
}
ann->weights = (fann_type *) realloc(ann->weights, total_connections * sizeof(fann_type));
if(ann->weights == NULL)
{
fann_error((struct fann_error *) ann, FANN_E_CANT_ALLOCATE_MEM);
return -1;
}
ann->train_slopes =
(fann_type *) realloc(ann->train_slopes, total_connections * sizeof(fann_type));
if(ann->train_slopes == NULL)
{
fann_error((struct fann_error *) ann, FANN_E_CANT_ALLOCATE_MEM);
return -1;
}
ann->prev_steps = (fann_type *) realloc(ann->prev_steps, total_connections * sizeof(fann_type));
if(ann->prev_steps == NULL)
{
fann_error((struct fann_error *) ann, FANN_E_CANT_ALLOCATE_MEM);
return -1;
}
ann->prev_train_slopes =
(fann_type *) realloc(ann->prev_train_slopes, total_connections * sizeof(fann_type));
if(ann->prev_train_slopes == NULL)
{
fann_error((struct fann_error *) ann, FANN_E_CANT_ALLOCATE_MEM);
return -1;
}
ann->total_connections_allocated = total_connections;
return 0;
}
int fann_reallocate_neurons(struct fann *ann, unsigned int total_neurons)
{
struct fann_layer *layer_it;
struct fann_neuron *neurons;
unsigned int num_neurons = 0;
unsigned int num_neurons_so_far = 0;
neurons =
(struct fann_neuron *) realloc(ann->first_layer->first_neuron,
total_neurons * sizeof(struct fann_neuron));
ann->total_neurons_allocated = total_neurons;
if(neurons == NULL)
{
fann_error((struct fann_error *) ann, FANN_E_CANT_ALLOCATE_MEM);
return -1;
}
/* Also allocate room for more train_errors */
ann->train_errors = (fann_type *) realloc(ann->train_errors, total_neurons * sizeof(fann_type));
if(ann->train_errors == NULL)
{
fann_error((struct fann_error *) ann, FANN_E_CANT_ALLOCATE_MEM);
return -1;
}
if(neurons != ann->first_layer->first_neuron)
{
/* Then the memory has moved, also move the pointers */
#ifdef CASCADE_DEBUG_FULL
printf("Moving neuron pointers\n");
#endif
/* Move pointers from layers to neurons */
for(layer_it = ann->first_layer; layer_it != ann->last_layer; layer_it++)
{
num_neurons = (unsigned int)(layer_it->last_neuron - layer_it->first_neuron);
layer_it->first_neuron = neurons + num_neurons_so_far;
layer_it->last_neuron = layer_it->first_neuron + num_neurons;
num_neurons_so_far += num_neurons;
}
}
return 0;
}
void initialize_candidate_weights(struct fann *ann, unsigned int first_con, unsigned int last_con, float scale_factor)
{
fann_type prev_step;
unsigned int i = 0;
unsigned int bias_weight = (unsigned int)(first_con + (ann->first_layer->last_neuron - ann->first_layer->first_neuron) - 1);
if(ann->training_algorithm == FANN_TRAIN_RPROP)
prev_step = ann->rprop_delta_zero;
else
prev_step = 0;
for(i = first_con; i < last_con; i++)
{
if(i == bias_weight)
ann->weights[i] = fann_rand(-scale_factor, scale_factor);
else
ann->weights[i] = fann_rand(0,scale_factor);
ann->train_slopes[i] = 0;
ann->prev_steps[i] = prev_step;
ann->prev_train_slopes[i] = 0;
}
}
int fann_initialize_candidates(struct fann *ann)
{
/* The candidates are allocated after the normal neurons and connections,
* but there is an empty place between the real neurons and the candidate neurons,
* so that it will be possible to make room when the chosen candidate are copied in
* on the desired place.
