mirror of
https://github.com/lxsang/antd-lua-plugin
synced 2025-07-25 10:19:57 +02:00
mimgrating from another repo
This commit is contained in:
18
lib/ann/fann/examples/.gitignore
vendored
Normal file
18
lib/ann/fann/examples/.gitignore
vendored
Normal file
@ -0,0 +1,18 @@
|
||||
cascade_train
|
||||
mushroom
|
||||
robot
|
||||
scaling_test
|
||||
scaling_train
|
||||
simple_test
|
||||
simple_train
|
||||
steepness_train
|
||||
xor_fixed.data
|
||||
xor_fixed.net
|
||||
xor_float.net
|
||||
xor_test
|
||||
xor_test_fixed
|
||||
xor_train
|
||||
cascade_train_debug
|
||||
xor_test_debug
|
||||
xor_test_fixed_debug
|
||||
xor_train_debug
|
116
lib/ann/fann/examples/cascade_train.c
Normal file
116
lib/ann/fann/examples/cascade_train.c
Normal file
@ -0,0 +1,116 @@
|
||||
/*
|
||||
Fast Artificial Neural Network Library (fann)
|
||||
Copyright (C) 2003-2016 Steffen Nissen (steffen.fann@gmail.com)
|
||||
|
||||
This library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
|
||||
This library is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public
|
||||
License along with this library; if not, write to the Free Software
|
||||
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
|
||||
#include "fann.h"
|
||||
|
||||
|
||||
int main()
|
||||
{
|
||||
struct fann *ann;
|
||||
struct fann_train_data *train_data, *test_data;
|
||||
const float desired_error = (const float)0.0;
|
||||
unsigned int max_neurons = 30;
|
||||
unsigned int neurons_between_reports = 1;
|
||||
unsigned int bit_fail_train, bit_fail_test;
|
||||
float mse_train, mse_test;
|
||||
unsigned int i = 0;
|
||||
fann_type *output;
|
||||
fann_type steepness;
|
||||
int multi = 0;
|
||||
enum fann_activationfunc_enum activation;
|
||||
enum fann_train_enum training_algorithm = FANN_TRAIN_RPROP;
|
||||
|
||||
printf("Reading data.\n");
|
||||
|
||||
train_data = fann_read_train_from_file("../../datasets/parity8.train");
|
||||
test_data = fann_read_train_from_file("../../datasets/parity8.test");
|
||||
|
||||
fann_scale_train_data(train_data, -1, 1);
|
||||
fann_scale_train_data(test_data, -1, 1);
|
||||
|
||||
printf("Creating network.\n");
|
||||
|
||||
ann = fann_create_shortcut(2, fann_num_input_train_data(train_data), fann_num_output_train_data(train_data));
|
||||
|
||||
fann_set_training_algorithm(ann, training_algorithm);
|
||||
fann_set_activation_function_hidden(ann, FANN_SIGMOID_SYMMETRIC);
|
||||
fann_set_activation_function_output(ann, FANN_LINEAR);
|
||||
fann_set_train_error_function(ann, FANN_ERRORFUNC_LINEAR);
|
||||
|
||||
if(!multi)
|
||||
{
|
||||
/*steepness = 0.5;*/
|
||||
steepness = 1;
|
||||
fann_set_cascade_activation_steepnesses(ann, &steepness, 1);
|
||||
/*activation = FANN_SIN_SYMMETRIC;*/
|
||||
activation = FANN_SIGMOID_SYMMETRIC;
|
||||
|
||||
fann_set_cascade_activation_functions(ann, &activation, 1);
|
||||
fann_set_cascade_num_candidate_groups(ann, 8);
|
||||
}
|
||||
|
||||
if(training_algorithm == FANN_TRAIN_QUICKPROP)
|
||||
{
|
||||
fann_set_learning_rate(ann, 0.35f);
|
||||
fann_randomize_weights(ann, -2.0f, 2.0f);
|
||||
}
|
||||
|
||||
fann_set_bit_fail_limit(ann, (fann_type)0.9);
|
||||
fann_set_train_stop_function(ann, FANN_STOPFUNC_BIT);
|
||||
fann_print_parameters(ann);
|
||||
|
||||
fann_save(ann, "cascade_train2.net");
|
||||
|
||||
printf("Training network.\n");
|
||||
|
||||
fann_cascadetrain_on_data(ann, train_data, max_neurons, neurons_between_reports, desired_error);
|
||||
|
||||
fann_print_connections(ann);
|
||||
|
||||
mse_train = fann_test_data(ann, train_data);
|
||||
bit_fail_train = fann_get_bit_fail(ann);
|
||||
mse_test = fann_test_data(ann, test_data);
|
||||
bit_fail_test = fann_get_bit_fail(ann);
|
||||
|
||||
printf("\nTrain error: %f, Train bit-fail: %d, Test error: %f, Test bit-fail: %d\n\n",
|
||||
mse_train, bit_fail_train, mse_test, bit_fail_test);
|
||||
|
||||
for(i = 0; i < train_data->num_data; i++)
|
||||
{
|
||||
output = fann_run(ann, train_data->input[i]);
|
||||
if((train_data->output[i][0] >= 0 && output[0] <= 0) ||
