1
0
mirror of https://github.com/lxsang/antd-lua-plugin synced 2025-07-17 06:19:47 +02:00

mimgrating from another repo

This commit is contained in:
Xuan Sang LE
2018-09-19 15:08:49 +02:00
parent 91320521e8
commit 38bd13b46b
600 changed files with 362490 additions and 1 deletions

View File

@ -0,0 +1,25 @@
project (fann_tests)
include(CheckCXXCompilerFlag)
INCLUDE_DIRECTORIES(${CMAKE_SOURCE_DIR}/src/include)
INCLUDE_DIRECTORIES(${CMAKE_SOURCE_DIR}/lib/googletest/include)
CHECK_CXX_COMPILER_FLAG("-std=c++14" COMPILER_SUPPORTS_CXX14)
CHECK_CXX_COMPILER_FLAG("-std=c++11" COMPILER_SUPPORTS_CXX11)
CHECK_CXX_COMPILER_FLAG("-std=c++0x" COMPILER_SUPPORTS_CXX0X)
if(COMPILER_SUPPORTS_CXX14)
message(STATUS "The compiler ${CMAKE_CXX_COMPILER} has C++14 support.")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++14")
elseif(COMPILER_SUPPORTS_CXX11)
message(STATUS "The compiler ${CMAKE_CXX_COMPILER} has C++11 support.")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11")
elseif(COMPILER_SUPPORTS_CXX0X)
message(STATUS "The compiler ${CMAKE_CXX_COMPILER} has C++0x support.")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++0x")
else()
message(STATUS "The compiler ${CMAKE_CXX_COMPILER} has no C++0x, C++11 or C++14 support. FANN will still work with no problem, but the tests will not be able to compile.")
return()
endif()
ADD_EXECUTABLE(fann_tests main.cpp fann_test.cpp fann_test_data.cpp fann_test_train.cpp)
target_link_libraries(fann_tests gtest doublefann)

