mirror of
https://github.com/lxsang/antd-lua-plugin
synced 2025-01-01 03:58:22 +01:00
804 lines
25 KiB
C
804 lines
25 KiB
C
|
/*
|
||
|
Fast Artificial Neural Network Library (fann)
|
||
|
Copyright (C) 2003-2016 Steffen Nissen (steffen.fann@gmail.com)
|
||
|
|
||
|
This library is free software; you can redistribute it and/or
|
||
|
modify it under the terms of the GNU Lesser General Public
|
||
|
License as published by the Free Software Foundation; either
|
||
|
version 2.1 of the License, or (at your option) any later version.
|
||
|
|
||
|
This library is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
|
Lesser General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU Lesser General Public
|
||
|
License along with this library; if not, write to the Free Software
|
||
|
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||
|
*/
|
||
|
|
||
|
#include <stdio.h>
|
||
|
#include <stdlib.h>
|
||
|
#include <stdarg.h>
|
||
|
#include <string.h>
|
||
|
|
||
|
#include "config.h"
|
||
|
#include "fann.h"
|
||
|
#include "fann_data.h"
|
||
|
|
||
|
/* Create a network from a configuration file.
|
||
|
*/
|
||
|
FANN_EXTERNAL struct fann *FANN_API fann_create_from_file(const char *configuration_file)
|
||
|
{
|
||
|
struct fann *ann;
|
||
|
FILE *conf = fopen(configuration_file, "r");
|
||
|
|
||
|
if(!conf)
|
||
|
{
|
||
|
fann_error(NULL, FANN_E_CANT_OPEN_CONFIG_R, configuration_file);
|
||
|
return NULL;
|
||
|
}
|
||
|
ann = fann_create_from_fd(conf, configuration_file);
|
||
|
fclose(conf);
|
||
|
return ann;
|
||
|
}
|
||
|
|
||
|
/* Save the network.
|
||
|
*/
|
||
|
FANN_EXTERNAL int FANN_API fann_save(struct fann *ann, const char *configuration_file)
|
||
|
{
|
||
|
return fann_save_internal(ann, configuration_file, 0);
|
||
|
}
|
||
|
|
||
|
/* Save the network as fixed point data.
|
||
|
*/
|
||
|
FANN_EXTERNAL int FANN_API fann_save_to_fixed(struct fann *ann, const char *configuration_file)
|
||
|
{
|
||
|
return fann_save_internal(ann, configuration_file, 1);
|
||
|
}
|
||
|
|
||
|
/* INTERNAL FUNCTION
|
||
|
Used to save the network to a file.
|
||
|
*/
|
||
|
int fann_save_internal(struct fann *ann, const char *configuration_file, unsigned int save_as_fixed)
|
||
|
{
|
||
|
int retval;
|
||
|
FILE *conf = fopen(configuration_file, "w+");
|
||
|
|
||
|
if(!conf)
|
||
|
{
|
||
|
fann_error((struct fann_error *) ann, FANN_E_CANT_OPEN_CONFIG_W, configuration_file);
|
||
|
return -1;
|
||
|
}
|
||
|
retval = fann_save_internal_fd(ann, conf, configuration_file, save_as_fixed);
|
||
|
fclose(conf);
|
||
|
return retval;
|
||
|
}
|
||
|
|
||
|
/* INTERNAL FUNCTION
|
||
|
Used to save the network to a file descriptor.
|
||
|
*/
|
||
|
int fann_save_internal_fd(struct fann *ann, FILE * conf, const char *configuration_file,
|
||
|
unsigned int save_as_fixed)
|
||
|
{
|
||
|
struct fann_layer *layer_it;
|
||
|
int calculated_decimal_point = 0;
|
||
|
struct fann_neuron *neuron_it, *first_neuron;
|
||
|
fann_type *weights;
|
||
|
struct fann_neuron **connected_neurons;
|
||
|
unsigned int i = 0;
|
||
|
|
||
|
#ifndef FIXEDFANN
|
||
|
/* variabels for use when saving floats as fixed point variabels */
|
||
|
unsigned int decimal_point = 0;
|
||
|
unsigned int fixed_multiplier = 0;
|
||
|
fann_type max_possible_value = 0;
|
||
|
unsigned int bits_used_for_max = 0;
|
||
|
fann_type current_max_value = 0;
|
||
|
#endif
|
||
|
|
||
|
#ifndef FIXEDFANN
|
||
|
if(save_as_fixed)
|
||
|
{
|
||
|
/* save the version information */
|
||
|
fprintf(conf, FANN_FIX_VERSION "\n");
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* save the version information */
|
||
|
fprintf(conf, FANN_FLO_VERSION "\n");
|
||
|
}
|
||
|
#else
|
||
|
/* save the version information */
|
||
|
fprintf(conf, FANN_FIX_VERSION "\n");
|
||
|
#endif
|
||
|
|
||
|
#ifndef FIXEDFANN
|
||
|
if(save_as_fixed)
|
||
|
{
|
||
|
/* calculate the maximal possible shift value */
|
||
|
|
||
|
for(layer_it = ann->first_layer + 1; layer_it != ann->last_layer; layer_it++)
|
||
|
{
|
||
|
for(neuron_it = layer_it->first_neuron; neuron_it != layer_it->last_neuron; neuron_it++)
|
||
|
{
|
||
|
/* look at all connections to each neurons, and see how high a value we can get */
|
||
|
current_max_value = 0;
|
||
|
for(i = neuron_it->first_con; i != neuron_it->last_con; i++)
|
||
|
{
|
||
|
current_max_value += fann_abs(ann->weights[i]);
|
||
|
}
|
||
|
|
||
|
if(current_max_value > max_possible_value)
|
||
|
{
|
||
|
max_possible_value = current_max_value;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for(bits_used_for_max = 0; max_possible_value >= 1; bits_used_for_max++)
|
||
|
{
|
||
|
max_possible_value /= 2.0;
|
||
|
}
|
||
|
|
||
|
/* The maximum number of bits we shift the fix point, is the number
|
||
|
* of bits in a integer, minus one for the sign, one for the minus
|
||
|
* in stepwise, and minus the bits used for the maximum.