|
||||
(train_data->output[i][0] <= 0 && output[0] >= 0))
|
||||
{
|
||||
printf("ERROR: %f does not match %f\n", train_data->output[i][0], output[0]);
|
||||
}
|
||||
}
|
||||
|
||||
printf("Saving network.\n");
|
||||
|
||||
fann_save(ann, "cascade_train.net");
|
||||
|
||||
printf("Cleaning up.\n");
|
||||
fann_destroy_train(train_data);
|
||||
fann_destroy_train(test_data);
|
||||
fann_destroy(ann);
|
||||
|
||||
return 0;
|
||||
}
|
59
lib/ann/fann/examples/momentums.c
Normal file
59
lib/ann/fann/examples/momentums.c
Normal file
@ -0,0 +1,59 @@
|
||||
/*
|
||||
Fast Artificial Neural Network Library (fann)
|
||||
Copyright (C) 2003-2016 Steffen Nissen (steffen.fann@gmail.com)
|
||||
|
||||
This library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
|
||||
This library is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.See the GNU
|
||||
Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public
|
||||
License along with this library; if not, write to the Free Software
|
||||
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA02111-1307USA
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
|
||||
#include "fann.h"
|
||||
|
||||
int main()
|
||||
{
|
||||
const unsigned int num_layers = 3;
|
||||
const unsigned int num_neurons_hidden = 96;
|
||||
const float desired_error = (const float) 0.001;
|
||||
struct fann *ann;
|
||||
struct fann_train_data *train_data, *test_data;
|
||||
|
||||
float momentum;
|
||||
|
||||
train_data = fann_read_train_from_file("../../datasets/robot.train");
|
||||
test_data = fann_read_train_from_file("../../datasets/robot.test");
|
||||
|
||||
for ( momentum = 0.0f; momentum < 0.7f; momentum += 0.1f )
|
||||
{
|
||||
printf("============= momentum = %f =============\n", momentum);
|
||||
|
||||
ann = fann_create_standard(num_layers,
|
||||
train_data->num_input, num_neurons_hidden, train_data->num_output);
|
||||
|
||||
fann_set_training_algorithm(ann, FANN_TRAIN_INCREMENTAL);
|
||||
|
||||
fann_set_learning_momentum(ann, momentum);
|
||||
|
||||
fann_train_on_data(ann, train_data, 2000, 500, desired_error);
|
||||
|
||||
printf("MSE error on train data: %f\n", fann_test_data(ann, train_data));
|
||||
printf("MSE error on test data : %f\n", fann_test_data(ann, test_data));
|
||||
|
||||
fann_destroy(ann);
|
||||
}
|
||||
|
||||
fann_destroy_train(train_data);
|
||||
fann_destroy_train(test_data);
|
||||
return 0;
|
||||
}
|
74
lib/ann/fann/examples/mushroom.c
Normal file
74
lib/ann/fann/examples/mushroom.c
Normal file
@ -0,0 +1,74 @@
|
||||
/*
|
||||
Fast Artificial Neural Network Library (fann)
|
||||
Copyright (C) 2003-2016 Steffen Nissen (steffen.fann@gmail.com)
|
||||
|
||||
This library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
|
||||
This library is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public
|
||||
License along with this library; if not, write to the Free Software
|
||||
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
|
||||
#include "fann.h"
|
||||
|
||||
int main()
|
||||
{
|
||||
const unsigned int num_layers = 3;
|
||||
const unsigned int num_neurons_hidden = 32;
|
||||
const float desired_error = (const float) 0.0001;
|
||||
const unsigned int max_epochs = 300;
|
||||
const unsigned int epochs_between_reports = 10;
|
||||
struct fann *ann;
|
||||
struct fann_train_data *train_data, *test_data;
|
||||
|
||||
unsigned int i = 0;
|
||||
|
||||
printf("Creating network.\n");
|
||||
|
||||
train_data = fann_read_train_from_file("../../datasets/mushroom.train");
|
||||
|
||||
ann = fann_create_standard(num_layers,
|
||||
train_data->num_input, num_neurons_hidden, train_data->num_output);
|
||||
|
||||
printf("Training network.\n");
|
||||
|
||||
fann_set_activation_function_hidden(ann, FANN_SIGMOID_SYMMETRIC);
|
||||
fann_set_activation_function_output(ann, FANN_SIGMOID);
|
||||
|
||||
/*fann_set_training_algorithm(ann, FANN_TRAIN_INCREMENTAL); */
|
||||
|
||||
fann_train_on_data(ann, train_data, max_epochs, epochs_between_reports, desired_error);
|
