/* Fast Artificial Neural Network Library (fann) Copyright (C) 2003-2016 Steffen Nissen (steffen.fann@gmail.com) This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include "fann.h" int main() { const unsigned int num_layers = 3; const unsigned int num_neurons_hidden = 32; const float desired_error = (const float) 0.0001; const unsigned int max_epochs = 300; const unsigned int epochs_between_reports = 10; struct fann *ann; struct fann_train_data *train_data, *test_data; unsigned int i = 0; printf("Creating network.\n"); train_data = fann_read_train_from_file("../../datasets/mushroom.train"); ann = fann_create_standard(num_layers, train_data->num_input, num_neurons_hidden, train_data->num_output); printf("Training network.\n"); fann_set_activation_function_hidden(ann, FANN_SIGMOID_SYMMETRIC); fann_set_activation_function_output(ann, FANN_SIGMOID); /*fann_set_training_algorithm(ann, FANN_TRAIN_INCREMENTAL); */ fann_train_on_data(ann, train_data, max_epochs, epochs_between_reports, desired_error); printf("Testing network.\n"); test_data = fann_read_train_from_file("../../datasets/mushroom.test"); fann_reset_MSE(ann); for(i = 0; i < fann_length_train_data(test_data); i++) { fann_test(ann, test_data->input[i], test_data->output[i]); } printf("MSE error on test data: %f\n", fann_get_MSE(ann)); printf("Saving network.\n"); fann_save(ann, "mushroom_float.net"); printf("Cleaning up.\n"); fann_destroy_train(train_data); fann_destroy_train(test_data); fann_destroy(ann); return 0; }