View File

@ -0,0 +1,168 @@
#include <vector>
#include "fann_test.h"
using namespace std;
void FannTest::SetUp() {
//ensure random generator is seeded at a known value to ensure reproducible results
srand(0);
fann_disable_seed_rand();
}
void FannTest::TearDown() {
net.destroy();
data.destroy_train();
}
void FannTest::AssertCreate(neural_net &net, unsigned int numLayers, const unsigned int *layers,
unsigned int neurons, unsigned int connections) {
EXPECT_EQ(numLayers, net.get_num_layers());
EXPECT_EQ(layers[0], net.get_num_input());
EXPECT_EQ(layers[numLayers - 1], net.get_num_output());
unsigned int *layers_res = new unsigned int[numLayers];
net.get_layer_array(layers_res);
for (unsigned int i = 0; i < numLayers; i++) {
EXPECT_EQ(layers[i], layers_res[i]);
}
delete layers_res;
EXPECT_EQ(neurons, net.get_total_neurons());
EXPECT_EQ(connections, net.get_total_connections());
AssertWeights(net, -0.09, 0.09, 0.0);
}
void FannTest::AssertCreateAndCopy(neural_net &net, unsigned int numLayers, const unsigned int *layers, unsigned int neurons,
unsigned int connections) {
AssertCreate(net, numLayers, layers, neurons, connections);
neural_net net_copy(net);
AssertCreate(net_copy, numLayers, layers, neurons, connections);
}
void FannTest::AssertWeights(neural_net &net, fann_type min, fann_type max, fann_type avg) {
connection *connections = new connection[net.get_total_connections()];
net.get_connection_array(connections);
fann_type minWeight = connections[0].weight;
fann_type maxWeight = connections[0].weight;
fann_type totalWeight = 0.0;
for (int i = 1; i < net.get_total_connections(); ++i) {
if (connections[i].weight < minWeight)
minWeight = connections[i].weight;
if (connections[i].weight > maxWeight)
maxWeight = connections[i].weight;
totalWeight += connections[i].weight;
}
EXPECT_NEAR(min, minWeight, 0.05);
EXPECT_NEAR(max, maxWeight, 0.05);
EXPECT_NEAR(avg, totalWeight / (fann_type) net.get_total_connections(), 0.5);
}
TEST_F(FannTest, CreateStandardThreeLayers) {
neural_net net(LAYER, 3, 2, 3, 4);
AssertCreateAndCopy(net, 3, (const unsigned int[]) {2, 3, 4}, 11, 25);
}
TEST_F(FannTest, CreateStandardThreeLayersUsingCreateMethod) {
ASSERT_TRUE(net.create_standard(3, 2, 3, 4));
unsigned int layers[] = {2, 3, 4};
AssertCreateAndCopy(net, 3, layers, 11, 25);
}
TEST_F(FannTest, CreateStandardFourLayersArray) {
unsigned int layers[] = {2, 3, 4, 5};
neural_net net(LAYER, 4, layers);
AssertCreateAndCopy(net, 4, layers, 17, 50);
}
TEST_F(FannTest, CreateStandardFourLayersArrayUsingCreateMethod) {
unsigned int layers[] = {2, 3, 4, 5};
ASSERT_TRUE(net.create_standard_array(4, layers));
AssertCreateAndCopy(net, 4, layers, 17, 50);
}