*/
unsigned int neurons_to_allocate, connections_to_allocate;
unsigned int num_candidates = fann_get_cascade_num_candidates(ann);
unsigned int num_neurons = ann->total_neurons + num_candidates + 1;
unsigned int num_hidden_neurons = ann->total_neurons - ann->num_input - ann->num_output;
unsigned int candidate_connections_in = ann->total_neurons - ann->num_output;
unsigned int candidate_connections_out = ann->num_output;
/* the number of connections going into a and out of a candidate is
* ann->total_neurons */
unsigned int num_connections =
ann->total_connections + (ann->total_neurons * (num_candidates + 1));
unsigned int first_candidate_connection = ann->total_connections + ann->total_neurons;
unsigned int first_candidate_neuron = ann->total_neurons + 1;
unsigned int connection_it, i, j, k, candidate_index;
struct fann_neuron *neurons;
float scale_factor;
/* First make sure that there is enough room, and if not then allocate a
* bit more so that we do not need to allocate more room each time.
*/
if(num_neurons > ann->total_neurons_allocated)
{
/* Then we need to allocate more neurons
* Allocate half as many neurons as already exist (at least ten)
*/
neurons_to_allocate = num_neurons + num_neurons / 2;
if(neurons_to_allocate < num_neurons + 10)
{
neurons_to_allocate = num_neurons + 10;
}
if(fann_reallocate_neurons(ann, neurons_to_allocate) == -1)
{
return -1;
}
}
if(num_connections > ann->total_connections_allocated)
{
/* Then we need to allocate more connections
* Allocate half as many connections as already exist
* (at least enough for ten neurons)
*/
connections_to_allocate = num_connections + num_connections / 2;
if(connections_to_allocate < num_connections + ann->total_neurons * 10)
{
connections_to_allocate = num_connections + ann->total_neurons * 10;
}
if(fann_reallocate_connections(ann, connections_to_allocate) == -1)
{
return -1;
}
}
/* Some code to do semi Widrow + Nguyen initialization */
scale_factor = (float) (2.0 * pow(0.7f * (float)num_hidden_neurons, 1.0f / (float) ann->num_input));
if(scale_factor > 8)
scale_factor = 8;
else if(scale_factor < 0.5)
scale_factor = 0.5;
/* Set the neurons.
*/
connection_it = first_candidate_connection;
neurons = ann->first_layer->first_neuron;
candidate_index = first_candidate_neuron;
for(i = 0; i < ann->cascade_activation_functions_count; i++)
{
for(j = 0; j < ann->cascade_activation_steepnesses_count; j++)
{
for(k = 0; k < ann->cascade_num_candidate_groups; k++)
{
/* TODO candidates should actually be created both in
* the last layer before the output layer, and in a new layer.
*/
neurons[candidate_index].value = 0;
neurons[candidate_index].sum = 0;
neurons[candidate_index].activation_function =
ann->cascade_activation_functions[i];
neurons[candidate_index].activation_steepness =
ann->cascade_activation_steepnesses[j];
neurons[candidate_index].first_con = connection_it;
connection_it += candidate_connections_in;
neurons[candidate_index].last_con = connection_it;
/* We have no specific pointers to the output weights, but they are
* available after last_con */
connection_it += candidate_connections_out;
ann->train_errors[candidate_index] = 0;
initialize_candidate_weights(ann, neurons[candidate_index].first_con, neurons[candidate_index].last_con+candidate_connections_out, scale_factor);
candidate_index++;
}
}
}
/* Now randomize the weights and zero out the arrays that needs zeroing out.