||||
|
||||
printf("Testing network.\n");
|
||||
|
||||
test_data = fann_read_train_from_file("../../datasets/mushroom.test");
|
||||
|
||||
fann_reset_MSE(ann);
|
||||
for(i = 0; i < fann_length_train_data(test_data); i++)
|
||||
{
|
||||
fann_test(ann, test_data->input[i], test_data->output[i]);
|
||||
}
|
||||
|
||||
printf("MSE error on test data: %f\n", fann_get_MSE(ann));
|
||||
|
||||
printf("Saving network.\n");
|
||||
|
||||
fann_save(ann, "mushroom_float.net");
|
||||
|
||||
printf("Cleaning up.\n");
|
||||
fann_destroy_train(train_data);
|
||||
fann_destroy_train(test_data);
|
||||
fann_destroy(ann);
|
||||
|
||||
return 0;
|
||||
}
|
54
lib/ann/fann/examples/parallel_train.c
Normal file
54
lib/ann/fann/examples/parallel_train.c
Normal file
@ -0,0 +1,54 @@
|
||||
/*
|
||||
Fast Artificial Neural Network Library (fann)
|
||||
Copyright (C) 2003-2016 Steffen Nissen (steffen.fann@gmail.com)
|
||||
|
||||
This library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
|
||||
This library is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public
|
||||
License along with this library; if not, write to the Free Software
|
||||
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
*/
|
||||
|
||||
#include "fann.h"
|
||||
#include "parallel_fann.h"
|
||||
|
||||
int main(int argc, const char* argv[])
|
||||
{
|
||||
const unsigned int max_epochs = 1000;
|
||||
unsigned int num_threads = 1;
|
||||
struct fann_train_data *data;
|
||||
struct fann *ann;
|
||||
long before;
|
||||
float error;
|
||||
unsigned int i;
|
||||
|
||||
if(argc == 2)
|
||||
num_threads = atoi(argv[1]);
|
||||
|
||||
data = fann_read_train_from_file("../../datasets/mushroom.train");
|
||||
ann = fann_create_standard(3, fann_num_input_train_data(data), 32, fann_num_output_train_data(data));
|
||||
|
||||
fann_set_activation_function_hidden(ann, FANN_SIGMOID_SYMMETRIC);
|
||||
fann_set_activation_function_output(ann, FANN_SIGMOID);
|
||||
|
||||
before = GetTickCount();
|
||||
for(i = 1; i <= max_epochs; i++)
|
||||
{
|
||||
error = num_threads > 1 ? fann_train_epoch_irpropm_parallel(ann, data, num_threads) : fann_train_epoch(ann, data);
|
||||
printf("Epochs %8d. Current error: %.10f\n", i, error);
|
||||
}
|
||||
printf("ticks %d", GetTickCount()-before);
|
||||
|
||||
fann_destroy(ann);
|
||||
fann_destroy_train(data);
|
||||
|
||||
return 0;
|
||||
}
|
69
lib/ann/fann/examples/robot.c
Normal file
69
lib/ann/fann/examples/robot.c
Normal file
@ -0,0 +1,69 @@
|
||||
/*
|
||||
Fast Artificial Neural Network Library (fann)
|
||||
Copyright (C) 2003-2016 Steffen Nissen (steffen.fann@gmail.com)
|
||||
|
||||
This library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
|
||||
This library is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public
|
||||
License along with this library; if not, write to the Free Software
|
||||
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
|
||||
#include "fann.h"
|
||||
|
||||
int main()
|
||||
{
|
||||
const unsigned int num_layers = 3;
|
||||
const unsigned int num_neurons_hidden = 96;
|
||||
const float desired_error = (const float) 0.001;
|
||||
struct fann *ann;
|
||||
struct fann_train_data *train_data, *test_data;
|
||||
|
||||
unsigned int i = 0;
|
||||
|
||||
printf("Creating network.\n");
|
||||
|
||||
train_data = fann_read_train_from_file("../../datasets/robot.train");
|
||||
|
||||
ann = fann_create_standard(num_layers,
|
||||
train_data->num_input, num_neurons_hidden, train_data->num_output);
|
||||
|
||||
printf("Training network.\n");
|
||||
|
||||
fann_set_training_algorithm(ann, FANN_TRAIN_INCREMENTAL);
|
||||
fann_set_learning_momentum(ann, 0.4f);
|
||||
|
||||
fann_train_on_data(ann, train_data, 3000, 10, desired_error);
|
||||
|
||||
printf("Testing network.\n");
|
||||
|
||||
test_data = fann_read_train_from_file("../../datasets/robot.test");
|
||||
|
||||
fann_reset_MSE(ann);
|
||||
for(i = 0; i < fann_length_train_data(test_data); i++)
|
||||
{
|
||||
fann_test(ann, test_data->input[i], test_data->output[i]);