|
||
|
* This is devided by two, to allow multiplication of two fixed
|
||
|
* point numbers.
|
||
|
*/
|
||
|
calculated_decimal_point = (sizeof(int) * 8 - 2 - bits_used_for_max) / 2;
|
||
|
|
||
|
if(calculated_decimal_point < 0)
|
||
|
{
|
||
|
decimal_point = 0;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
decimal_point = calculated_decimal_point;
|
||
|
}
|
||
|
|
||
|
fixed_multiplier = 1 << decimal_point;
|
||
|
|
||
|
#ifdef DEBUG
|
||
|
printf("calculated_decimal_point=%d, decimal_point=%u, bits_used_for_max=%u\n",
|
||
|
calculated_decimal_point, decimal_point, bits_used_for_max);
|
||
|
#endif
|
||
|
|
||
|
/* save the decimal_point on a seperate line */
|
||
|
fprintf(conf, "decimal_point=%u\n", decimal_point);
|
||
|
}
|
||
|
#else
|
||
|
/* save the decimal_point on a seperate line */
|
||
|
fprintf(conf, "decimal_point=%u\n", ann->decimal_point);
|
||
|
|
||
|
#endif
|
||
|
|
||
|
/* Save network parameters */
|
||
|
fprintf(conf, "num_layers=%d\n", (int)(ann->last_layer - ann->first_layer));
|
||
|
fprintf(conf, "learning_rate=%f\n", ann->learning_rate);
|
||
|
fprintf(conf, "connection_rate=%f\n", ann->connection_rate);
|
||
|
fprintf(conf, "network_type=%u\n", ann->network_type);
|
||
|
|
||
|
fprintf(conf, "learning_momentum=%f\n", ann->learning_momentum);
|
||
|
fprintf(conf, "training_algorithm=%u\n", ann->training_algorithm);
|
||
|
fprintf(conf, "train_error_function=%u\n", ann->train_error_function);
|
||
|
fprintf(conf, "train_stop_function=%u\n", ann->train_stop_function);
|
||
|
fprintf(conf, "cascade_output_change_fraction=%f\n", ann->cascade_output_change_fraction);
|
||
|
fprintf(conf, "quickprop_decay=%f\n", ann->quickprop_decay);
|
||
|
fprintf(conf, "quickprop_mu=%f\n", ann->quickprop_mu);
|
||
|
fprintf(conf, "rprop_increase_factor=%f\n", ann->rprop_increase_factor);
|
||
|
fprintf(conf, "rprop_decrease_factor=%f\n", ann->rprop_decrease_factor);
|
||
|
fprintf(conf, "rprop_delta_min=%f\n", ann->rprop_delta_min);
|
||
|
fprintf(conf, "rprop_delta_max=%f\n", ann->rprop_delta_max);
|
||
|
fprintf(conf, "rprop_delta_zero=%f\n", ann->rprop_delta_zero);
|
||
|
fprintf(conf, "cascade_output_stagnation_epochs=%u\n", ann->cascade_output_stagnation_epochs);
|
||
|
fprintf(conf, "cascade_candidate_change_fraction=%f\n", ann->cascade_candidate_change_fraction);
|
||
|
fprintf(conf, "cascade_candidate_stagnation_epochs=%u\n", ann->cascade_candidate_stagnation_epochs);
|
||
|
fprintf(conf, "cascade_max_out_epochs=%u\n", ann->cascade_max_out_epochs);
|
||
|
fprintf(conf, "cascade_min_out_epochs=%u\n", ann->cascade_min_out_epochs);
|
||
|
fprintf(conf, "cascade_max_cand_epochs=%u\n", ann->cascade_max_cand_epochs);
|
||
|
fprintf(conf, "cascade_min_cand_epochs=%u\n", ann->cascade_min_cand_epochs);
|
||
|
fprintf(conf, "cascade_num_candidate_groups=%u\n", ann->cascade_num_candidate_groups);
|
||
|
|
||
|
#ifndef FIXEDFANN
|
||
|
if(save_as_fixed)
|
||
|
{
|
||
|
fprintf(conf, "bit_fail_limit=%u\n", (int) floor((ann->bit_fail_limit * fixed_multiplier) + 0.5));
|
||
|
fprintf(conf, "cascade_candidate_limit=%u\n", (int) floor((ann->cascade_candidate_limit * fixed_multiplier) + 0.5));
|
||
|
fprintf(conf, "cascade_weight_multiplier=%u\n", (int) floor((ann->cascade_weight_multiplier * fixed_multiplier) + 0.5));
|
||
|
}
|
||
|
else
|
||
|
#endif
|
||
|
{
|
||
|
fprintf(conf, "bit_fail_limit="FANNPRINTF"\n", ann->bit_fail_limit);
|
||
|
fprintf(conf, "cascade_candidate_limit="FANNPRINTF"\n", ann->cascade_candidate_limit);