*/
/*
#ifdef CASCADE_DEBUG_FULL
printf("random cand weight [%d ... %d]\n", first_candidate_connection, num_connections - 1);
#endif
for(i = first_candidate_connection; i < num_connections; i++)
{
//ann->weights[i] = fann_random_weight();
ann->weights[i] = fann_rand(-2.0,2.0);
ann->train_slopes[i] = 0;
ann->prev_steps[i] = 0;
ann->prev_train_slopes[i] = initial_slope;
}
*/
return 0;
}
int fann_train_candidates(struct fann *ann, struct fann_train_data *data)
{
fann_type best_cand_score = 0.0;
fann_type target_cand_score = 0.0;
fann_type backslide_cand_score = -1.0e20f;
unsigned int i;
unsigned int max_epochs = ann->cascade_max_cand_epochs;
unsigned int min_epochs = ann->cascade_min_cand_epochs;
unsigned int stagnation = max_epochs;
if(ann->cascade_candidate_scores == NULL)
{
ann->cascade_candidate_scores =
(fann_type *) malloc(fann_get_cascade_num_candidates(ann) * sizeof(fann_type));
if(ann->cascade_candidate_scores == NULL)
{
fann_error((struct fann_error *) ann, FANN_E_CANT_ALLOCATE_MEM);
return 0;
}
}
for(i = 0; i < max_epochs; i++)
{
best_cand_score = fann_train_candidates_epoch(ann, data);
if(best_cand_score / ann->MSE_value > ann->cascade_candidate_limit)
{
#ifdef CASCADE_DEBUG
printf("above candidate limit %f/%f > %f", best_cand_score, ann->MSE_value,
ann->cascade_candidate_limit);
#endif
return i + 1;
}
if((best_cand_score > target_cand_score) || (best_cand_score < backslide_cand_score))
{
#ifdef CASCADE_DEBUG_FULL
printf("Best candidate score %f, real score: %f\n", ann->MSE_value - best_cand_score,
best_cand_score);
/* printf("best_cand_score=%f, target_cand_score=%f, backslide_cand_score=%f, stagnation=%d\n", best_cand_score, target_cand_score, backslide_cand_score, stagnation); */
#endif
target_cand_score = best_cand_score * (1.0f + ann->cascade_candidate_change_fraction);
backslide_cand_score = best_cand_score * (1.0f - ann->cascade_candidate_change_fraction);
stagnation = i + ann->cascade_candidate_stagnation_epochs;
}
/* No improvement in allotted period, so quit */
if(i >= stagnation && i >= min_epochs)
{
#ifdef CASCADE_DEBUG
printf("Stagnation with %d epochs, best candidate score %f, real score: %f\n", i + 1,
ann->MSE_value - best_cand_score, best_cand_score);
#endif
return i + 1;
}
}
#ifdef CASCADE_DEBUG
printf("Max epochs %d reached, best candidate score %f, real score: %f\n", max_epochs,
ann->MSE_value - best_cand_score, best_cand_score);
#endif
return max_epochs;
}
void fann_update_candidate_slopes(struct fann *ann)
{
struct fann_neuron *neurons = ann->first_layer->first_neuron;
struct fann_neuron *first_cand = neurons + ann->total_neurons + 1;
struct fann_neuron *last_cand = first_cand + fann_get_cascade_num_candidates(ann);
struct fann_neuron *cand_it;
unsigned int i, j, num_connections;
unsigned int num_output = ann->num_output;
fann_type max_sum, cand_sum, activation, derived, error_value, diff, cand_score;
fann_type *weights, *cand_out_weights, *cand_slopes, *cand_out_slopes;
fann_type *output_train_errors = ann->train_errors + (ann->total_neurons - ann->num_output);
for(cand_it = first_cand; cand_it < last_cand; cand_it++)
{
cand_score = ann->cascade_candidate_scores[cand_it - first_cand];
error_value = 0.0;
/* code more or less stolen from fann_run to fast forward pass
*/
cand_sum = 0.0;
num_connections = cand_it->last_con - cand_it->first_con;
weights = ann->weights + cand_it->first_con;
/* unrolled loop start */
i = num_connections & 3; /* same as modulo 4 */
switch (i)
{
case 3:
cand_sum += weights[2] * neurons[2].value;
case 2:
cand_sum += weights[1] * neurons[1].value;
case 1:
cand_sum += weights[0] * neurons[0].value;
case 0:
break;
}
for(; i != num_connections; i += 4)
{
cand_sum +=
weights[i] * neurons[i].value +
weights[i + 1] * neurons[i + 1].value +
weights[i + 2] * neurons[i + 2].value + weights[i + 3] * neurons[i + 3].value;
}
/*
* for(i = 0; i < num_connections; i++){
* cand_sum += weights[i] * neurons[i].value;
* }
*/
/* unrolled loop end */
max_sum = 150/cand_it->activation_steepness;
if(cand_sum > max_sum)
cand_sum = max_sum;
else if(cand_sum < -max_sum)
cand_sum = -max_sum;
activation =
fann_activation(ann, cand_it->activation_function, cand_it->activation_steepness,
cand_sum);
/* printf("%f = sigmoid(%f);\n", activation, cand_sum); */
cand_it->sum = cand_sum;
cand_it->value = activation;
derived = fann_activation_derived(cand_it->activation_function,
cand_it->activation_steepness, activation, cand_sum);
/* The output weights is located right after the input weights in
* the weight array.