|
||||
}
|
||||
printf("MSE error on test data: %f\n", fann_get_MSE(ann));
|
||||
|
||||
printf("Saving network.\n");
|
||||
|
||||
fann_save(ann, "robot_float.net");
|
||||
|
||||
printf("Cleaning up.\n");
|
||||
fann_destroy_train(train_data);
|
||||
fann_destroy_train(test_data);
|
||||
fann_destroy(ann);
|
||||
|
||||
return 0;
|
||||
}
|
36
lib/ann/fann/examples/scaling_test.c
Normal file
36
lib/ann/fann/examples/scaling_test.c
Normal file
@ -0,0 +1,36 @@
|
||||
#include <stdio.h>
|
||||
#include "fann.h"
|
||||
|
||||
int main( int argc, char** argv )
|
||||
{
|
||||
fann_type *calc_out;
|
||||
unsigned int i;
|
||||
int ret = 0;
|
||||
struct fann *ann;
|
||||
struct fann_train_data *data;
|
||||
printf("Creating network.\n");
|
||||
ann = fann_create_from_file("scaling.net");
|
||||
if(!ann)
|
||||
{
|
||||
printf("Error creating ann --- ABORTING.\n");
|
||||
return 0;
|
||||
}
|
||||
fann_print_connections(ann);
|
||||
fann_print_parameters(ann);
|
||||
printf("Testing network.\n");
|
||||
data = fann_read_train_from_file("../../datasets/scaling.data");
|
||||
for(i = 0; i < fann_length_train_data(data); i++)
|
||||
{
|
||||
fann_reset_MSE(ann);
|
||||
fann_scale_input( ann, data->input[i] );
|
||||
calc_out = fann_run( ann, data->input[i] );
|
||||
fann_descale_output( ann, calc_out );
|
||||
printf("Result %f original %f error %f\n",
|
||||
calc_out[0], data->output[i][0],
|
||||
(float) fann_abs(calc_out[0] - data->output[i][0]));
|
||||
}
|
||||
printf("Cleaning up.\n");
|
||||
fann_destroy_train(data);
|
||||
fann_destroy(ann);
|
||||
return ret;
|
||||
}
|
33
lib/ann/fann/examples/scaling_train.c
Normal file
33
lib/ann/fann/examples/scaling_train.c
Normal file
@ -0,0 +1,33 @@
|
||||
#include "fann.h"
|
||||
|
||||
int main( int argc, char** argv )
|
||||
{
|
||||
const unsigned int num_input = 3;
|
||||
const unsigned int num_output = 1;
|
||||
const unsigned int num_layers = 4;
|
||||
const unsigned int num_neurons_hidden = 5;
|
||||
const float desired_error = (const float) 0.0001;
|
||||
const unsigned int max_epochs = 5000;
|
||||
const unsigned int epochs_between_reports = 1000;
|
||||
struct fann_train_data * data = NULL;
|
||||
struct fann *ann = fann_create_standard(num_layers, num_input, num_neurons_hidden, num_neurons_hidden, num_output);
|
||||
fann_set_activation_function_hidden(ann, FANN_SIGMOID_SYMMETRIC);
|
||||
fann_set_activation_function_output(ann, FANN_LINEAR);
|
||||
fann_set_training_algorithm(ann, FANN_TRAIN_RPROP);
|
||||
data = fann_read_train_from_file("../../datasets/scaling.data");
|
||||
fann_set_scaling_params(
|
||||
ann,
|
||||
data,
|
||||
-1, /* New input minimum */
|
||||
1, /* New input maximum */
|
||||
-1, /* New output minimum */
|
||||
1); /* New output maximum */
|
||||
|
||||
fann_scale_train( ann, data );
|
||||
|
||||
fann_train_on_data(ann, data, max_epochs, epochs_between_reports, desired_error);
|
||||
fann_destroy_train( data );
|
||||
fann_save(ann, "scaling.net");
|
||||
fann_destroy(ann);
|
||||
return 0;
|
||||
}
|
38
lib/ann/fann/examples/simple_test.c
Normal file
38
lib/ann/fann/examples/simple_test.c
Normal file
@ -0,0 +1,38 @@
|
||||
/*
|
||||
Fast Artificial Neural Network Library (fann)
|
||||
Copyright (C) 2003-2016 Steffen Nissen (steffen.fann@gmail.com)
|
||||
|
||||
This library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
|
||||
This library is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public
|
||||
License along with this library; if not, write to the Free Software
|
||||
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include "floatfann.h"
|
||||
|
||||
int main()
|
||||
{
|
||||
fann_type *calc_out;
|
||||
fann_type input[2];
|
||||
|
||||
struct fann *ann = fann_create_from_file("xor_float.net");
|
||||
|
||||
input[0] = -1;
|
||||
input[1] = 1;
|
||||
calc_out = fann_run(ann, input);
|
||||
|
||||
printf("xor test (%f,%f) -> %f\n", input[0], input[1], calc_out[0]);
|
||||
|
||||
fann_destroy(ann);
|
||||
return 0;
|
||||
}
|
44
