/* * parallel_FANN.cpp * Author: Alessandro Pietro Bardelli */ #ifndef DISABLE_PARALLEL_FANN #include "parallel_fann.hpp" #include using namespace std; namespace parallel_fann { // TODO rewrite all these functions in c++ using fann_cpp interface float train_epoch_batch_parallel(struct fann *ann, struct fann_train_data *data, const unsigned int threadnumb) { fann_reset_MSE(ann); vector ann_vect(threadnumb); int i=0,j=0; //generate copies of the ann omp_set_dynamic(0); omp_set_num_threads(threadnumb); #pragma omp parallel private(j) { #pragma omp for schedule(static) for(i=0; i<(int)threadnumb; i++) { ann_vect[i]=fann_copy(ann); } //parallel computing of the updates #pragma omp for schedule(static) for(i = 0; i < (int)data->num_data; i++) { j=omp_get_thread_num(); fann_run(ann_vect[j], data->input[i]); fann_compute_MSE(ann_vect[j], data->output[i]); fann_backpropagate_MSE(ann_vect[j]); fann_update_slopes_batch(ann_vect[j], ann_vect[j]->first_layer + 1, ann_vect[j]->last_layer - 1); } } //parallel update of the weights { const unsigned int num_data=data->num_data; const unsigned int first_weight=0; const unsigned int past_end=ann->total_connections; fann_type *weights = ann->weights; const fann_type epsilon = ann->learning_rate / num_data; omp_set_dynamic(0); omp_set_num_threads(threadnumb); #pragma omp parallel { #pragma omp for schedule(static) for(i=first_weight; i < (int)past_end; i++) { fann_type temp_slopes=0.0; unsigned int k; fann_type *train_slopes; for(k=0;ktrain_slopes; temp_slopes+= train_slopes[i]; train_slopes[i]=0.0; } weights[i] += temp_slopes*epsilon; } } } //merge of MSEs for(i=0;i<(int)threadnumb;++i) { ann->MSE_value+= ann_vect[i]->MSE_value; ann->num_MSE+=ann_vect[i]->num_MSE; fann_destroy(ann_vect[i]); } return fann_get_MSE(ann); } float train_epoch_irpropm_parallel(struct fann *ann, struct fann_train_data *data, const unsigned int threadnumb) { if(ann->prev_train_slopes == NULL) { fann_clear_train_arrays(ann); } //#define THREADNUM 1 fann_reset_MSE(ann); vector ann_vect(threadnumb); int i=0,j=0; //generate copies of the ann omp_set_dynamic(0); omp_set_num_threads(threadnumb); #pragma omp parallel private(j) { #pragma omp for schedule(static) for(i=0; i<(int)threadnumb; i++) { ann_vect[i]=fann_copy(ann); } //parallel computing of the updates #pragma omp for schedule(static) for(i = 0; i < (int)data->num_data; i++) { j=omp_get_thread_num(); fann_run(ann_vect[j], data->input[i]); fann_compute_MSE(ann_vect[j], data->output[i]); fann_backpropagate_MSE(ann_vect[j]); fann_update_slopes_batch(ann_vect[j], ann_vect[j]->first_layer + 1, ann_vect[j]->last_layer - 1); } } { fann_type *weights = ann->weights; fann_type *prev_steps = ann->prev_steps; fann_type *prev_train_slopes = ann->prev_train_slopes; fann_type next_step; const float increase_factor = ann->rprop_increase_factor; //1.2; const float decrease_factor = ann->rprop_decrease_factor; //0.5; const float delta_min = ann->rprop_delta_min; //0.0; const float delta_max = ann->rprop_delta_max; //50.0; const unsigned int first_weight=0; const unsigned int past_end=ann->total_connections; omp_set_dynamic(0); omp_set_num_threads(threadnumb); #pragma omp parallel private(next_step) { #pragma omp for schedule(static) for(i=first_weight; i < (int)past_end; i++) { const fann_type prev_step = fann_max(prev_steps[i], (fann_type) 0.0001); // prev_step may not be zero because then the training will stop fann_type temp_slopes=0.0; unsigned int k; fann_type *train_slopes; for(k=0;ktrain_slopes; temp_slopes+= train_slopes[i]; train_slopes[i]=0.0; } const fann_type prev_slope = prev_train_slopes[i]; const fann_type same_sign = prev_slope * temp_slopes; if(same_sign >= 0.0) next_step = fann_min(prev_step * increase_factor, delta_max); else { next_step = fann_max(prev_step * decrease_factor, delta_min); temp_slopes = 0; } if(temp_slopes < 0) { weights[i] -= next_step; if(weights[i] < -1500) weights[i] = -1500; } else { weights[i] += next_step; if(weights[i] > 1500) weights[i] = 1500; } // update global data arrays prev_steps[i] = next_step; prev_train_slopes[i] = temp_slopes; } } } //merge of MSEs for(i=0;i<(int)threadnumb;++i) { ann->MSE_value+= ann_vect[i]->MSE_value; ann->num_MSE+=ann_vect[i]->num_MSE; fann_destroy(ann_vect[i]); } return fann_get_MSE(ann); } float train_epoch_quickprop_parallel(struct fann *ann, struct fann_train_data *data, const unsigned int threadnumb) { if(ann->prev_train_slopes == NULL) { fann_clear_train_arrays(ann); } //#define THREADNUM 1 fann_reset_MSE(ann); vector ann_vect(threadnumb); int i=0,j=0; //generate copies of the ann omp_set_dynamic(0); omp_set_num_threads(threadnumb); #pragma omp parallel private(j) { #pragma omp for schedule(static) for(i=0; i<(int)threadnumb; i++) { ann_vect[i]=fann_copy(ann); } //parallel computing of the updates #pragma omp for schedule(static) for(i = 0; i < (int)data->num_data; i++) { j=omp_get_thread_num(); fann_run(ann_vect[j], data->input[i]); fann_compute_MSE(ann_vect[j], data->output[i]); fann_backpropagate_MSE(ann_vect[j]); fann_update_slopes_batch(ann_vect[j], ann_vect[j]->first_layer + 1, ann_vect[j]->last_layer - 1); } } { fann_type *weights = ann->weights; fann_type *prev_steps = ann->prev_steps; fann_type *prev_train_slopes = ann->prev_train_slopes; const unsigned int first_weight=0; const unsigned int past_end=ann->total_connections; fann_type w=0.0, next_step; const float epsilon = ann->learning_rate / data->num_data; const float decay = ann->quickprop_decay; /*-0.0001;*/ const float mu = ann->quickprop_mu; /*1.75; */ const float shrink_factor = (float) (mu / (1.0 + mu)); omp_set_dynamic(0); omp_set_num_threads(threadnumb); #pragma omp parallel private(w, next_step) { #pragma omp for schedule(static) for(i=first_weight; i < (int)past_end; i++) { w = weights[i]; fann_type temp_slopes=0.0; unsigned int k; fann_type *train_slopes; for(k=0;ktrain_slopes; temp_slopes+= train_slopes[i]; train_slopes[i]=0.0; } temp_slopes+= decay * w; const fann_type prev_step = prev_steps[i]; const fann_type prev_slope = prev_train_slopes[i]; next_step = 0.0; /* The step must always be in direction opposite to the slope. */ if(prev_step > 0.001) { /* If last step was positive... */ if(temp_slopes > 0.0) /* Add in linear term if current slope is still positive. */ next_step += epsilon * temp_slopes; /*If current slope is close to or larger than prev slope... */ if(temp_slopes > (shrink_factor * prev_slope)) next_step += mu * prev_step; /* Take maximum size negative step. */ else next_step += prev_step * temp_slopes / (prev_slope - temp_slopes); /* Else, use quadratic estimate. */ } else if(prev_step < -0.001) { /* If last step was negative... */ if(temp_slopes < 0.0) /* Add in linear term if current slope is still negative. */ next_step += epsilon * temp_slopes; /* If current slope is close to or more neg than prev slope... */ if(temp_slopes < (shrink_factor * prev_slope)) next_step += mu * prev_step; /* Take maximum size negative step. */ else next_step += prev_step * temp_slopes / (prev_slope - temp_slopes); /* Else, use quadratic estimate. */ } else /* Last step was zero, so use only linear term. */ next_step += epsilon * temp_slopes; /* update global data arrays */ prev_steps[i] = next_step; prev_train_slopes[i] = temp_slopes; w += next_step; if(w > 1500) weights[i] = 1500; else if(w < -1500) weights[i] = -1500; else weights[i] = w; } } } //merge of MSEs for(i=0;i<(int)threadnumb;++i) { ann->MSE_value+= ann_vect[i]->MSE_value; ann->num_MSE+=ann_vect[i]->num_MSE; fann_destroy(ann_vect[i]); } return fann_get_MSE(ann); } float train_epoch_sarprop_parallel(struct fann *ann, struct fann_train_data *data, const unsigned int threadnumb) { if(ann->prev_train_slopes == NULL) { fann_clear_train_arrays(ann); } //#define THREADNUM 1 fann_reset_MSE(ann); vector ann_vect(threadnumb); int i=0,j=0; //generate copies of the ann omp_set_dynamic(0); omp_set_num_threads(threadnumb); #pragma omp parallel private(j) { #pragma omp for schedule(static) for(i=0; i<(int)threadnumb; i++) { ann_vect[i]=fann_copy(ann); } //parallel computing of the updates #pragma omp for schedule(static) for(i = 0; i < (int)data->num_data; i++) { j=omp_get_thread_num(); fann_run(ann_vect[j], data->input[i]); fann_compute_MSE(ann_vect[j], data->output[i]); fann_backpropagate_MSE(ann_vect[j]); fann_update_slopes_batch(ann_vect[j], ann_vect[j]->first_layer + 1, ann_vect[j]->last_layer - 1); } } { fann_type *weights = ann->weights; fann_type *prev_steps = ann->prev_steps; fann_type *prev_train_slopes = ann->prev_train_slopes; const unsigned int first_weight=0; const unsigned int past_end=ann->total_connections; const unsigned int epoch=ann->sarprop_epoch; fann_type next_step; /* These should be set from variables */ const float increase_factor = ann->rprop_increase_factor; /*1.2; */ const float decrease_factor = ann->rprop_decrease_factor; /*0.5; */ /* TODO: why is delta_min 0.0 in iRprop? SARPROP uses 1x10^-6 (Braun and Riedmiller, 1993) */ const float delta_min = 0.000001f; const float delta_max = ann->rprop_delta_max; /*50.0; */ const float weight_decay_shift = ann->sarprop_weight_decay_shift; /* ld 0.01 = -6.644 */ const float step_error_threshold_factor = ann->sarprop_step_error_threshold_factor; /* 0.1 */ const float step_error_shift = ann->sarprop_step_error_shift; /* ld 3 = 1.585 */ const float T = ann->sarprop_temperature; //merge of MSEs for(i=0;i<(int)threadnumb;++i) { ann->MSE_value+= ann_vect[i]->MSE_value; ann->num_MSE+=ann_vect[i]->num_MSE; } const float MSE = fann_get_MSE(ann); const float RMSE = sqrtf(MSE); /* for all weights; TODO: are biases included? */ omp_set_dynamic(0); omp_set_num_threads(threadnumb); #pragma omp parallel private(next_step) { #pragma omp for schedule(static) for(i=first_weight; i < (int)past_end; i++) { /* TODO: confirm whether 1x10^-6 == delta_min is really better */ const fann_type prev_step = fann_max(prev_steps[i], (fann_type) 0.000001); /* prev_step may