*/
cand_out_weights = weights + num_connections;
cand_out_slopes = ann->train_slopes + cand_it->first_con + num_connections;
for(j = 0; j < num_output; j++)
{
diff = (activation * cand_out_weights[j]) - output_train_errors[j];
#ifdef CASCADE_DEBUG_FULL
/* printf("diff = %f = (%f * %f) - %f;\n", diff, activation, cand_out_weights[j], output_train_errors[j]); */
#endif
cand_out_slopes[j] -= 2.0f * diff * activation;
#ifdef CASCADE_DEBUG_FULL
/* printf("cand_out_slopes[%d] <= %f += %f * %f;\n", j, cand_out_slopes[j], diff, activation); */
#endif
error_value += diff * cand_out_weights[j];
cand_score -= (diff * diff);
#ifdef CASCADE_DEBUG_FULL
/* printf("cand_score[%d][%d] = %f -= (%f * %f)\n", cand_it - first_cand, j, cand_score, diff, diff); */
printf("cand[%d]: error=%f, activation=%f, diff=%f, slope=%f\n", cand_it - first_cand,
output_train_errors[j], (activation * cand_out_weights[j]), diff,
-2.0 * diff * activation);
#endif
}
ann->cascade_candidate_scores[cand_it - first_cand] = cand_score;
error_value *= derived;
cand_slopes = ann->train_slopes + cand_it->first_con;
for(i = 0; i < num_connections; i++)
{
cand_slopes[i] -= error_value * neurons[i].value;
}
}
}
void fann_update_candidate_weights(struct fann *ann, unsigned int num_data)
{
struct fann_neuron *first_cand = (ann->last_layer - 1)->last_neuron + 1; /* there is an empty neuron between the actual neurons and the candidate neuron */
struct fann_neuron *last_cand = first_cand + fann_get_cascade_num_candidates(ann) - 1;
switch (ann->training_algorithm)
{
case FANN_TRAIN_RPROP:
fann_update_weights_irpropm(ann, first_cand->first_con,
last_cand->last_con + ann->num_output);
break;
case FANN_TRAIN_SARPROP:
/* TODO: increase epoch? */
fann_update_weights_sarprop(ann, ann->sarprop_epoch, first_cand->first_con,
last_cand->last_con + ann->num_output);
break;
case FANN_TRAIN_QUICKPROP:
fann_update_weights_quickprop(ann, num_data, first_cand->first_con,
last_cand->last_con + ann->num_output);
break;
case FANN_TRAIN_BATCH:
case FANN_TRAIN_INCREMENTAL:
fann_error((struct fann_error *) ann, FANN_E_CANT_USE_TRAIN_ALG);
break;
}
}
fann_type fann_train_candidates_epoch(struct fann *ann, struct fann_train_data *data)
{
unsigned int i, j;
unsigned int best_candidate;
fann_type best_score;
unsigned int num_cand = fann_get_cascade_num_candidates(ann);
fann_type *output_train_errors = ann->train_errors + (ann->total_neurons - ann->num_output);
struct fann_neuron *output_neurons = (ann->last_layer - 1)->first_neuron;
for(i = 0; i < num_cand; i++)
{
/* The ann->MSE_value is actually the sum squared error */
ann->cascade_candidate_scores[i] = ann->MSE_value;
}
/*printf("start score: %f\n", ann->MSE_value); */
for(i = 0; i < data->num_data; i++)
{
fann_run(ann, data->input[i]);
for(j = 0; j < ann->num_output; j++)
{
/* TODO only debug, but the error is in opposite direction, this might be usefull info */
/* if(output_train_errors[j] != (ann->output[j] - data->output[i][j])){
* printf("difference in calculated error at %f != %f; %f = %f - %f;\n", output_train_errors[j], (ann->output[j] - data->output[i][j]), output_train_errors[j], ann->output[j], data->output[i][j]);
* } */
/*
* output_train_errors[j] = (data->output[i][j] - ann->output[j])/2;
* output_train_errors[j] = ann->output[j] - data->output[i][j];
*/
output_train_errors[j] = (data->output[i][j] - ann->output[j]);
switch (output_neurons[j].activation_function)
{
case FANN_LINEAR_PIECE_SYMMETRIC:
case FANN_SIGMOID_SYMMETRIC:
case FANN_SIGMOID_SYMMETRIC_STEPWISE:
case FANN_THRESHOLD_SYMMETRIC:
case FANN_ELLIOT_SYMMETRIC:
case FANN_GAUSSIAN_SYMMETRIC:
case FANN_SIN_SYMMETRIC:
case FANN_COS_SYMMETRIC:
output_train_errors[j] /= 2.0;
break;
case FANN_LINEAR:
case FANN_THRESHOLD:
case FANN_SIGMOID:
case FANN_SIGMOID_STEPWISE:
case FANN_GAUSSIAN:
case FANN_GAUSSIAN_STEPWISE:
case FANN_ELLIOT:
case FANN_LINEAR_PIECE:
case FANN_SIN:
case FANN_COS:
break;
}
}
fann_update_candidate_slopes(ann);
}
fann_update_candidate_weights(ann, data->num_data);
/* find the best candidate score */
best_candidate = 0;
best_score = ann->cascade_candidate_scores[best_candidate];
for(i = 1; i < num_cand; i++)
{
/*struct fann_neuron *cand = ann->first_layer->first_neuron + ann->total_neurons + 1 + i;
* printf("candidate[%d] = activation: %s, steepness: %f, score: %f\n",
* i, FANN_ACTIVATIONFUNC_NAMES[cand->activation_function],
* cand->activation_steepness, ann->cascade_candidate_scores[i]); */
if(ann->cascade_candidate_scores[i] > best_score)
{
best_candidate = i;
best_score = ann->cascade_candidate_scores[best_candidate];
}
}
ann->cascade_best_candidate = ann->total_neurons + best_candidate + 1;
#ifdef CASCADE_DEBUG
printf("Best candidate[%d]: with score %f, real score: %f\n", best_candidate,
ann->MSE_value - best_score, best_score);
#endif
return best_score;
}
/* add a layer at the position pointed to by *layer */
struct fann_layer *fann_add_layer(struct fann *ann, struct fann_layer *layer)
{
int layer_pos = (int)(layer - ann->first_layer);
int num_layers = (int)(ann->last_layer - ann->first_layer + 1);
int i;
/* allocate the layer */
struct fann_layer *layers =
(struct fann_layer *) realloc(ann->first_layer, num_layers * sizeof(struct fann_layer));
if(layers == NULL)
{
fann_error((struct fann_error *) ann, FANN_E_CANT_ALLOCATE_MEM);
return NULL;
}
/* copy layers so that the free space is at the right location */
for(i = num_layers - 1; i >= layer_pos; i--)
{
layers[i] = layers[i - 1];
}
/* the newly allocated layer is empty */
layers[layer_pos].first_neuron = layers[layer_pos + 1].first_neuron;
layers[layer_pos].last_neuron = layers[layer_pos + 1].first_neuron;
/* Set the ann pointers correctly */
ann->first_layer = layers;
ann->last_layer = layers + num_layers;
#ifdef CASCADE_DEBUG_FULL
printf("add layer at pos %d\n", layer_pos);
#endif
return layers + layer_pos;
}
void fann_set_shortcut_connections(struct fann *ann)
{
struct fann_layer *layer_it;
struct fann_neuron *neuron_it, **neuron_pointers, *neurons;
unsigned int num_connections = 0, i;
neuron_pointers = ann->connections;
neurons = ann->first_layer->first_neuron;
for(layer_it = ann->first_layer + 1; layer_it != ann->last_layer; layer_it++)
{
for(neuron_it = layer_it->first_neuron; neuron_it != layer_it->last_neuron; neuron_it++)
{
neuron_pointers += num_connections;
num_connections = neuron_it->last_con - neuron_it->first_con;
for(i = 0; i != num_connections; i++)
{
neuron_pointers[i] = neurons + i;
}
}
}
}
void fann_add_candidate_neuron(struct fann *ann, struct fann_layer *layer)
{
unsigned int num_connections_in = (unsigned int)(layer->first_neuron - ann->first_layer->first_neuron);
unsigned int num_connections_out = (unsigned int)((ann->last_layer - 1)->last_neuron - (layer + 1)->first_neuron);
unsigned int num_connections_move = num_connections_out + num_connections_in;
unsigned int candidate_con, candidate_output_weight;
int i;
struct fann_layer *layer_it;
struct fann_neuron *neuron_it, *neuron_place, *candidate;
/* We know that there is enough room for the new neuron
* (the candidates are in the same arrays), so move
* the last neurons to make room for this neuron.