lib/ann/fann/examples/simple_train.c
Normal file
44
lib/ann/fann/examples/simple_train.c
Normal file
@ -0,0 +1,44 @@
|
||||
/*
|
||||
Fast Artificial Neural Network Library (fann)
|
||||
Copyright (C) 2003-2016 Steffen Nissen (steffen.fann@gmail.com)
|
||||
|
||||
This library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
|
||||
This library is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public
|
||||
License along with this library; if not, write to the Free Software
|
||||
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
*/
|
||||
|
||||
#include "fann.h"
|
||||
|
||||
int main()
|
||||
{
|
||||
const unsigned int num_input = 2;
|
||||
const unsigned int num_output = 1;
|
||||
const unsigned int num_layers = 3;
|
||||
const unsigned int num_neurons_hidden = 3;
|
||||
const float desired_error = (const float) 0.001;
|
||||
const unsigned int max_epochs = 500000;
|
||||
const unsigned int epochs_between_reports = 1000;
|
||||
|
||||
struct fann *ann = fann_create_standard(num_layers, num_input, num_neurons_hidden, num_output);
|
||||
|
||||
fann_set_activation_function_hidden(ann, FANN_SIGMOID_SYMMETRIC);
|
||||
fann_set_activation_function_output(ann, FANN_SIGMOID_SYMMETRIC);
|
||||
|
||||
fann_train_on_file(ann, "xor.data", max_epochs, epochs_between_reports, desired_error);
|
||||
|
||||
fann_save(ann, "xor_float.net");
|
||||
|
||||
fann_destroy(ann);
|
||||
|
||||
return 0;
|
||||
}
|
116
lib/ann/fann/examples/steepness_train.c
Normal file
116
lib/ann/fann/examples/steepness_train.c
Normal file
@ -0,0 +1,116 @@
|
||||
/*
|
||||
Fast Artificial Neural Network Library (fann)
|
||||
Copyright (C) 2003-2016 Steffen Nissen (steffen.fann@gmail.com)
|
||||
|
||||
This library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
|
||||
This library is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public
|
||||
License along with this library; if not, write to the Free Software
|
||||
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
*/
|
||||
|
||||
#include "fann.h"
|
||||
#include <stdio.h>
|
||||
|
||||
void train_on_steepness_file(struct fann *ann, char *filename,
|
||||
unsigned int max_epochs, unsigned int epochs_between_reports,
|
||||
float desired_error, float steepness_start,
|
||||
float steepness_step, float steepness_end)
|
||||
{
|
||||
float error;
|
||||
unsigned int i;
|
||||
|
||||
struct fann_train_data *data = fann_read_train_from_file(filename);
|
||||
|
||||
if(epochs_between_reports)
|
||||
{
|
||||
printf("Max epochs %8d. Desired error: %.10f\n", max_epochs, desired_error);
|
||||
}
|
||||
|
||||
fann_set_activation_steepness_hidden(ann, steepness_start);
|
||||
fann_set_activation_steepness_output(ann, steepness_start);
|
||||
for(i = 1; i <= max_epochs; i++)
|
||||
{
|
||||
/* train */
|
||||
error = fann_train_epoch(ann, data);
|
||||
|
||||
/* print current output */
|
||||
if(epochs_between_reports &&
|
||||
(i % epochs_between_reports == 0 || i == max_epochs || i == 1 || error < desired_error))
|
||||
{
|
||||
printf("Epochs %8d. Current error: %.10f\n", i, error);
|
||||
}
|
||||
|
||||
if(error < desired_error)
|
||||
{
|
||||
steepness_start += steepness_step;
|
||||
if(steepness_start <= steepness_end)
|
||||
{
|
||||
printf("Steepness: %f\n", steepness_start);
|
||||
fann_set_activation_steepness_hidden(ann, steepness_start);
|
||||
fann_set_activation_steepness_output(ann, steepness_start);
|
||||
}
|
||||
else
|
||||
{
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
fann_destroy_train(data);
|
||||
}
|
||||
|
||||
int main()
|
||||
{
|
||||
const unsigned int num_input = 2;
|
||||
const unsigned int num_output = 1;
|
||||
const unsigned int num_layers = 3;
|
||||
const unsigned int num_neurons_hidden = 3;
|
||||
const float desired_error = (const float) 0.001;
|
||||
const unsigned int max_epochs = 500000;
|
||||
const unsigned int epochs_between_reports = 1000;
|
||||
unsigned int i;
|
||||
fann_type *calc_out;
|
||||
|
||||
struct fann_train_data *data;
|
||||
|
||||
struct fann *ann = fann_create_standard(num_layers,