|
||
|
fprintf(conf, "cascade_weight_multiplier="FANNPRINTF"\n", ann->cascade_weight_multiplier);
|
||
|
}
|
||
|
|
||
|
fprintf(conf, "cascade_activation_functions_count=%u\n", ann->cascade_activation_functions_count);
|
||
|
fprintf(conf, "cascade_activation_functions=");
|
||
|
for(i = 0; i < ann->cascade_activation_functions_count; i++)
|
||
|
fprintf(conf, "%u ", ann->cascade_activation_functions[i]);
|
||
|
fprintf(conf, "\n");
|
||
|
|
||
|
fprintf(conf, "cascade_activation_steepnesses_count=%u\n", ann->cascade_activation_steepnesses_count);
|
||
|
fprintf(conf, "cascade_activation_steepnesses=");
|
||
|
for(i = 0; i < ann->cascade_activation_steepnesses_count; i++)
|
||
|
{
|
||
|
#ifndef FIXEDFANN
|
||
|
if(save_as_fixed)
|
||
|
fprintf(conf, "%u ", (int) floor((ann->cascade_activation_steepnesses[i] * fixed_multiplier) + 0.5));
|
||
|
else
|
||
|
#endif
|
||
|
fprintf(conf, FANNPRINTF" ", ann->cascade_activation_steepnesses[i]);
|
||
|
}
|
||
|
fprintf(conf, "\n");
|
||
|
|
||
|
fprintf(conf, "layer_sizes=");
|
||
|
for(layer_it = ann->first_layer; layer_it != ann->last_layer; layer_it++)
|
||
|
{
|
||
|
/* the number of neurons in the layers (in the last layer, there is always one too many neurons, because of an unused bias) */
|
||
|
fprintf(conf, "%d ", (int)(layer_it->last_neuron - layer_it->first_neuron));
|
||
|
}
|
||
|
fprintf(conf, "\n");
|
||
|
|
||
|
#ifndef FIXEDFANN
|
||
|
/* 2.1 */
|
||
|
#define SCALE_SAVE( what, where ) \
|
||
|
fprintf( conf, #what "_" #where "=" ); \
|
||
|
for( i = 0; i < ann->num_##where##put; i++ ) \
|
||
|
fprintf( conf, "%f ", ann->what##_##where[ i ] ); \
|
||
|
fprintf( conf, "\n" );
|
||
|
|
||
|
if(!save_as_fixed)
|
||
|
{
|
||
|
if(ann->scale_mean_in != NULL)
|
||
|
{
|
||
|
fprintf(conf, "scale_included=1\n");
|
||
|
SCALE_SAVE( scale_mean, in )
|
||
|
SCALE_SAVE( scale_deviation, in )
|
||
|
SCALE_SAVE( scale_new_min, in )
|
||
|
SCALE_SAVE( scale_factor, in )
|
||
|
|
||
|
SCALE_SAVE( scale_mean, out )
|
||
|
SCALE_SAVE( scale_deviation, out )
|
||
|
SCALE_SAVE( scale_new_min, out )
|
||
|
SCALE_SAVE( scale_factor, out )
|
||
|
}
|
||
|
else
|
||
|
fprintf(conf, "scale_included=0\n");
|
||
|
}
|
||
|
#undef SCALE_SAVE
|
||
|
#endif
|
||
|
|
||
|
/* 2.0 */
|
||
|
fprintf(conf, "neurons (num_inputs, activation_function, activation_steepness)=");
|
||
|
for(layer_it = ann->first_layer; layer_it != ann->last_layer; layer_it++)
|
||
|
{
|
||
|
/* the neurons */
|
||
|
for(neuron_it = layer_it->first_neuron; neuron_it != layer_it->last_neuron; neuron_it++)
|
||
|
{
|
||
|
#ifndef FIXEDFANN
|
||
|
if(save_as_fixed)
|
||
|
{
|
||
|
fprintf(conf, "(%u, %u, %u) ", neuron_it->last_con - neuron_it->first_con,
|
||
|
neuron_it->activation_function,
|
||
|
(int) floor((neuron_it->activation_steepness * fixed_multiplier) + 0.5));
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
fprintf(conf, "(%u, %u, " FANNPRINTF ") ", neuron_it->last_con - neuron_it->first_con,
|
||
|
neuron_it->activation_function, neuron_it->activation_steepness);
|
||
|
}
|
||
|
#else
|
||
|
fprintf(conf, "(%u, %u, " FANNPRINTF ") ", neuron_it->last_con - neuron_it->first_con,
|
||
|
neuron_it->activation_function, neuron_it->activation_steepness);
|
||
|
#endif
|
||
|
}
|
||
|
}
|
||
|
fprintf(conf, "\n");
|
||
|
|
||
|
connected_neurons = ann->connections;
|
||
|
weights = ann->weights;
|
||
|
first_neuron = ann->first_layer->first_neuron;
|
||
|
|
||
|
/* Now save all the connections.