*/
/* first move the pointers to neurons in the layer structs */
for(layer_it = ann->last_layer - 1; layer_it != layer; layer_it--)
{
#ifdef CASCADE_DEBUG_FULL
printf("move neuron pointers in layer %d, first(%d -> %d), last(%d -> %d)\n",
layer_it - ann->first_layer,
layer_it->first_neuron - ann->first_layer->first_neuron,
layer_it->first_neuron - ann->first_layer->first_neuron + 1,
layer_it->last_neuron - ann->first_layer->first_neuron,
layer_it->last_neuron - ann->first_layer->first_neuron + 1);
#endif
layer_it->first_neuron++;
layer_it->last_neuron++;
}
/* also move the last neuron in the layer that needs the neuron added */
layer->last_neuron++;
/* this is the place that should hold the new neuron */
neuron_place = layer->last_neuron - 1;
#ifdef CASCADE_DEBUG_FULL
printf("num_connections_in=%d, num_connections_out=%d\n", num_connections_in,
num_connections_out);
#endif
candidate = ann->first_layer->first_neuron + ann->cascade_best_candidate;
/* the output weights for the candidates are located after the input weights */
candidate_output_weight = candidate->last_con;
/* move the actual output neurons and the indexes to the connection arrays */
for(neuron_it = (ann->last_layer - 1)->last_neuron - 1; neuron_it != neuron_place; neuron_it--)
{
#ifdef CASCADE_DEBUG_FULL
printf("move neuron %d -> %d\n", neuron_it - ann->first_layer->first_neuron - 1,
neuron_it - ann->first_layer->first_neuron);
#endif
*neuron_it = *(neuron_it - 1);
/* move the weights */
#ifdef CASCADE_DEBUG_FULL
printf("move weight[%d ... %d] -> weight[%d ... %d]\n", neuron_it->first_con,
neuron_it->last_con - 1, neuron_it->first_con + num_connections_move - 1,
neuron_it->last_con + num_connections_move - 2);
#endif
for(i = neuron_it->last_con - 1; i >= (int)neuron_it->first_con; i--)
{
#ifdef CASCADE_DEBUG_FULL
printf("move weight[%d] = weight[%d]\n", i + num_connections_move - 1, i);
#endif
ann->weights[i + num_connections_move - 1] = ann->weights[i];
}
/* move the indexes to weights */
neuron_it->last_con += num_connections_move;
num_connections_move--;
neuron_it->first_con += num_connections_move;
/* set the new weight to the newly allocated neuron */
ann->weights[neuron_it->last_con - 1] =
(ann->weights[candidate_output_weight]) * ann->cascade_weight_multiplier;
candidate_output_weight++;
}
/* Now inititalize the actual neuron */
neuron_place->value = 0;
neuron_place->sum = 0;
neuron_place->activation_function = candidate->activation_function;
neuron_place->activation_steepness = candidate->activation_steepness;
neuron_place->last_con = (neuron_place + 1)->first_con;
neuron_place->first_con = neuron_place->last_con - num_connections_in;
#ifdef CASCADE_DEBUG_FULL
printf("neuron[%d] = weights[%d ... %d] activation: %s, steepness: %f\n",
neuron_place - ann->first_layer->first_neuron, neuron_place->first_con,
neuron_place->last_con - 1, FANN_ACTIVATIONFUNC_NAMES[neuron_place->activation_function],
neuron_place->activation_steepness);/* TODO remove */
#endif
candidate_con = candidate->first_con;
/* initialize the input weights at random */
#ifdef CASCADE_DEBUG_FULL
printf("move cand weights[%d ... %d] -> [%d ... %d]\n", candidate_con,
candidate_con + num_connections_in - 1, neuron_place->first_con,
neuron_place->last_con - 1);
#endif
for(i = 0; i < (int)num_connections_in; i++)