|
||||
num_input, num_neurons_hidden, num_output);
|
||||
|
||||
data = fann_read_train_from_file("xor.data");
|
||||
|
||||
fann_set_activation_function_hidden(ann, FANN_SIGMOID_SYMMETRIC);
|
||||
fann_set_activation_function_output(ann, FANN_SIGMOID_SYMMETRIC);
|
||||
|
||||
fann_set_training_algorithm(ann, FANN_TRAIN_QUICKPROP);
|
||||
|
||||
train_on_steepness_file(ann, "xor.data", max_epochs,
|
||||
epochs_between_reports, desired_error, (float) 1.0, (float) 0.1,
|
||||
(float) 20.0);
|
||||
|
||||
fann_set_activation_function_hidden(ann, FANN_THRESHOLD_SYMMETRIC);
|
||||
fann_set_activation_function_output(ann, FANN_THRESHOLD_SYMMETRIC);
|
||||
|
||||
for(i = 0; i != fann_length_train_data(data); i++)
|
||||
{
|
||||
calc_out = fann_run(ann, data->input[i]);
|
||||
printf("XOR test (%f, %f) -> %f, should be %f, difference=%f\n",
|
||||
data->input[i][0], data->input[i][1], calc_out[0], data->output[i][0],
|
||||
(float) fann_abs(calc_out[0] - data->output[i][0]));
|
||||
}
|
||||
|
||||
|
||||
fann_save(ann, "xor_float.net");
|
||||
|
||||
fann_destroy(ann);
|
||||
fann_destroy_train(data);
|
||||
|
||||
return 0;
|
||||
}
|
9
lib/ann/fann/examples/xor.data
Normal file
9
lib/ann/fann/examples/xor.data
Normal file
@ -0,0 +1,9 @@
|
||||
4 2 1
|
||||
-1 -1
|
||||
-1
|
||||
-1 1
|
||||
1
|
||||
1 -1
|
||||
1
|
||||
1 1
|
||||
-1
|
152
lib/ann/fann/examples/xor_sample.cpp
Normal file
152
lib/ann/fann/examples/xor_sample.cpp
Normal file
@ -0,0 +1,152 @@
|
||||
/*
|
||||
*
|
||||
* Fast Artificial Neural Network (fann) C++ Wrapper Sample
|
||||
*
|
||||
* C++ wrapper XOR sample with functionality similar to xor_train.c
|
||||
*
|
||||
* Copyright (C) 2004-2006 created by freegoldbar (at) yahoo dot com
|
||||
*
|
||||
* This wrapper is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU Lesser General Public
|
||||
* License as published by the Free Software Foundation; either
|
||||
* version 2.1 of the License, or (at your option) any later version.
|
||||
*
|
||||
* This wrapper is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
* Lesser General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU Lesser General Public
|
||||
* License along with this library; if not, write to the Free Software
|
||||
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
*
|
||||
*/
|
||||
|
||||
#include "floatfann.h"
|
||||
#include "fann_cpp.h"
|
||||
|
||||
#include <ios>
|
||||
#include <iostream>
|
||||
#include <iomanip>
|
||||
using std::cout;
|
||||
using std::cerr;
|
||||
using std::endl;
|
||||
using std::setw;
|
||||
using std::left;
|
||||
using std::right;
|
||||
using std::showpos;
|
||||
using std::noshowpos;
|
||||
|
||||
|
||||
// Callback function that simply prints the information to cout
|
||||
int print_callback(FANN::neural_net &net, FANN::training_data &train,
|
||||
unsigned int max_epochs, unsigned int epochs_between_reports,
|
||||
float desired_error, unsigned int epochs, void *user_data)
|
||||
{
|
||||
cout << "Epochs " << setw(8) << epochs << ". "
|
||||
<< "Current Error: " << left << net.get_MSE() << right << endl;
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Test function that demonstrates usage of the fann C++ wrapper
|
||||
void xor_test()
|
||||
{
|
||||
cout << endl << "XOR test started." << endl;
|
||||
|
||||
const float learning_rate = 0.7f;
|
||||
const unsigned int num_layers = 3;
|
||||
const unsigned int num_input = 2;
|
||||
const unsigned int num_hidden = 3;
|
||||
const unsigned int num_output = 1;
|
||||
const float desired_error = 0.001f;
|
||||
const unsigned int max_iterations = 300000;
|
||||
const unsigned int iterations_between_reports = 1000;
|
||||
|
||||
cout << endl << "Creating network." << endl;
|
||||
|
||||
FANN::neural_net net;
|
||||
net.create_standard(num_layers, num_input, num_hidden, num_output);
|
||||
|
||||
net.set_learning_rate(learning_rate);
|
||||
|
||||
net.set_activation_steepness_hidden(1.0);
|
||||
net.set_activation_steepness_output(1.0);
|
||||
|