not be zero because then the training will stop */ /* calculate SARPROP slope; TODO: better as new error function? (see SARPROP paper)*/ fann_type temp_slopes=0.0; unsigned int k; fann_type *train_slopes; for(k=0;ktrain_slopes; temp_slopes+= train_slopes[i]; train_slopes[i]=0.0; } temp_slopes= -temp_slopes - weights[i] * (fann_type)fann_exp2(-T * epoch + weight_decay_shift); next_step=0.0; /* TODO: is prev_train_slopes[i] 0.0 in the beginning? */ const fann_type prev_slope = prev_train_slopes[i]; const fann_type same_sign = prev_slope * temp_slopes; if(same_sign > 0.0) { next_step = fann_min(prev_step * increase_factor, delta_max); /* TODO: are the signs inverted? see differences between SARPROP paper and iRprop */ if (temp_slopes < 0.0) weights[i] += next_step; else weights[i] -= next_step; } else if(same_sign < 0.0) { #ifndef RAND_MAX #define RAND_MAX 0x7fffffff #endif if(prev_step < step_error_threshold_factor * MSE) next_step = prev_step * decrease_factor + (float)rand() / RAND_MAX * RMSE * (fann_type)fann_exp2(-T * epoch + step_error_shift); else next_step = fann_max(prev_step * decrease_factor, delta_min); temp_slopes = 0.0; } else { if(temp_slopes < 0.0) weights[i] += prev_step; else weights[i] -= prev_step; } /* update global data arrays */ prev_steps[i] = next_step; prev_train_slopes[i] = temp_slopes; } } } ++(ann->sarprop_epoch); //already computed before /*//merge of MSEs for(i=0;iMSE_value+= ann_vect[i]->MSE_value; ann->num_MSE+=ann_vect[i]->num_MSE; }*/ //destroy the copies of the ann for(i=0; i<(int)threadnumb; i++) { fann_destroy(ann_vect[i]); } return fann_get_MSE(ann); } float train_epoch_incremental_mod(struct fann *ann, struct fann_train_data *data) { unsigned int i; fann_reset_MSE(ann); for(i = 0; i != data->num_data; i++) { fann_train(ann, data->input[i], data->output[i]); } return fann_get_MSE(ann); } //the following versions returns also the outputs via the predicted_outputs parameter float train_epoch_batch_parallel(struct fann *ann, struct fann_train_data *data, const unsigned int threadnumb,vector< vector >& predicted_outputs) { fann_reset_MSE(ann); predicted_outputs.resize(data->num_data,vector (data->num_output)); vector ann_vect(threadnumb); int i=0,j=0; //generate copies of the ann omp_set_dynamic(0); omp_set_num_threads(threadnumb); #pragma omp parallel private(j) { #pragma omp for schedule(static) for(i=0; i<(int)threadnumb; i++) { ann_vect[i]=fann_copy(ann); } //parallel computing of the updates #pragma omp for schedule(static) for(i = 0; i < (int)data->num_data; i++) { j=omp_get_thread_num(); fann_type* temp_predicted_output=fann_run(ann_vect[j], data->input[i]); for(unsigned int k=0;knum_output;++k) { predicted_outputs[i][k]=temp_predicted_output[k]; } fann_compute_MSE(ann_vect[j], data->output[i]); fann_backpropagate_MSE(ann_vect[j]); fann_update_slopes_batch(ann_vect[j], ann_vect[j]->first_layer + 1, ann_vect[j]->last_layer - 1); } } //parallel update of the weights { const unsigned int num_data=data->num_data; const unsigned int first_weight=0; const unsigned int past_end=ann->total_connections; fann_type *weights = ann->weights; const fann_type epsilon = ann->learning_rate / num_data; omp_set_dynamic(0); omp_set_num_threads(threadnumb); #pragma omp parallel { #pragma omp for schedule(static) for(i=first_weight; i < (int)past_end; i++) { fann_type temp_slopes=0.0; unsigned int k; fann_type *train_slopes; for(k=0;ktrain_slopes; temp_slopes+= train_slopes[i]; train_slopes[i]=0.0; } weights[i] += temp_slopes*epsilon; } } } //merge of MSEs for(i=0;i<(int)threadnumb;++i) { ann->MSE_value+= ann_vect[i]->MSE_value; ann->num_MSE+=ann_vect[i]->num_MSE; fann_destroy(ann_vect[i]); } return fann_get_MSE(ann); } float train_epoch_irpropm_parallel(struct fann *ann, struct fann_train_data *data, const unsigned int threadnumb, vector< vector >& predicted_outputs) { if(ann->prev_train_slopes == NULL) { fann_clear_train_arrays(ann); } fann_reset_MSE(ann); predicted_outputs.resize(data->num_data,vector (data->num_output)); vector ann_vect(threadnumb); int i=0,j=0; //generate copies of the ann omp_set_dynamic(0); omp_set_num_threads(threadnumb); #pragma omp parallel private(j) { #pragma omp for schedule(static) for(i=0; i<(int)threadnumb; i++) { ann_vect[i]=fann_copy(ann); } //parallel computing of the updates #pragma omp for schedule(static) for(i = 0; i < (int)data->num_data; i++) { j=omp_get_thread_num(); fann_type* temp_predicted_output=fann_run(ann_vect[j], data->input[i]); for(unsigned int k=0;knum_output;++k) { predicted_outputs[i][k]=temp_predicted_output[k]; } fann_compute_MSE(ann_vect[j], data->output[i]); fann_backpropagate_MSE(ann_vect[j]); fann_update_slopes_batch(ann_vect[j], ann_vect[j]->first_layer + 1, ann_vect[j]->last_layer - 1); } } { fann_type *weights = ann->weights; fann_type *prev_steps = ann->prev_steps; fann_type *prev_train_slopes = ann->prev_train_slopes; fann_type next_step; const float increase_factor = ann->rprop_increase_factor; //1.2; const float decrease_factor = ann->rprop_decrease_factor; //0.5; const float delta_min = ann->rprop_delta_min; //0.0; const float delta_max = ann->rprop_delta_max; //50.0; const unsigned int first_weight=0; const unsigned int past_end=ann->total_connections; omp_set_dynamic(0); omp_set_num_threads(threadnumb); #pragma omp parallel private(next_step) { #pragma omp for schedule(static) for(i=first_weight; i < (int)past_end; i++) { const fann_type prev_step = fann_max(prev_steps[i], (fann_type) 0.0001); // prev_step may not be zero because then the training will stop fann_type temp_slopes=0.0; unsigned int k; fann_type *train_slopes; for(k=0;ktrain_slopes; temp_slopes+= train_slopes[i]; train_slopes[i]=0.0; } const fann_type prev_slope = prev_train_slopes[i]; const fann_type same_sign = prev_slope * temp_slopes; if(same_sign >= 0.0) next_step = fann_min(prev_step * increase_factor, delta_max); else { next_step = fann_max(prev_step * decrease_factor, delta_min); temp_slopes = 0; } if(temp_slopes < 0) { weights[i] -= next_step; if(weights[i] < -1500) weights[i] = -1500; } else { weights[i] += next_step; if(weights[i] > 1500) weights[i] = 1500; } // update global data arrays prev_steps[i] = next_step; prev_train_slopes[i] = temp_slopes; } } } //merge of MSEs for(i=0;i<(int)threadnumb;++i) { ann->MSE_value+= ann_vect[i]->MSE_value; ann->num_MSE+=ann_vect[i]->num_MSE; fann_destroy(ann_vect[i]); } return fann_get_MSE(ann); } float train_epoch_quickprop_parallel(struct fann *ann, struct fann_train_data *data, const unsigned int threadnumb, vector< vector >& predicted_outputs) { if(ann->prev_train_slopes == NULL) { fann_clear_train_arrays(ann); } fann_reset_MSE(ann); predicted_outputs.resize(data->num_data,vector (data->num_output)); vector ann_vect(threadnumb); int i=0,j=0; //generate copies of the ann omp_set_dynamic(0); omp_set_num_threads(threadnumb); #pragma omp parallel private(j) { #pragma omp for schedule(static) for(i=0; i<(int)threadnumb; i++) { ann_vect[i]=fann_copy(ann); } //parallel computing of the updates #pragma omp for schedule(static) for(i = 0; i < (int)data->num_data; i++) { j=omp_get_thread_num(); fann_type* temp_predicted_output=fann_run(ann_vect[j], data->input[i]); for(unsigned int k=0;knum_output;++k) { predicted_outputs[i][k]=temp_predicted_output[k]; } fann_compute_MSE(ann_vect[j], data->output[i]); fann_backpropagate_MSE(ann_vect[j]); fann_update_slopes_batch(ann_vect[j], ann_vect[j]->first_layer + 1, ann_vect[j]->last_layer - 1); } } { fann_type *weights = ann->weights; fann_type *prev_steps = ann->prev_steps; fann_type *prev_train_slopes = ann->prev_train_slopes; const unsigned int first_weight=0; const unsigned int past_end=ann->total_connections; fann_type w=0.0, next_step; const float epsilon = ann->learning_rate / data->num_data; const float decay = ann->quickprop_decay; /*-0.0001;*/ const float mu = ann->quickprop_mu; /*1.75; */ const float shrink_factor = (float) (mu / (1.0 + mu)); omp_set_dynamic(0); omp_set_num_threads(threadnumb); #pragma omp parallel private(w, next_step) { #pragma omp for schedule(static) for(i=first_weight; i < (int)past_end; i++) { w = weights[i]; fann_type temp_slopes=0.0; unsigned int k; fann_type *train_slopes; for(k=0;ktrain_slopes; temp_slopes+= train_slopes[i]; train_slopes[i]=0.0; } temp_slopes+= decay * w; const fann_type prev_step = prev_steps[i]; const fann_type prev_slope = prev_train_slopes[i]; next_step = 0.0; /* The step must always be in direction opposite to the slope. */ if(prev_step > 0.001) { /* If last step was positive... */ if(temp_slopes > 0.0) /* Add in linear term if current slope is still positive. */ next_step += epsilon * temp_slopes; /*If current slope is close to or larger than prev slope... */ if(temp_slopes > (shrink_factor * prev_slope)) next_step += mu * prev_step; /* Take maximum size negative step. */ else next_step += prev_step * temp_slopes / (prev_slope - temp_slopes); /* Else, use quadratic estimate. */ } else if(prev_step < -0.001) { /* If last step was negative... */ if(temp_slopes < 0.0) /* Add in linear term if current slope is still negative. */ next_step += epsilon * temp_slopes; /* If current slope is close to or more neg than prev slope... */ if(temp_slopes < (shrink_factor * prev_slope)) next_step += mu * prev_step; /* Take maximum size negative step. */ else next_step += prev_step * temp_slopes / (prev_slope - temp_slopes); /* Else, use quadratic estimate. */ } else /* Last step was zero, so use only linear term. */ next_step += epsilon * temp_slopes; /* update global data arrays */ prev_steps[i] = next_step; prev_train_slopes[i] = temp_slopes; w += next_step; if(w > 1500) weights[i] = 1500; else if(w < -1500) weights[i] = -1500; else weights[i] = w; } } } //merge of MSEs for(i=0;i<(int)threadnumb;++i) { ann->MSE_value+= ann_vect[i]->MSE_value; ann->num_MSE+=ann_vect[i]->num_MSE; fann_destroy(ann_vect[i]); } return fann_get_MSE(ann); } float train_epoch_sarprop_parallel(struct