/* Fast Artificial Neural Network Library (fann) Copyright (C) 2003-2016 Steffen Nissen (steffen.fann@gmail.com) This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include "fann.h" int main() { struct fann *ann; struct fann_train_data *train_data, *test_data; const float desired_error = (const float)0.0; unsigned int max_neurons = 30; unsigned int neurons_between_reports = 1; unsigned int bit_fail_train, bit_fail_test; float mse_train, mse_test; unsigned int i = 0; fann_type *output; fann_type steepness; int multi = 0; enum fann_activationfunc_enum activation; enum fann_train_enum training_algorithm = FANN_TRAIN_RPROP; printf("Reading data.\n"); train_data = fann_read_train_from_file("../../datasets/parity8.train"); test_data = fann_read_train_from_file("../../datasets/parity8.test"); fann_scale_train_data(train_data, -1, 1); fann_scale_train_data(test_data, -1, 1); printf("Creating network.\n"); ann = fann_create_shortcut(2, fann_num_input_train_data(train_data), fann_num_output_train_data(train_data)); fann_set_training_algorithm(ann, training_algorithm); fann_set_activation_function_hidden(ann, FANN_SIGMOID_SYMMETRIC); fann_set_activation_function_output(ann, FANN_LINEAR); fann_set_train_error_function(ann, FANN_ERRORFUNC_LINEAR); if(!multi) { /*steepness = 0.5;*/ steepness = 1; fann_set_cascade_activation_steepnesses(ann, &steepness, 1); /*activation = FANN_SIN_SYMMETRIC;*/ activation = FANN_SIGMOID_SYMMETRIC; fann_set_cascade_activation_functions(ann, &activation, 1); fann_set_cascade_num_candidate_groups(ann, 8); } if(training_algorithm == FANN_TRAIN_QUICKPROP) { fann_set_learning_rate(ann, 0.35f); fann_randomize_weights(ann, -2.0f, 2.0f); } fann_set_bit_fail_limit(ann, (fann_type)0.9); fann_set_train_stop_function(ann, FANN_STOPFUNC_BIT); fann_print_parameters(ann); fann_save(ann, "cascade_train2.net"); printf("Training network.\n"); fann_cascadetrain_on_data(ann, train_data, max_neurons, neurons_between_reports, desired_error); fann_print_connections(ann); mse_train = fann_test_data(ann, train_data); bit_fail_train = fann_get_bit_fail(ann); mse_test = fann_test_data(ann, test_data); bit_fail_test = fann_get_bit_fail(ann); printf("\nTrain error: %f, Train bit-fail: %d, Test error: %f, Test bit-fail: %d\n\n", mse_train, bit_fail_train, mse_test, bit_fail_test); for(i = 0; i < train_data->num_data; i++) { output = fann_run(ann, train_data->input[i]); if((train_data->output[i][0] >= 0 && output[0] <= 0) || (train_data->output[i][0] <= 0 && output[0] >= 0)) { printf("ERROR: %f does not match %f\n", train_data->output[i][0], output[0]); } } printf("Saving network.\n"); fann_save(ann, "cascade_train.net"); printf("Cleaning up.\n"); fann_destroy_train(train_data); fann_destroy_train(test_data); fann_destroy(ann); return 0; }