TEST_F(FannTest, CreateStandardFourLayersVector) {
vector<unsigned int> layers{2, 3, 4, 5};
neural_net net(LAYER, layers.begin(), layers.end());
AssertCreateAndCopy(net, 4, layers.data(), 17, 50);
}
TEST_F(FannTest, CreateSparseFourLayers) {
neural_net net(0.5, 4, 2, 3, 4, 5);
AssertCreateAndCopy(net, 4, (const unsigned int[]){2, 3, 4, 5}, 17, 31);
}
TEST_F(FannTest, CreateSparseFourLayersUsingCreateMethod) {
ASSERT_TRUE(net.create_sparse(0.5f, 4, 2, 3, 4, 5));
AssertCreateAndCopy(net, 4, (const unsigned int[]){2, 3, 4, 5}, 17, 31);
}
TEST_F(FannTest, CreateSparseArrayFourLayers) {
unsigned int layers[] = {2, 3, 4, 5};
neural_net net(0.5f, 4, layers);
AssertCreateAndCopy(net, 4, layers, 17, 31);
}
TEST_F(FannTest, CreateSparseArrayFourLayersUsingCreateMethod) {
unsigned int layers[] = {2, 3, 4, 5};
ASSERT_TRUE(net.create_sparse_array(0.5f, 4, layers));
AssertCreateAndCopy(net, 4, layers, 17, 31);
}
TEST_F(FannTest, CreateSparseArrayWithMinimalConnectivity) {
unsigned int layers[] = {2, 2, 2};
neural_net net(0.01f, 3, layers);
AssertCreateAndCopy(net, 3, layers, 8, 8);
}
TEST_F(FannTest, CreateShortcutFourLayers) {
neural_net net(SHORTCUT, 4, 2, 3, 4, 5);
AssertCreateAndCopy(net, 4, (const unsigned int[]){2, 3, 4, 5}, 15, 83);
EXPECT_EQ(SHORTCUT, net.get_network_type());
}
TEST_F(FannTest, CreateShortcutFourLayersUsingCreateMethod) {
ASSERT_TRUE(net.create_shortcut(4, 2, 3, 4, 5));
AssertCreateAndCopy(net, 4, (const unsigned int[]){2, 3, 4, 5}, 15, 83);
EXPECT_EQ(SHORTCUT, net.get_network_type());
}
TEST_F(FannTest, CreateShortcutArrayFourLayers) {
unsigned int layers[] = {2, 3, 4, 5};
neural_net net(SHORTCUT, 4, layers);
AssertCreateAndCopy(net, 4, layers, 15, 83);
EXPECT_EQ(SHORTCUT, net.get_network_type());
}
TEST_F(FannTest, CreateShortcutArrayFourLayersUsingCreateMethod) {
unsigned int layers[] = {2, 3, 4, 5};
ASSERT_TRUE(net.create_shortcut_array(4, layers));
AssertCreateAndCopy(net, 4, layers, 15, 83);
EXPECT_EQ(SHORTCUT, net.get_network_type());
}
TEST_F(FannTest, CreateFromFile) {
ASSERT_TRUE(net.create_standard(3, 2, 3, 4));
neural_net netToBeSaved(LAYER, 3, 2, 3, 4);
ASSERT_TRUE(netToBeSaved.save("tmpfile"));
neural_net netToBeLoaded("tmpfile");
AssertCreateAndCopy(netToBeLoaded, 3, (const unsigned int[]){2, 3, 4}, 11, 25);
}
TEST_F(FannTest, CreateFromFileUsingCreateMethod) {
ASSERT_TRUE(net.create_standard(3, 2, 3, 4));
neural_net inputNet(LAYER, 3, 2, 3, 4);
ASSERT_TRUE(inputNet.save("tmpfile"));
ASSERT_TRUE(net.create_from_file("tmpfile"));
AssertCreateAndCopy(net, 3, (const unsigned int[]){2, 3, 4}, 11, 25);
}
TEST_F(FannTest, RandomizeWeights) {
neural_net net(LAYER, 2, 20, 10);
net.randomize_weights(-1.0, 1.0);
AssertWeights(net, -1.0, 1.0, 0);
}