|
||
|
* We only need to save the source and the weight,
|
||
|
* since the destination is given by the order.
|
||
|
*
|
||
|
* The weight is not saved binary due to differences
|
||
|
* in binary definition of floating point numbers.
|
||
|
* Especially an iPAQ does not use the same binary
|
||
|
* representation as an i386 machine.
|
||
|
*/
|
||
|
fprintf(conf, "connections (connected_to_neuron, weight)=");
|
||
|
for(i = 0; i < ann->total_connections; i++)
|
||
|
{
|
||
|
#ifndef FIXEDFANN
|
||
|
if(save_as_fixed)
|
||
|
{
|
||
|
/* save the connection "(source weight) " */
|
||
|
fprintf(conf, "(%d, %d) ",
|
||
|
(int)(connected_neurons[i] - first_neuron),
|
||
|
(int) floor((weights[i] * fixed_multiplier) + 0.5));
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* save the connection "(source weight) " */
|
||
|
fprintf(conf, "(%d, " FANNPRINTF ") ", (int)(connected_neurons[i] - first_neuron), weights[i]);
|
||
|
}
|
||
|
#else
|
||
|
/* save the connection "(source weight) " */
|
||
|
fprintf(conf, "(%d, " FANNPRINTF ") ", (int)(connected_neurons[i] - first_neuron), weights[i]);
|
||
|
#endif
|
||
|
|
||
|
}
|
||
|
fprintf(conf, "\n");
|
||
|
|
||
|
return calculated_decimal_point;
|
||
|
}
|
||
|
|
||
|
struct fann *fann_create_from_fd_1_1(FILE * conf, const char *configuration_file);
|
||
|
|
||
|
#define fann_scanf(type, name, val) \
|
||
|
{ \
|
||
|
if(fscanf(conf, name"="type"\n", val) != 1) \
|
||
|
{ \
|
||
|
fann_error(NULL, FANN_E_CANT_READ_CONFIG, name, configuration_file); \
|
||
|
fann_destroy(ann); \
|
||
|
return NULL; \
|
||
|
} \
|
||
|
}
|
||
|
|
||
|
#define fann_skip(name) \
|
||
|
{ \
|
||
|
if(fscanf(conf, name) != 0) \
|
||
|
{ \
|
||
|
fann_error(NULL, FANN_E_CANT_READ_CONFIG, name, configuration_file); \
|
||
|
fann_destroy(ann); \
|
||
|
return NULL; \
|
||
|
} \
|
||
|
}
|
||
|
|
||
|
/* INTERNAL FUNCTION
|
||
|
Create a network from a configuration file descriptor.
|
||
|
*/
|
||
|
struct fann *fann_create_from_fd(FILE * conf, const char *configuration_file)
|
||
|
{
|
||
|
unsigned int num_layers, layer_size, input_neuron, i, num_connections;
|
||
|
unsigned int tmpVal;
|
||
|
#ifdef FIXEDFANN
|
||
|
unsigned int decimal_point, multiplier;
|
||
|
#else
|
||
|
unsigned int scale_included;
|
||
|
#endif
|
||
|
struct fann_neuron *first_neuron, *neuron_it, *last_neuron, **connected_neurons;
|
||
|
fann_type *weights;
|
||
|
struct fann_layer *layer_it;
|
||
|
struct fann *ann = NULL;
|
||
|
|
||
|
char *read_version;
|
||
|
|
||
|
read_version = (char *) calloc(strlen(FANN_CONF_VERSION "\n"), 1);
|
||
|
if(read_version == NULL)
|
||
|
{
|
||
|
fann_error(NULL, FANN_E_CANT_ALLOCATE_MEM);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
if(fread(read_version, 1, strlen(FANN_CONF_VERSION "\n"), conf) == 1)
|
||
|
{
|
||
|
fann_error(NULL, FANN_E_CANT_READ_CONFIG, "FANN_VERSION", configuration_file);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/* compares the version information */
|
||
|
if(strncmp(read_version, FANN_CONF_VERSION "\n", strlen(FANN_CONF_VERSION "\n")) != 0)
|
||
|
{
|
||
|
#ifdef FIXEDFANN
|
||
|
if(strncmp(read_version, "FANN_FIX_1.1\n", strlen("FANN_FIX_1.1\n")) == 0)
|
||
|
{
|
||
|
#else
|
||
|
if(strncmp(read_version, "FANN_FLO_1.1\n", strlen("FANN_FLO_1.1\n")) == 0)
|
||
|
{
|
||
|
#endif
|
||
|
free(read_version);
|
||
|
return fann_create_from_fd_1_1(conf, configuration_file);
|
||
|
}
|
||
|
|
||
|
#ifndef FIXEDFANN
|
||
|
/* Maintain compatibility with 2.0 version that doesnt have scale parameters. */
|
||
|
if(strncmp(read_version, "FANN_FLO_2.0\n", strlen("FANN_FLO_2.0\n")) != 0 &&
|
||
|
strncmp(read_version, "FANN_FLO_2.1\n", strlen("FANN_FLO_2.1\n")) != 0)
|
||
|
#else