fann *ann, struct fann_train_data *data, const unsigned int threadnumb, vector< vector >& predicted_outputs) { if(ann->prev_train_slopes == NULL) { fann_clear_train_arrays(ann); } fann_reset_MSE(ann); predicted_outputs.resize(data->num_data,vector (data->num_output)); vector ann_vect(threadnumb); int i=0,j=0; //generate copies of the ann omp_set_dynamic(0); omp_set_num_threads(threadnumb); #pragma omp parallel private(j) { #pragma omp for schedule(static) for(i=0; i<(int)threadnumb; i++) { ann_vect[i]=fann_copy(ann); } //parallel computing of the updates #pragma omp for schedule(static) for(i = 0; i < (int)data->num_data; i++) { j=omp_get_thread_num(); fann_type* temp_predicted_output=fann_run(ann_vect[j], data->input[i]); for(unsigned int k=0;knum_output;++k) { predicted_outputs[i][k]=temp_predicted_output[k]; } fann_compute_MSE(ann_vect[j], data->output[i]); fann_backpropagate_MSE(ann_vect[j]); fann_update_slopes_batch(ann_vect[j], ann_vect[j]->first_layer + 1, ann_vect[j]->last_layer - 1); } } { fann_type *weights = ann->weights; fann_type *prev_steps = ann->prev_steps; fann_type *prev_train_slopes = ann->prev_train_slopes; const unsigned int first_weight=0; const unsigned int past_end=ann->total_connections; const unsigned int epoch=ann->sarprop_epoch; fann_type next_step; /* These should be set from variables */ const float increase_factor = ann->rprop_increase_factor; /*1.2; */ const float decrease_factor = ann->rprop_decrease_factor; /*0.5; */ /* TODO: why is delta_min 0.0 in iRprop? SARPROP uses 1x10^-6 (Braun and Riedmiller, 1993) */ const float delta_min = 0.000001f; const float delta_max = ann->rprop_delta_max; /*50.0; */ const float weight_decay_shift = ann->sarprop_weight_decay_shift; /* ld 0.01 = -6.644 */ const float step_error_threshold_factor = ann->sarprop_step_error_threshold_factor; /* 0.1 */ const float step_error_shift = ann->sarprop_step_error_shift; /* ld 3 = 1.585 */ const float T = ann->sarprop_temperature; //merge of MSEs for(i=0;i<(int)threadnumb;++i) { ann->MSE_value+= ann_vect[i]->MSE_value; ann->num_MSE+=ann_vect[i]->num_MSE; } const float MSE = fann_get_MSE(ann); const float RMSE = (float)sqrt(MSE); /* for all weights; TODO: are biases included? */ omp_set_dynamic(0); omp_set_num_threads(threadnumb); #pragma omp parallel private(next_step) { #pragma omp for schedule(static) for(i=first_weight; i < (int)past_end; i++) { /* TODO: confirm whether 1x10^-6 == delta_min is really better */ const fann_type prev_step = fann_max(prev_steps[i], (fann_type) 0.000001); /* prev_step may not be zero because then the training will stop */ /* calculate SARPROP slope; TODO: better as new error function? (see SARPROP paper)*/ fann_type temp_slopes=0.0; unsigned int k; fann_type *train_slopes; for(k=0;ktrain_slopes; temp_slopes+= train_slopes[i]; train_slopes[i]=0.0; } temp_slopes= -temp_slopes - weights[i] * (fann_type)fann_exp2(-T * epoch + weight_decay_shift); next_step=0.0; /* TODO: is prev_train_slopes[i] 0.0 in the beginning? */ const fann_type prev_slope = prev_train_slopes[i]; const fann_type same_sign = prev_slope * temp_slopes; if(same_sign > 0.0) { next_step = fann_min(prev_step * increase_factor, delta_max); /* TODO: are the signs inverted? see differences between SARPROP paper and iRprop */ if (temp_slopes < 