||||
net.set_activation_function_hidden(FANN::SIGMOID_SYMMETRIC_STEPWISE);
|
||||
net.set_activation_function_output(FANN::SIGMOID_SYMMETRIC_STEPWISE);
|
||||
|
||||
// Set additional properties such as the training algorithm
|
||||
//net.set_training_algorithm(FANN::TRAIN_QUICKPROP);
|
||||
|
||||
// Output network type and parameters
|
||||
cout << endl << "Network Type : ";
|
||||
switch (net.get_network_type())
|
||||
{
|
||||
case FANN::LAYER:
|
||||
cout << "LAYER" << endl;
|
||||
break;
|
||||
case FANN::SHORTCUT:
|
||||
cout << "SHORTCUT" << endl;
|
||||
break;
|
||||
default:
|
||||
cout << "UNKNOWN" << endl;
|
||||
break;
|
||||
}
|
||||
net.print_parameters();
|
||||
|
||||
cout << endl << "Training network." << endl;
|
||||
|
||||
FANN::training_data data;
|
||||
if (data.read_train_from_file("xor.data"))
|
||||
{
|
||||
// Initialize and train the network with the data
|
||||
net.init_weights(data);
|
||||
|
||||
cout << "Max Epochs " << setw(8) << max_iterations << ". "
|
||||
<< "Desired Error: " << left << desired_error << right << endl;
|
||||
net.set_callback(print_callback, NULL);
|
||||
net.train_on_data(data, max_iterations,
|
||||
iterations_between_reports, desired_error);
|
||||
|
||||
cout << endl << "Testing network." << endl;
|
||||
|
||||
for (unsigned int i = 0; i < data.length_train_data(); ++i)
|
||||
{
|
||||
// Run the network on the test data
|
||||
fann_type *calc_out = net.run(data.get_input()[i]);
|
||||
|
||||
cout << "XOR test (" << showpos << data.get_input()[i][0] << ", "
|
||||
<< data.get_input()[i][1] << ") -> " << *calc_out
|
||||
<< ", should be " << data.get_output()[i][0] << ", "
|
||||
<< "difference = " << noshowpos
|
||||
<< fann_abs(*calc_out - data.get_output()[i][0]) << endl;
|
||||
}
|
||||
|
||||
cout << endl << "Saving network." << endl;
|
||||
|
||||
// Save the network in floating point and fixed point
|
||||
net.save("xor_float.net");
|
||||
unsigned int decimal_point = net.save_to_fixed("xor_fixed.net");
|
||||
data.save_train_to_fixed("xor_fixed.data", decimal_point);
|
||||
|
||||
cout << endl << "XOR test completed." << endl;
|
||||
}
|
||||
}
|
||||
|
||||
/* Startup function. Syncronizes C and C++ output, calls the test function
|
||||
and reports any exceptions */
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
try
|
||||
{
|
||||
std::ios::sync_with_stdio(); // Syncronize cout and printf output
|
||||
xor_test();
|
||||
}
|
||||
catch (...)
|
||||
{
|
||||
cerr << endl << "Abnormal exception." << endl;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/******************************************************************************/
|
84
lib/ann/fann/examples/xor_test.c
Normal file
84
lib/ann/fann/examples/xor_test.c
Normal file
@ -0,0 +1,84 @@
|
||||
/*
|
||||
Fast Artificial Neural Network Library (fann)
|
||||
Copyright (C) 2003-2016 Steffen Nissen (steffen.fann@gmail.com)
|
||||
|
||||
This library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
|
||||
This library is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public
|
||||
License along with this library; if not, write to the Free Software
|
||||
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
|
||||
#include "fann.h"
|
||||
|
||||
int main()
|
||||
{
|
||||
fann_type *calc_out;
|
||||
unsigned int i;
|
||||
int ret = 0;
|
||||
|
||||
struct fann *ann;
|
||||
struct fann_train_data *data;
|
||||
|
||||
printf("Creating network.\n");
|
||||
|
||||
#ifdef FIXEDFANN
|
||||
ann = fann_create_from_file("xor_fixed.net");
|
||||
#else
|
||||
ann = fann_create_from_file("xor_float.net");
|
||||
#endif
|
||||
|
||||
if(!ann)
|
||||
{
|
||||
printf("Error creating ann --- ABORTING.\n");
|
||||
return -1;
|
||||
}
|
||||
|
||||
fann_print_connections(ann);
|
||||
fann_print_parameters(ann);
|
||||
|
||||
printf("Testing network.\n");
|
||||
|
||||
#ifdef FIXEDFANN
|
||||
data = fann_read_train_from_file("xor_fixed.data");
|
||||
#else
|
||||
data = fann_read_train_from_file("xor.data");
|
||||
#endif
|
||||
|
||||