|
||
|
if(strncmp(read_version, "FANN_FIX_2.0\n", strlen("FANN_FIX_2.0\n")) != 0 &&
|
||
|
strncmp(read_version, "FANN_FIX_2.1\n", strlen("FANN_FIX_2.1\n")) != 0)
|
||
|
#endif
|
||
|
{
|
||
|
free(read_version);
|
||
|
fann_error(NULL, FANN_E_WRONG_CONFIG_VERSION, configuration_file);
|
||
|
|
||
|
return NULL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
free(read_version);
|
||
|
|
||
|
#ifdef FIXEDFANN
|
||
|
fann_scanf("%u", "decimal_point", &decimal_point);
|
||
|
multiplier = 1 << decimal_point;
|
||
|
#endif
|
||
|
|
||
|
fann_scanf("%u", "num_layers", &num_layers);
|
||
|
|
||
|
ann = fann_allocate_structure(num_layers);
|
||
|
if(ann == NULL)
|
||
|
{
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
fann_scanf("%f", "learning_rate", &ann->learning_rate);
|
||
|
fann_scanf("%f", "connection_rate", &ann->connection_rate);
|
||
|
fann_scanf("%u", "network_type", &tmpVal);
|
||
|
ann->network_type = (enum fann_nettype_enum)tmpVal;
|
||
|
fann_scanf("%f", "learning_momentum", &ann->learning_momentum);
|
||
|
fann_scanf("%u", "training_algorithm", &tmpVal);
|
||
|
ann->training_algorithm = (enum fann_train_enum)tmpVal;
|
||
|
fann_scanf("%u", "train_error_function", &tmpVal);
|
||
|
ann->train_error_function = (enum fann_errorfunc_enum)tmpVal;
|
||
|
fann_scanf("%u", "train_stop_function", &tmpVal);
|
||
|
ann->train_stop_function = (enum fann_stopfunc_enum)tmpVal;
|
||
|
fann_scanf("%f", "cascade_output_change_fraction", &ann->cascade_output_change_fraction);
|
||
|
fann_scanf("%f", "quickprop_decay", &ann->quickprop_decay);
|
||
|
fann_scanf("%f", "quickprop_mu", &ann->quickprop_mu);
|
||
|
fann_scanf("%f", "rprop_increase_factor", &ann->rprop_increase_factor);
|
||
|
fann_scanf("%f", "rprop_decrease_factor", &ann->rprop_decrease_factor);
|
||
|
fann_scanf("%f", "rprop_delta_min", &ann->rprop_delta_min);
|
||
|
fann_scanf("%f", "rprop_delta_max", &ann->rprop_delta_max);
|
||
|
fann_scanf("%f", "rprop_delta_zero", &ann->rprop_delta_zero);
|
||
|
fann_scanf("%u", "cascade_output_stagnation_epochs", &ann->cascade_output_stagnation_epochs);
|
||
|
fann_scanf("%f", "cascade_candidate_change_fraction", &ann->cascade_candidate_change_fraction);
|
||
|
fann_scanf("%u", "cascade_candidate_stagnation_epochs", &ann->cascade_candidate_stagnation_epochs);
|
||
|
fann_scanf("%u", "cascade_max_out_epochs", &ann->cascade_max_out_epochs);
|
||
|
fann_scanf("%u", "cascade_min_out_epochs", &ann->cascade_min_out_epochs);
|
||
|
fann_scanf("%u", "cascade_max_cand_epochs", &ann->cascade_max_cand_epochs);
|
||
|
fann_scanf("%u", "cascade_min_cand_epochs", &ann->cascade_min_cand_epochs);
|
||
|
fann_scanf("%u", "cascade_num_candidate_groups", &ann->cascade_num_candidate_groups);
|
||
|
|
||
|
fann_scanf(FANNSCANF, "bit_fail_limit", &ann->bit_fail_limit);
|
||
|
fann_scanf(FANNSCANF, "cascade_candidate_limit", &ann->cascade_candidate_limit);
|
||
|
fann_scanf(FANNSCANF, "cascade_weight_multiplier", &ann->cascade_weight_multiplier);
|
||
|
|
||
|
|
||
|
fann_scanf("%u", "cascade_activation_functions_count", &ann->cascade_activation_functions_count);
|
||
|
|
||
|
/* reallocate mem */
|
||
|
ann->cascade_activation_functions =
|
||
|
(enum fann_activationfunc_enum *)realloc(ann->cascade_activation_functions,
|
||
|
ann->cascade_activation_functions_count * sizeof(enum fann_activationfunc_enum));
|
||
|
if(ann->cascade_activation_functions == NULL)
|
||
|
{
|
||
|
fann_error((struct fann_error*)ann, FANN_E_CANT_ALLOCATE_MEM);
|
||
|
fann_destroy(ann);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
|
||
|
fann_skip("cascade_activation_functions=");
|
||
|
for(i = 0; i < ann->cascade_activation_functions_count; i++)
|
||
|
{
|
||
|
if(fscanf(conf, "%u ", &tmpVal) != 1)