0.0) weights[i] += next_step; else weights[i] -= next_step; } else if(same_sign < 0.0) { #ifndef RAND_MAX #define RAND_MAX 0x7fffffff #endif if(prev_step < step_error_threshold_factor * MSE) next_step = prev_step * decrease_factor + (float)rand() / RAND_MAX * RMSE * (fann_type)fann_exp2(-T * epoch + step_error_shift); else next_step = fann_max(prev_step * decrease_factor, delta_min); temp_slopes = 0.0; } else { if(temp_slopes < 0.0) weights[i] += prev_step; else weights[i] -= prev_step; } /* update global data arrays */ prev_steps[i] = next_step; prev_train_slopes[i] = temp_slopes; } } } ++(ann->sarprop_epoch); //already computed before /*//merge of MSEs for(i=0;iMSE_value+= ann_vect[i]->MSE_value; ann->num_MSE+=ann_vect[i]->num_MSE; }*/ //destroy the copies of the ann for(i=0; i<(int)threadnumb; i++) { fann_destroy(ann_vect[i]); } return fann_get_MSE(ann); } float train_epoch_incremental_mod(struct fann *ann, struct fann_train_data *data, vector< vector >& predicted_outputs) { predicted_outputs.resize(data->num_data,vector (data->num_output)); fann_reset_MSE(ann); for(unsigned int i = 0; i < data->num_data; ++i) { fann_type* temp_predicted_output=fann_run(ann, data->input[i]); for(unsigned int k=0;knum_output;++k) { predicted_outputs[i][k]=temp_predicted_output[k]; } fann_compute_MSE(ann, data->output[i]); fann_backpropagate_MSE(ann); fann_update_weights(ann); } return fann_get_MSE(ann); } float test_data_parallel(struct fann *ann, struct fann_train_data *data, const unsigned int threadnumb) { if(fann_check_input_output_sizes(ann, data) == -1) return 0; fann_reset_MSE(ann); vector ann_vect(threadnumb); int i=0,j=0; //generate copies of the ann omp_set_dynamic(0); omp_set_num_threads(threadnumb); #pragma omp parallel private(j) { #pragma omp for schedule(static) for(i=0; i<(int)threadnumb; i++) { ann_vect[i]=fann_copy(ann); } //parallel computing of the updates #pragma omp for schedule(static) for(i = 0; i < (int)data->num_data; ++i) { j=omp_get_thread_num(); fann_test(ann_vect[j], data->input[i],data->output[i]); } } //merge of MSEs for(i=0;i<(int)threadnumb;++i) { ann->MSE_value+= ann_vect[i]->MSE_value; ann->num_MSE+=ann_vect[i]->num_MSE; fann_destroy(ann_vect[i]); } return fann_get_MSE(ann); } float test_data_parallel(struct fann *ann, struct fann_train_data *data, const unsigned int threadnumb, vector< vector >& predicted_outputs) { if(fann_check_input_output_sizes(ann, data) == -1) return 0; predicted_outputs.resize(data->num_data,vector (data->num_output)); fann_reset_MSE(ann); vector ann_vect(threadnumb); int i=0,j=0; //generate copies of the ann omp_set_dynamic(0); omp_set_num_threads(threadnumb); #pragma omp parallel private(j) { #pragma omp for schedule(static) for(i=0; i<(int)threadnumb; i++) { ann_vect[i]=fann_copy(ann); } //parallel computing of the updates #pragma omp for schedule(static) for(i = 0; i < (int)data->num_data; ++i) { j=omp_get_thread_num(); fann_type* temp_predicted_output=fann_test(ann_vect[j], data->input[i],data->output[i]); for(unsigned int k=0;knum_output;++k) { predicted_outputs[i][k]=temp_predicted_output[k]; } } } //merge of MSEs for(i=0;i<(int)threadnumb;++i) { ann->MSE_value+= ann_vect[i]->MSE_value; ann->num_MSE+=ann_vect[i]->num_MSE; fann_destroy(ann_vect[i]); } return fann_get_MSE(ann); } } #endif /* DISABLE_PARALLEL_FANN */