/* * * Fast Artificial Neural Network (fann) C++ Wrapper Sample * * C++ wrapper XOR sample with functionality similar to xor_train.c * * Copyright (C) 2004-2006 created by freegoldbar (at) yahoo dot com * * This wrapper is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This wrapper is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include "floatfann.h" #include "fann_cpp.h" #include #include #include using std::cout; using std::cerr; using std::endl; using std::setw; using std::left; using std::right; using std::showpos; using std::noshowpos; // Callback function that simply prints the information to cout int print_callback(FANN::neural_net &net, FANN::training_data &train, unsigned int max_epochs, unsigned int epochs_between_reports, float desired_error, unsigned int epochs, void *user_data) { cout << "Epochs " << setw(8) << epochs << ". " << "Current Error: " << left << net.get_MSE() << right << endl; return 0; } // Test function that demonstrates usage of the fann C++ wrapper void xor_test() { cout << endl << "XOR test started." << endl; const float learning_rate = 0.7f; const unsigned int num_layers = 3; const unsigned int num_input = 2; const unsigned int num_hidden = 3; const unsigned int num_output = 1; const float desired_error = 0.001f; const unsigned int max_iterations = 300000; const unsigned int iterations_between_reports = 1000; cout << endl << "Creating network." << endl; FANN::neural_net net; net.create_standard(num_layers, num_input, num_hidden, num_output); net.set_learning_rate(learning_rate); net.set_activation_steepness_hidden(1.0); net.set_activation_steepness_output(1.0); net.set_activation_function_hidden(FANN::SIGMOID_SYMMETRIC_STEPWISE); net.set_activation_function_output(FANN::SIGMOID_SYMMETRIC_STEPWISE); // Set additional properties such as the training algorithm //net.set_training_algorithm(FANN::TRAIN_QUICKPROP); // Output network type and parameters cout << endl << "Network Type : "; switch (net.get_network_type()) { case FANN::LAYER: cout << "LAYER" << endl; break; case FANN::SHORTCUT: cout << "SHORTCUT" << endl; break; default: cout << "UNKNOWN" << endl; break; } net.print_parameters(); cout << endl << "Training network." << endl; FANN::training_data data; if (data.read_train_from_file("xor.data")) { // Initialize and train the network with the data net.init_weights(data); cout << "Max Epochs " << setw(8) << max_iterations << ". " << "Desired Error: " << left << desired_error << right << endl; net.set_callback(print_callback, NULL); net.train_on_data(data, max_iterations, iterations_between_reports, desired_error); cout << endl << "Testing network." << endl; for (unsigned int i = 0; i < data.length_train_data(); ++i) { // Run the network on the test data fann_type *calc_out = net.run(data.get_input()[i]); cout << "XOR test (" << showpos << data.get_input()[i][0] << ", " << data.get_input()[i][1] << ") -> " << *calc_out << ", should be " << data.get_output()[i][0] << ", " << "difference = " << noshowpos << fann_abs(*calc_out - data.get_output()[i][0]) << endl; } cout << endl << "Saving network." << endl; // Save the network in floating point and fixed point net.save("xor_float.net"); unsigned int decimal_point = net.save_to_fixed("xor_fixed.net"); data.save_train_to_fixed("xor_fixed.data", decimal_point); cout << endl << "XOR test completed." << endl; } } /* Startup function. Syncronizes C and C++ output, calls the test function and reports any exceptions */ int main(int argc, char **argv) { try { std::ios::sync_with_stdio(); // Syncronize cout and printf output xor_test(); } catch (...) { cerr << endl << "Abnormal exception." << endl; } return 0; } /******************************************************************************/