|
||
|
{
|
||
|
fann_error(NULL, FANN_E_CANT_READ_CONFIG, "cascade_activation_functions", configuration_file);
|
||
|
fann_destroy(ann);
|
||
|
return NULL;
|
||
|
}
|
||
|
ann->cascade_activation_functions[i] = (enum fann_activationfunc_enum)tmpVal;
|
||
|
}
|
||
|
|
||
|
fann_scanf("%u", "cascade_activation_steepnesses_count", &ann->cascade_activation_steepnesses_count);
|
||
|
|
||
|
/* reallocate mem */
|
||
|
ann->cascade_activation_steepnesses =
|
||
|
(fann_type *)realloc(ann->cascade_activation_steepnesses,
|
||
|
ann->cascade_activation_steepnesses_count * sizeof(fann_type));
|
||
|
if(ann->cascade_activation_steepnesses == NULL)
|
||
|
{
|
||
|
fann_error((struct fann_error*)ann, FANN_E_CANT_ALLOCATE_MEM);
|
||
|
fann_destroy(ann);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
fann_skip("cascade_activation_steepnesses=");
|
||
|
for(i = 0; i < ann->cascade_activation_steepnesses_count; i++)
|
||
|
{
|
||
|
if(fscanf(conf, FANNSCANF" ", &ann->cascade_activation_steepnesses[i]) != 1)
|
||
|
{
|
||
|
fann_error(NULL, FANN_E_CANT_READ_CONFIG, "cascade_activation_steepnesses", configuration_file);
|
||
|
fann_destroy(ann);
|
||
|
return NULL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#ifdef FIXEDFANN
|
||
|
ann->decimal_point = decimal_point;
|
||
|
ann->multiplier = multiplier;
|
||
|
#endif
|
||
|
|
||
|
#ifdef FIXEDFANN
|
||
|
fann_update_stepwise(ann);
|
||
|
#endif
|
||
|
|
||
|
#ifdef DEBUG
|
||
|
printf("creating network with %d layers\n", num_layers);
|
||
|
printf("input\n");
|
||
|
#endif
|
||
|
|
||
|
fann_skip("layer_sizes=");
|
||
|
/* determine how many neurons there should be in each layer */
|
||
|
for(layer_it = ann->first_layer; layer_it != ann->last_layer; layer_it++)
|
||
|
{
|
||
|
if(fscanf(conf, "%u ", &layer_size) != 1)
|
||
|
{
|
||
|
fann_error((struct fann_error *) ann, FANN_E_CANT_READ_CONFIG, "layer_sizes", configuration_file);
|
||
|
fann_destroy(ann);
|
||
|
return NULL;
|
||
|
}
|
||
|
/* we do not allocate room here, but we make sure that
|
||
|
* last_neuron - first_neuron is the number of neurons */
|
||
|
layer_it->first_neuron = NULL;
|
||
|
layer_it->last_neuron = layer_it->first_neuron + layer_size;
|
||
|
ann->total_neurons += layer_size;
|
||
|
#ifdef DEBUG
|
||
|
if(ann->network_type == FANN_NETTYPE_SHORTCUT && layer_it != ann->first_layer)
|
||
|
{
|
||
|
printf(" layer : %d neurons, 0 bias\n", layer_size);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
printf(" layer : %d neurons, 1 bias\n", layer_size - 1);
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
ann->num_input = (unsigned int)(ann->first_layer->last_neuron - ann->first_layer->first_neuron - 1);
|
||
|
ann->num_output = (unsigned int)((ann->last_layer - 1)->last_neuron - (ann->last_layer - 1)->first_neuron);
|
||
|
if(ann->network_type == FANN_NETTYPE_LAYER)
|
||
|
{
|
||
|
/* one too many (bias) in the output layer */
|
||
|
ann->num_output--;
|
||
|
}
|
||
|
|
||
|
#ifndef FIXEDFANN
|
||
|
#define SCALE_LOAD( what, where ) \
|
||
|
fann_skip( #what "_" #where "=" ); \
|
||
|
for(i = 0; i < ann->num_##where##put; i++) \
|
||
|
{ \
|
||
|
if(fscanf( conf, "%f ", (float *)&ann->what##_##where[ i ] ) != 1) \
|
||
|
{ \
|
||
|
fann_error((struct fann_error *) ann, FANN_E_CANT_READ_CONFIG, #what "_" #where, configuration_file); \
|
||
|
fann_destroy(ann); \
|
||
|
return NULL; \
|
||
|
} \
|
||
|
}
|
||
|
|
||
|
if(fscanf(conf, "scale_included=%u\n", &scale_included) == 1 && scale_included == 1)
|
||
|
{
|
||
|
fann_allocate_scale(ann);
|
||
|
SCALE_LOAD( scale_mean, in )
|
||
|
SCALE_LOAD( scale_deviation, in )
|
||
|
SCALE_LOAD( scale_new_min, in )
|
||
|
SCALE_LOAD( scale_factor, in )
|
||
|
|
||
