1
0
mirror of https://github.com/lxsang/antd-lua-plugin synced 2025-01-01 03:58:22 +01:00
antd-lua-plugin/lib/ann/fann/examples/cascade_train.c

117 lines
3.5 KiB
C
Raw Normal View History

2018-09-19 15:08:49 +02:00
/*
Fast Artificial Neural Network Library (fann)
Copyright (C) 2003-2016 Steffen Nissen (steffen.fann@gmail.com)
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <stdio.h>
#include "fann.h"
int main()
{
struct fann *ann;
struct fann_train_data *train_data, *test_data;
const float desired_error = (const float)0.0;
unsigned int max_neurons = 30;
unsigned int neurons_between_reports = 1;
unsigned int bit_fail_train, bit_fail_test;
float mse_train, mse_test;
unsigned int i = 0;
fann_type *output;
fann_type steepness;
int multi = 0;
enum fann_activationfunc_enum activation;
enum fann_train_enum training_algorithm = FANN_TRAIN_RPROP;
printf("Reading data.\n");
train_data = fann_read_train_from_file("../../datasets/parity8.train");
test_data = fann_read_train_from_file("../../datasets/parity8.test");
fann_scale_train_data(train_data, -1, 1);
fann_scale_train_data(test_data, -1, 1);
printf("Creating network.\n");
ann = fann_create_shortcut(2, fann_num_input_train_data(train_data), fann_num_output_train_data(train_data));
fann_set_training_algorithm(ann, training_algorithm);
fann_set_activation_function_hidden(ann, FANN_SIGMOID_SYMMETRIC);
fann_set_activation_function_output(ann, FANN_LINEAR);
fann_set_train_error_function(ann, FANN_ERRORFUNC_LINEAR);
if(!multi)
{
/*steepness = 0.5;*/
steepness = 1;
fann_set_cascade_activation_steepnesses(ann, &steepness, 1);
/*activation = FANN_SIN_SYMMETRIC;*/
activation = FANN_SIGMOID_SYMMETRIC;
fann_set_cascade_activation_functions(ann, &activation, 1);
fann_set_cascade_num_candidate_groups(ann, 8);
}
if(training_algorithm == FANN_TRAIN_QUICKPROP)
{
fann_set_learning_rate(ann, 0.35f);
fann_randomize_weights(ann, -2.0f, 2.0f);
}
fann_set_bit_fail_limit(ann, (fann_type)0.9);
fann_set_train_stop_function(ann, FANN_STOPFUNC_BIT);
fann_print_parameters(ann);
fann_save(ann, "cascade_train2.net");
printf("Training network.\n");
fann_cascadetrain_on_data(ann, train_data, max_neurons, neurons_between_reports, desired_error);
fann_print_connections(ann);
mse_train = fann_test_data(ann, train_data);
bit_fail_train = fann_get_bit_fail(ann);
mse_test = fann_test_data(ann, test_data);
bit_fail_test = fann_get_bit_fail(ann);
printf("\nTrain error: %f, Train bit-fail: %d, Test error: %f, Test bit-fail: %d\n\n",
mse_train, bit_fail_train, mse_test, bit_fail_test);
for(i = 0; i < train_data->num_data; i++)
{
output = fann_run(ann, train_data->input[i]);
if((train_data->output[i][0] >= 0 && output[0] <= 0) ||
(train_data->output[i][0] <= 0 && output[0] >= 0))
{
printf("ERROR: %f does not match %f\n", train_data->output[i][0], output[0]);
}
}
printf("Saving network.\n");
fann_save(ann, "cascade_train.net");
printf("Cleaning up.\n");
fann_destroy_train(train_data);
fann_destroy_train(test_data);
fann_destroy(ann);
return 0;
}