for(i = 0; i < fann_length_train_data(data); i++)
|
||||
{
|
||||
fann_reset_MSE(ann);
|
||||
calc_out = fann_test(ann, data->input[i], data->output[i]);
|
||||
#ifdef FIXEDFANN
|
||||
printf("XOR test (%d, %d) -> %d, should be %d, difference=%f\n",
|
||||
data->input[i][0], data->input[i][1], calc_out[0], data->output[i][0],
|
||||
(float) fann_abs(calc_out[0] - data->output[i][0]) / fann_get_multiplier(ann));
|
||||
|
||||
if((float) fann_abs(calc_out[0] - data->output[i][0]) / fann_get_multiplier(ann) > 0.2)
|
||||
{
|
||||
printf("Test failed\n");
|
||||
ret = -1;
|
||||
}
|
||||
#else
|
||||
printf("XOR test (%f, %f) -> %f, should be %f, difference=%f\n",
|
||||
data->input[i][0], data->input[i][1], calc_out[0], data->output[i][0],
|
||||
(float) fann_abs(calc_out[0] - data->output[i][0]));
|
||||
#endif
|
||||
}
|
||||
|
||||
printf("Cleaning up.\n");
|
||||
fann_destroy_train(data);
|
||||
fann_destroy(ann);
|
||||
|
||||
return ret;
|
||||
}
|
91
lib/ann/fann/examples/xor_train.c
Normal file
91
lib/ann/fann/examples/xor_train.c
Normal file
@ -0,0 +1,91 @@
|
||||
/*
|
||||
Fast Artificial Neural Network Library (fann)
|
||||
Copyright (C) 2003-2016 Steffen Nissen (steffen.fann@gmail.com)
|
||||
|
||||
This library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
|
||||
This library is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public
|
||||
License along with this library; if not, write to the Free Software
|
||||
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
|
||||
#include "fann.h"
|
||||
|
||||
int FANN_API test_callback(struct fann *ann, struct fann_train_data *train,
|
||||
unsigned int max_epochs, unsigned int epochs_between_reports,
|
||||
float desired_error, unsigned int epochs)
|
||||
{
|
||||
printf("Epochs %8d. MSE: %.5f. Desired-MSE: %.5f\n", epochs, fann_get_MSE(ann), desired_error);
|
||||
return 0;
|
||||
}
|
||||
|
||||
int main()
|
||||
{
|
||||
fann_type *calc_out;
|
||||
const unsigned int num_input = 2;
|
||||
const unsigned int num_output = 1;
|
||||
const unsigned int num_layers = 3;
|
||||
const unsigned int num_neurons_hidden = 3;
|
||||
const float desired_error = (const float) 0;
|
||||
const unsigned int max_epochs = 1000;
|
||||
const unsigned int epochs_between_reports = 10;
|
||||
struct fann *ann;
|
||||
struct fann_train_data *data;
|
||||
|
||||
unsigned int i = 0;
|
||||
unsigned int decimal_point;
|
||||
|
||||
printf("Creating network.\n");
|
||||
ann = fann_create_standard(num_layers, num_input, num_neurons_hidden, num_output);
|
||||
|
||||
data = fann_read_train_from_file("xor.data");
|
||||
|
||||
fann_set_activation_steepness_hidden(ann, 1);
|
||||
fann_set_activation_steepness_output(ann, 1);
|
||||
|
||||
fann_set_activation_function_hidden(ann, FANN_SIGMOID_SYMMETRIC);
|
||||
fann_set_activation_function_output(ann, FANN_SIGMOID_SYMMETRIC);
|
||||
|
||||
fann_set_train_stop_function(ann, FANN_STOPFUNC_BIT);
|
||||
fann_set_bit_fail_limit(ann, 0.01f);
|
||||
|
||||
fann_set_training_algorithm(ann, FANN_TRAIN_RPROP);
|
||||
|
||||
fann_init_weights(ann, data);
|
||||
|
||||
printf("Training network.\n");
|
||||
fann_train_on_data(ann, data, max_epochs, epochs_between_reports, desired_error);
|
||||
|
||||
printf("Testing network. %f\n", fann_test_data(ann, data));
|
||||
|
||||
for(i = 0; i < fann_length_train_data(data); i++)
|
||||
{
|
||||
calc_out = fann_run(ann, data->input[i]);
|
||||
printf("XOR test (%f,%f) -> %f, should be %f, difference=%f\n",
|
||||
data->input[i][0], data->input[i][1], calc_out[0], data->output[i][0],
|
||||
fann_abs(calc_out[0] - data->output[i][0]));
|
||||
}
|
||||
|
||||
printf("Saving network.\n");
|
||||
|
||||
fann_save(ann, "xor_float.net");
|
||||
|
||||
decimal_point = fann_save_to_fixed(ann, "xor_fixed.net");
|
||||
fann_save_train_to_fixed(data, "xor_fixed.data", decimal_point);
|
||||
|
||||
printf("Cleaning up.\n");
|
||||
fann_destroy_train(data);
|
||||
fann_destroy(ann);
|
||||
|
||||
return 0;
|
||||
}
|
Reference in New Issue
Block a user