|
SCALE_LOAD( scale_mean, out )
|
||
|
SCALE_LOAD( scale_deviation, out )
|
||
|
SCALE_LOAD( scale_new_min, out )
|
||
|
SCALE_LOAD( scale_factor, out )
|
||
|
}
|
||
|
#undef SCALE_LOAD
|
||
|
#endif
|
||
|
|
||
|
/* allocate room for the actual neurons */
|
||
|
fann_allocate_neurons(ann);
|
||
|
if(ann->errno_f == FANN_E_CANT_ALLOCATE_MEM)
|
||
|
{
|
||
|
fann_destroy(ann);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
last_neuron = (ann->last_layer - 1)->last_neuron;
|
||
|
fann_skip("neurons (num_inputs, activation_function, activation_steepness)=");
|
||
|
for(neuron_it = ann->first_layer->first_neuron; neuron_it != last_neuron; neuron_it++)
|
||
|
{
|
||
|
if(fscanf
|
||
|
(conf, "(%u, %u, " FANNSCANF ") ", &num_connections, &tmpVal,
|
||
|
&neuron_it->activation_steepness) != 3)
|
||
|
{
|
||
|
fann_error((struct fann_error *) ann, FANN_E_CANT_READ_NEURON, configuration_file);
|
||
|
fann_destroy(ann);
|
||
|
return NULL;
|
||
|
}
|
||
|
neuron_it->activation_function = (enum fann_activationfunc_enum)tmpVal;
|
||
|
neuron_it->first_con = ann->total_connections;
|
||
|
ann->total_connections += num_connections;
|
||
|
neuron_it->last_con = ann->total_connections;
|
||
|
}
|
||
|
|
||
|
fann_allocate_connections(ann);
|
||
|
if(ann->errno_f == FANN_E_CANT_ALLOCATE_MEM)
|
||
|
{
|
||
|
fann_destroy(ann);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
connected_neurons = ann->connections;
|
||
|
weights = ann->weights;
|
||
|
first_neuron = ann->first_layer->first_neuron;
|
||
|
|
||
|
fann_skip("connections (connected_to_neuron, weight)=");
|
||
|
for(i = 0; i < ann->total_connections; i++)
|
||
|
{
|
||
|
if(fscanf(conf, "(%u, " FANNSCANF ") ", &input_neuron, &weights[i]) != 2)
|
||
|
{
|
||
|
fann_error((struct fann_error *) ann, FANN_E_CANT_READ_CONNECTIONS, configuration_file);
|
||
|
fann_destroy(ann);
|
||
|
return NULL;
|
||
|
}
|
||
|
connected_neurons[i] = first_neuron + input_neuron;
|
||
|
}
|
||
|
|
||
|
#ifdef DEBUG
|
||
|
printf("output\n");
|
||
|
#endif
|
||
|
return ann;
|
||
|
}
|
||
|
|
||
|
|
||
|
/* INTERNAL FUNCTION
|
||
|
Create a network from a configuration file descriptor. (backward compatible read of version 1.1 files)
|
||
|
*/
|
||
|
struct fann *fann_create_from_fd_1_1(FILE * conf, const char *configuration_file)
|
||
|
{
|
||
|
unsigned int num_layers, layer_size, input_neuron, i, network_type, num_connections;
|
||
|
unsigned int activation_function_hidden, activation_function_output;
|
||
|
#ifdef FIXEDFANN
|
||
|
unsigned int decimal_point, multiplier;
|
||
|
#endif
|
||
|
fann_type activation_steepness_hidden, activation_steepness_output;
|
||
|
float learning_rate, connection_rate;
|
||
|
struct fann_neuron *first_neuron, *neuron_it, *last_neuron, **connected_neurons;
|
||
|
fann_type *weights;
|
||
|
struct fann_layer *layer_it;
|
||
|
struct fann *ann;
|
||
|
|
||
|
#ifdef FIXEDFANN
|
||
|
if(fscanf(conf, "%u\n", &decimal_point) != 1)
|
||
|
{
|
||
|
fann_error(NULL, FANN_E_CANT_READ_CONFIG, "decimal_point", configuration_file);
|
||
|
return NULL;
|
||
|
}
|
||
|
multiplier = 1 << decimal_point;
|
||
|
#endif
|
||
|
|
||
|
if(fscanf(conf, "%u %f %f %u %u %u " FANNSCANF " " FANNSCANF "\n", &num_layers, &learning_rate,
|
||
|
&connection_rate, &network_type, &activation_function_hidden,
|
||
|
&activation_function_output, &activation_steepness_hidden,
|
||
|
&activation_steepness_output) != 8)
|
||
|
{
|
||
|
fann_error(NULL, FANN_E_CANT_READ_CONFIG, "parameters", configuration_file);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
ann = fann_allocate_structure(num_layers);
|
||
|
if(ann == NULL)
|
||
|
{
|
||
|
return NULL;
|
||
|
}
|
||
|
ann->connection_rate = connection_rate;
|
||
|
