mirror of
https://github.com/lxsang/antd-lua-plugin
synced 2025-01-03 21:08:22 +01:00
92 lines
2.8 KiB
C
92 lines
2.8 KiB
C
|
/*
|
||
|
Fast Artificial Neural Network Library (fann)
|
||
|
Copyright (C) 2003-2016 Steffen Nissen (steffen.fann@gmail.com)
|
||
|
|
||
|
This library is free software; you can redistribute it and/or
|
||
|
modify it under the terms of the GNU Lesser General Public
|
||
|
License as published by the Free Software Foundation; either
|
||
|
version 2.1 of the License, or (at your option) any later version.
|
||
|
|
||
|
This library is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
|
Lesser General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU Lesser General Public
|
||
|
License along with this library; if not, write to the Free Software
|
||
|
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||
|
*/
|
||
|
|
||
|
#include <stdio.h>
|
||
|
|
||
|
#include "fann.h"
|
||
|
|
||
|
int FANN_API test_callback(struct fann *ann, struct fann_train_data *train,
|
||
|
unsigned int max_epochs, unsigned int epochs_between_reports,
|
||
|
float desired_error, unsigned int epochs)
|
||
|
{
|
||
|
printf("Epochs %8d. MSE: %.5f. Desired-MSE: %.5f\n", epochs, fann_get_MSE(ann), desired_error);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int main()
|
||
|
{
|
||
|
fann_type *calc_out;
|
||
|
const unsigned int num_input = 2;
|
||
|
const unsigned int num_output = 1;
|
||
|
const unsigned int num_layers = 3;
|
||
|
const unsigned int num_neurons_hidden = 3;
|
||
|
const float desired_error = (const float) 0;
|
||
|
const unsigned int max_epochs = 1000;
|
||
|
const unsigned int epochs_between_reports = 10;
|
||
|
struct fann *ann;
|
||
|
struct fann_train_data *data;
|
||
|
|
||
|
unsigned int i = 0;
|
||
|
unsigned int decimal_point;
|
||
|
|
||
|
printf("Creating network.\n");
|
||
|
ann = fann_create_standard(num_layers, num_input, num_neurons_hidden, num_output);
|
||
|
|
||
|
data = fann_read_train_from_file("xor.data");
|
||
|
|
||
|
fann_set_activation_steepness_hidden(ann, 1);
|
||
|
fann_set_activation_steepness_output(ann, 1);
|
||
|
|
||
|
fann_set_activation_function_hidden(ann, FANN_SIGMOID_SYMMETRIC);
|
||
|
fann_set_activation_function_output(ann, FANN_SIGMOID_SYMMETRIC);
|
||
|
|
||
|
fann_set_train_stop_function(ann, FANN_STOPFUNC_BIT);
|
||
|
fann_set_bit_fail_limit(ann, 0.01f);
|
||
|
|
||
|
fann_set_training_algorithm(ann, FANN_TRAIN_RPROP);
|
||
|
|
||
|
fann_init_weights(ann, data);
|
||
|
|
||
|
printf("Training network.\n");
|
||
|
fann_train_on_data(ann, data, max_epochs, epochs_between_reports, desired_error);
|
||
|
|
||
|
printf("Testing network. %f\n", fann_test_data(ann, data));
|
||
|
|
||
|
for(i = 0; i < fann_length_train_data(data); i++)
|
||
|
{
|
||
|
calc_out = fann_run(ann, data->input[i]);
|
||
|
printf("XOR test (%f,%f) -> %f, should be %f, difference=%f\n",
|
||
|
data->input[i][0], data->input[i][1], calc_out[0], data->output[i][0],
|
||
|
fann_abs(calc_out[0] - data->output[i][0]));
|
||
|
}
|
||
|
|
||
|
printf("Saving network.\n");
|
||
|
|
||
|
fann_save(ann, "xor_float.net");
|
||
|
|
||
|
decimal_point = fann_save_to_fixed(ann, "xor_fixed.net");
|
||
|
fann_save_train_to_fixed(data, "xor_fixed.data", decimal_point);
|
||
|
|
||
|
printf("Cleaning up.\n");
|
||
|
fann_destroy_train(data);
|
||
|
fann_destroy(ann);
|
||
|
|
||
|
return 0;
|
||
|
}
|