View File

@ -0,0 +1,29 @@
#ifndef FANN_FANN_TEST_H
#define FANN_FANN_TEST_H
#include "gtest/gtest.h"
#include "doublefann.h"
#include "fann_cpp.h"
using namespace FANN;
class FannTest : public testing::Test {
protected:
neural_net net;
training_data data;
void AssertCreateAndCopy(neural_net &net, unsigned int numLayers, const unsigned int *layers, unsigned int neurons,
unsigned int connections);
void AssertCreate(neural_net &net, unsigned int numLayers, const unsigned int *layers,
unsigned int neurons, unsigned int connections);
void AssertWeights(neural_net &net, fann_type min, fann_type max, fann_type avg);
virtual void SetUp();
virtual void TearDown();
};
#endif

View File

@ -0,0 +1,166 @@
#include "fann_test_data.h"
void FannTestData::SetUp() {
FannTest::SetUp();
numData = 2;
numInput = 3;
numOutput = 1;
inputValue = 1.1;
outputValue = 2.2;
inputData = new fann_type *[numData];
outputData = new fann_type *[numData];
InitializeTrainDataStructure(numData, numInput, numOutput, inputValue, outputValue, inputData, outputData);
}
void FannTestData::TearDown() {
FannTest::TearDown();
delete(inputData);
delete(outputData);
}
void FannTestData::InitializeTrainDataStructure(unsigned int numData,
unsigned int numInput,
unsigned int numOutput,
fann_type inputValue, fann_type outputValue,
fann_type **inputData,
fann_type **outputData) {
for (unsigned int i = 0; i < numData; i++) {
inputData[i] = new fann_type[numInput];
outputData[i] = new fann_type[numOutput];
for (unsigned int j = 0; j < numInput; j++)
inputData[i][j] = inputValue;
for (unsigned int j = 0; j < numOutput; j++)
outputData[i][j] = outputValue;
}
}
void FannTestData::AssertTrainData(training_data &trainingData, unsigned int numData, unsigned int numInput,
unsigned int numOutput, fann_type inputValue, fann_type outputValue) {
EXPECT_EQ(numData, trainingData.length_train_data());
EXPECT_EQ(numInput, trainingData.num_input_train_data());
EXPECT_EQ(numOutput, trainingData.num_output_train_data());
for (int i = 0; i < numData; i++) {
for (int j = 0; j < numInput; j++)
EXPECT_DOUBLE_EQ(inputValue, trainingData.get_input()[i][j]);
for (int j = 0; j < numOutput; j++)
EXPECT_DOUBLE_EQ(outputValue, trainingData.get_output()[i][j]);
}
}
TEST_F(FannTestData, CreateTrainDataFromPointerArrays) {
data.set_train_data(numData, numInput, inputData, numOutput, outputData);
AssertTrainData(data, numData, numInput, numOutput, inputValue, outputValue);
}
TEST_F(FannTestData, CreateTrainDataFromArrays) {
fann_type input[] = {inputValue, inputValue, inputValue, inputValue, inputValue, inputValue};
fann_type output[] = {outputValue, outputValue};
data.set_train_data(numData, numInput, input, numOutput, output);
AssertTrainData(data, numData, numInput, numOutput, inputValue, outputValue);
}
TEST_F(FannTestData, CreateTrainDataFromCopy) {
data.set_train_data(numData, numInput, inputData, numOutput, outputData);
training_data dataCopy(data);
AssertTrainData(dataCopy, numData, numInput, numOutput, inputValue, outputValue);
}
TEST_F(FannTestData, CreateTrainDataFromFile) {
data.set_train_data(numData, numInput, inputData, numOutput, outputData);
data.save_train("tmpFile");
training_data dataCopy;
dataCopy.read_train_from_file("tmpFile");
AssertTrainData(dataCopy, numData, numInput, numOutput, inputValue, outputValue);
}
void callBack(unsigned int pos, unsigned int numInput, unsigned int numOutput, fann_type *input, fann_type *output) {
for(unsigned int i = 0; i < numInput; i++)
input[i] = (fann_type) 1.2;
for(unsigned int i = 0; i < numOutput; i++)
output[i] = (fann_type) 2.3;
}
TEST_F(FannTestData, CreateTrainDataFromCallback) {
data.create_train_from_callback(numData, numInput, numOutput, callBack);
AssertTrainData(data, numData, numInput, numOutput, 1.2, 2.3);
}
TEST_F(FannTestData, ShuffleTrainData) {
//only really ensures that the data doesn't get corrupted, a more complete test would need to check
//that this was indeed a permutation of the original data
data.set_train_data(numData, numInput, inputData, numOutput, outputData);
data.shuffle_train_data();
AssertTrainData(data, numData, numInput, numOutput, inputValue, outputValue);
}
TEST_F(FannTestData, MergeTrainData) {
data.set_train_data(numData, numInput, inputData, numOutput, outputData);
training_data dataCopy(data);
data.merge_train_data(dataCopy);
AssertTrainData(data, numData*2, numInput, numOutput, inputValue, outputValue);
}
TEST_F(FannTestData, SubsetTrainData) {
data.set_train_data(numData, numInput, inputData, numOutput, outputData);
//call merge 2 times to get 8 data samples
data.merge_train_data(data);
data.merge_train_data(data);
data.subset_train_data(2, 5);
AssertTrainData(data, 5, numInput, numOutput, inputValue, outputValue);
}
TEST_F(FannTestData, ScaleOutputData) {
fann_type input[] = {0.0, 1.0, 0.5, 0.0, 1.0, 0.5};
fann_type output[] = {0.0, 1.0};
data.set_train_data(2, 3, input, 1, output);
data.scale_output_train_data(-1.0, 2.0);
EXPECT_DOUBLE_EQ(0.0, data.get_min_input());
EXPECT_DOUBLE_EQ(1.0, data.get_max_input());
EXPECT_DOUBLE_EQ(-1.0, data.get_min_output());
EXPECT_DOUBLE_EQ(2.0, data.get_max_output());
}
TEST_F(FannTestData, ScaleInputData) {
fann_type input[] = {0.0, 1.0, 0.5, 0.0, 1.0, 0.5};
fann_type output[] = {0.0, 1.0};
data.set_train_data(2, 3, input, 1, output);
data.scale_input_train_data(-1.0, 2.0);
EXPECT_DOUBLE_EQ(-1.0, data.get_min_input());
EXPECT_DOUBLE_EQ(2.0, data.get_max_input());
EXPECT_DOUBLE_EQ(0.0, data.get_min_output());
EXPECT_DOUBLE_EQ(1.0, data.get_max_output());
}
TEST_F(FannTestData, ScaleData) {
fann_type input[] = {0.0, 1.0, 0.5, 0.0, 1.0, 0.5};
fann_type output[] = {0.0, 1.0};
data.set_train_data(2, 3, input, 1, output);
data.scale_train_data(-1.0, 2.0);
for(unsigned int i = 0; i < 2; i++) {
fann_type *train_input = data.get_train_input(i);
EXPECT_DOUBLE_EQ(-1.0, train_input[0]);
EXPECT_DOUBLE_EQ(2.0, train_input[1]);
EXPECT_DOUBLE_EQ(0.5, train_input[2]);
}
EXPECT_DOUBLE_EQ(-1.0, data.get_train_output(0)[0]);
EXPECT_DOUBLE_EQ(2.0, data.get_train_output(0)[1]);
}