ann->network_type = (enum fann_nettype_enum)network_type;
|
||
|
ann->learning_rate = learning_rate;
|
||
|
|
||
|
#ifdef FIXEDFANN
|
||
|
ann->decimal_point = decimal_point;
|
||
|
ann->multiplier = multiplier;
|
||
|
#endif
|
||
|
|
||
|
#ifdef FIXEDFANN
|
||
|
fann_update_stepwise(ann);
|
||
|
#endif
|
||
|
|
||
|
#ifdef DEBUG
|
||
|
printf("creating network with learning rate %f\n", learning_rate);
|
||
|
printf("input\n");
|
||
|
#endif
|
||
|
|
||
|
/* determine how many neurons there should be in each layer */
|
||
|
for(layer_it = ann->first_layer; layer_it != ann->last_layer; layer_it++)
|
||
|
{
|
||
|
if(fscanf(conf, "%u ", &layer_size) != 1)
|
||
|
{
|
||
|
fann_error((struct fann_error *) ann, FANN_E_CANT_READ_NEURON, configuration_file);
|
||
|
fann_destroy(ann);
|
||
|
return NULL;
|
||
|
}
|
||
|
/* we do not allocate room here, but we make sure that
|
||
|
* last_neuron - first_neuron is the number of neurons */
|
||
|
layer_it->first_neuron = NULL;
|
||
|
layer_it->last_neuron = layer_it->first_neuron + layer_size;
|
||
|
ann->total_neurons += layer_size;
|
||
|
#ifdef DEBUG
|
||
|
if(ann->network_type == FANN_NETTYPE_SHORTCUT && layer_it != ann->first_layer)
|
||
|
{
|
||
|
printf(" layer : %d neurons, 0 bias\n", layer_size);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
printf(" layer : %d neurons, 1 bias\n", layer_size - 1);
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
ann->num_input = (unsigned int)(ann->first_layer->last_neuron - ann->first_layer->first_neuron - 1);
|
||
|
ann->num_output = (unsigned int)((ann->last_layer - 1)->last_neuron - (ann->last_layer - 1)->first_neuron);
|
||
|
if(ann->network_type == FANN_NETTYPE_LAYER)
|
||
|
{
|
||
|
/* one too many (bias) in the output layer */
|
||
|
ann->num_output--;
|
||
|
}
|
||
|
|
||
|
/* allocate room for the actual neurons */
|
||
|
fann_allocate_neurons(ann);
|
||
|
if(ann->errno_f == FANN_E_CANT_ALLOCATE_MEM)
|
||
|
{
|
||
|
fann_destroy(ann);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
last_neuron = (ann->last_layer - 1)->last_neuron;
|
||
|
for(neuron_it = ann->first_layer->first_neuron; neuron_it != last_neuron; neuron_it++)
|
||
|
{
|
||
|
if(fscanf(conf, "%u ", &num_connections) != 1)
|
||
|
{
|
||
|
fann_error((struct fann_error *) ann, FANN_E_CANT_READ_NEURON, configuration_file);
|
||
|
fann_destroy(ann);
|
||
|
return NULL;
|
||
|
}
|
||
|
neuron_it->first_con = ann->total_connections;
|
||
|
ann->total_connections += num_connections;
|
||
|
neuron_it->last_con = ann->total_connections;
|
||
|
}
|
||
|
|
||
|
fann_allocate_connections(ann);
|
||
|
if(ann->errno_f == FANN_E_CANT_ALLOCATE_MEM)
|
||
|
{
|
||
|
fann_destroy(ann);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
connected_neurons = ann->connections;
|
||
|
weights = ann->weights;
|
||
|
first_neuron = ann->first_layer->first_neuron;
|
||
|
|
||
|
for(i = 0; i < ann->total_connections; i++)
|
||
|
{
|
||
|
if(fscanf(conf, "(%u " FANNSCANF ") ", &input_neuron, &weights[i]) != 2)
|
||
|
{
|
||
|
fann_error((struct fann_error *) ann, FANN_E_CANT_READ_CONNECTIONS, configuration_file);
|
||
|
fann_destroy(ann);
|
||
|
return NULL;
|
||
|
}
|
||
|
connected_neurons[i] = first_neuron + input_neuron;
|
||
|
}
|
||
|
|
||
|
fann_set_activation_steepness_hidden(ann, activation_steepness_hidden);
|
||
|
fann_set_activation_steepness_output(ann, activation_steepness_output);
|
||
|
fann_set_activation_function_hidden(ann, (enum fann_activationfunc_enum)activation_function_hidden);
|
||
|
fann_set_activation_function_output(ann, (enum fann_activationfunc_enum)activation_function_output);
|
||
|
|
||
|
#ifdef DEBUG
|
||
|
printf("output\n");
|
||
|
#endif
|
||
|
return ann;
|
||
|
}
|