{
ann->weights[i + neuron_place->first_con] = ann->weights[i + candidate_con];
#ifdef CASCADE_DEBUG_FULL
printf("move weights[%d] -> weights[%d] (%f)\n", i + candidate_con,
i + neuron_place->first_con, ann->weights[i + neuron_place->first_con]);
#endif
}
/* Change some of main variables */
ann->total_neurons++;
ann->total_connections += num_connections_in + num_connections_out;
return;
}
void fann_install_candidate(struct fann *ann)
{
struct fann_layer *layer;
layer = fann_add_layer(ann, ann->last_layer - 1);
fann_add_candidate_neuron(ann, layer);
return;
}
#endif /* FIXEDFANN */
FANN_EXTERNAL unsigned int FANN_API fann_get_cascade_num_candidates(struct fann *ann)
{
return ann->cascade_activation_functions_count *
ann->cascade_activation_steepnesses_count *
ann->cascade_num_candidate_groups;
}
FANN_GET_SET(float, cascade_output_change_fraction)
FANN_GET_SET(unsigned int, cascade_output_stagnation_epochs)
FANN_GET_SET(float, cascade_candidate_change_fraction)
FANN_GET_SET(unsigned int, cascade_candidate_stagnation_epochs)
FANN_GET_SET(unsigned int, cascade_num_candidate_groups)
FANN_GET_SET(fann_type, cascade_weight_multiplier)
FANN_GET_SET(fann_type, cascade_candidate_limit)
FANN_GET_SET(unsigned int, cascade_max_out_epochs)
FANN_GET_SET(unsigned int, cascade_max_cand_epochs)
FANN_GET_SET(unsigned int, cascade_min_out_epochs)
FANN_GET_SET(unsigned int, cascade_min_cand_epochs)
FANN_GET(unsigned int, cascade_activation_functions_count)
FANN_GET(enum fann_activationfunc_enum *, cascade_activation_functions)
FANN_EXTERNAL void FANN_API fann_set_cascade_activation_functions(struct fann *ann,
enum fann_activationfunc_enum *
cascade_activation_functions,
unsigned int
cascade_activation_functions_count)
{
if(ann->cascade_activation_functions_count != cascade_activation_functions_count)
{
ann->cascade_activation_functions_count = cascade_activation_functions_count;
/* reallocate mem */
ann->cascade_activation_functions =
(enum fann_activationfunc_enum *)realloc(ann->cascade_activation_functions,
ann->cascade_activation_functions_count * sizeof(enum fann_activationfunc_enum));
if(ann->cascade_activation_functions == NULL)
{
fann_error((struct fann_error*)ann, FANN_E_CANT_ALLOCATE_MEM);
return;
}
}
memmove(ann->cascade_activation_functions, cascade_activation_functions,
ann->cascade_activation_functions_count * sizeof(enum fann_activationfunc_enum));
}
FANN_GET(unsigned int, cascade_activation_steepnesses_count)
FANN_GET(fann_type *, cascade_activation_steepnesses)
FANN_EXTERNAL void FANN_API fann_set_cascade_activation_steepnesses(struct fann *ann,
fann_type *
cascade_activation_steepnesses,
unsigned int
cascade_activation_steepnesses_count)
{
if(ann->cascade_activation_steepnesses_count != cascade_activation_steepnesses_count)
{
ann->cascade_activation_steepnesses_count = cascade_activation_steepnesses_count;
/* reallocate mem */
ann->cascade_activation_steepnesses =
(fann_type *)realloc(ann->cascade_activation_steepnesses,
ann->cascade_activation_steepnesses_count * sizeof(fann_type));
if(ann->cascade_activation_steepnesses == NULL)
{
fann_error((struct fann_error*)ann, FANN_E_CANT_ALLOCATE_MEM);
return;
}
}
memmove(ann->cascade_activation_steepnesses, cascade_activation_steepnesses,
ann->cascade_activation_steepnesses_count * sizeof(fann_type));
}