View File

@ -0,0 +1,34 @@
#ifndef FANN_FANN_TEST_DATA_H
#define FANN_FANN_TEST_DATA_H
#include "gtest/gtest.h"
#include "doublefann.h"
#include "fann_cpp.h"
#include "fann_test.h"
class FannTestData : public FannTest {
protected:
unsigned int numData;
unsigned int numInput;
unsigned int numOutput;
fann_type inputValue;
fann_type outputValue;
fann_type **inputData;
fann_type **outputData;
virtual void SetUp();
virtual void TearDown();
void AssertTrainData(FANN::training_data &trainingData, unsigned int numData, unsigned int numInput,
unsigned int numOutput, fann_type inputValue, fann_type outputValue);
void InitializeTrainDataStructure(unsigned int numData, unsigned int numInput, unsigned int numOutput,
fann_type inputValue, fann_type outputValue, fann_type **inputData,
fann_type **outputData);
};
#endif

View File

@ -0,0 +1,35 @@
#include "fann_test_train.h"
using namespace std;
void FannTestTrain::SetUp() {
FannTest::SetUp();
}
void FannTestTrain::TearDown() {
FannTest::TearDown();
}
TEST_F(FannTestTrain, TrainOnDateSimpleXor) {
neural_net net(LAYER, 3, 2, 3, 1);
data.set_train_data(4, 2, xorInput, 1, xorOutput);
net.train_on_data(data, 100, 100, 0.001);
EXPECT_LT(net.get_MSE(), 0.001);
EXPECT_LT(net.test_data(data), 0.001);
}
TEST_F(FannTestTrain, TrainSimpleIncrementalXor) {
neural_net net(LAYER, 3, 2, 3, 1);
for(int i = 0; i < 100000; i++) {
net.train((fann_type*) (const fann_type[]) {0.0, 0.0}, (fann_type*) (const fann_type[]) {0.0});
net.train((fann_type*) (const fann_type[]) {1.0, 0.0}, (fann_type*) (const fann_type[]) {1.0});
net.train((fann_type*) (const fann_type[]) {0.0, 1.0}, (fann_type*) (const fann_type[]) {1.0});
net.train((fann_type*) (const fann_type[]) {1.0, 1.0}, (fann_type*) (const fann_type[]) {0.0});
}
EXPECT_LT(net.get_MSE(), 0.01);
}

View File

@ -0,0 +1,24 @@
#ifndef FANN_FANN_TEST_TRAIN_H
#define FANN_FANN_TEST_TRAIN_H
#include "fann_test.h"
class FannTestTrain : public FannTest {
protected:
fann_type xorInput[8] = {
0.0, 0.0,
0.0, 1.0,
1.0, 0.0,
1.0, 1.0};
fann_type xorOutput[4] = {
0.0,
1.0,
1.0,
0.0};
virtual void SetUp();
virtual void TearDown();
};
#endif

View File

@ -0,0 +1,6 @@
#include "gtest/gtest.h"
int main(int argc, char **argv) {
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}